JPH03161508A - Polyester fiber for rubber reinforcement and production thereof - Google Patents

Polyester fiber for rubber reinforcement and production thereof

Info

Publication number
JPH03161508A
JPH03161508A JP1296587A JP29658789A JPH03161508A JP H03161508 A JPH03161508 A JP H03161508A JP 1296587 A JP1296587 A JP 1296587A JP 29658789 A JP29658789 A JP 29658789A JP H03161508 A JPH03161508 A JP H03161508A
Authority
JP
Japan
Prior art keywords
antimony
ppm
less
compound
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1296587A
Other languages
Japanese (ja)
Other versions
JP2887324B2 (en
Inventor
Futoshi Sasamoto
太 笹本
Takehiko Mitsuyoshi
三吉 威彦
Takuji Sato
卓治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1296587A priority Critical patent/JP2887324B2/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to DE69028693T priority patent/DE69028693T2/en
Priority to AU66426/90A priority patent/AU635356B2/en
Priority to US07/721,545 priority patent/US5242645A/en
Priority to PCT/JP1990/001491 priority patent/WO1991007529A1/en
Priority to KR1019910700743A priority patent/KR940002693B1/en
Priority to ZA909179A priority patent/ZA909179B/en
Priority to CA002045134A priority patent/CA2045134C/en
Priority to EP90916815A priority patent/EP0454868B1/en
Publication of JPH03161508A publication Critical patent/JPH03161508A/en
Application granted granted Critical
Publication of JP2887324B2 publication Critical patent/JP2887324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the title polyester fiber containing a carboxyl terminal group and diethylene glycol at a specific ratio, having specific intrinsic viscosity and strong elongation product, good dimensional stability and high toughness and capable of providing excellent uniformity and endurance to tire. CONSTITUTION:The aimed polyester fiber containing (A) <= 25 eq/ton carboxyl terminal group (COOH) and (B) <=1.3wt.% diethylene glycol(DEG) and preferably obtained by using (C) 30-150ppm antimony compound and 5-120ppm germanium compound as a polymerization catalyst and being >=0.85 in intrinsic viscosity(IV), <8% in middle elongation + dry heat shrinkage (S), >=2S+11 in strong elonga tion product (TE<1/2>) and <=40g/d in terminal modulus(TM).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はゴム補強用ポリエステル繊維に関する。更に詳
しくは寸法安定性が良好でタフネスが高く耐久性が良好
で、均一性、耐久性とも良好なタイヤが製造可能なゴム
補強用ポリエステル繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polyester fibers for rubber reinforcement. More specifically, the present invention relates to polyester fibers for reinforcing rubber, which have good dimensional stability, high toughness, and good durability, and can produce tires with good uniformity and durability.

[従来の技術] ポリエステル繊維は機械的性質、寸法安定性、耐久性に
優れ、衣料用のみでなく産業用途にも広く利用されてい
る。なかでもタイヤコードなどのゴム資材補強用途では
その特徴を生かし多量に利用されている。タイヤコード
用途では従来低配向の未延伸糸を高倍率延伸l一だ高強
度原糸が使用されいているが、近年は比較的高配向紡糸
の未延伸糸(いわゆるPOY)を延伸して得た原糸が使
用されるよ・うになった。これは強度を若干犠社にして
でもコー ドの寸法安定性を良くし、タイヤ性能を向−
ヒさせようという二ズから生ま,れた技術である。
[Prior Art] Polyester fibers have excellent mechanical properties, dimensional stability, and durability, and are widely used not only for clothing but also for industrial applications. Among these, it is used in large quantities for reinforcing rubber materials such as tire cords, taking advantage of its characteristics. Conventionally, for tire cord applications, high-strength raw yarns have been used by drawing low-oriented undrawn yarns at high ratios, but in recent years, relatively highly oriented undrawn yarns (so-called POY) have been drawn. Raw yarn is now used. This improves the dimensional stability of the cord and improves tire performance, even at the cost of some strength.
This is a technique that was born out of the desire to make people feel angry.

[発明が解決しようとする課題] 特に近年では乗用車用タイヤコー ドとし,て、1,・
− ヨンが使用されている部分にもポリエステル繊維を
使用1〜ようという動きがさかX7であり、ポリエスデ
ル繊維にも従来にない良好な寸法安定性が要求されでい
る。かかる要求に対して特開昭61−165547号公
報や特開昭6119812号公報に提案されているよう
に未延伸糸(POY)の紡糸速度を高速化し寸法安定性
を向上する技術が開示さね,ている。i一かしながら、
従来技術の延長て′単にPOYの紡速を高めるだけでは
確かに=t−法安定性は良くなるもの?POYの紡速ア
ップに伴ないタフイ・スが著し7く低下しその/::め
にタイヤコー ドの耐久性、特に耐疲労性が大きく低下
してしまい、、二のため現実には採用されていないのが
実状て゛あろ。
[Problem to be solved by the invention] Especially in recent years, as tire cords for passenger cars, 1.
- There is a growing trend to use polyester fibers in areas where yarn is used, and polyester fibers are also required to have unprecedented dimensional stability. In response to such demands, techniques have been disclosed to increase the spinning speed of undrawn yarn (POY) and improve its dimensional stability, as proposed in JP-A-61-165547 and JP-A-6119812. ,ing. While I was playing,
As an extension of the conventional technology, can t-method stability be improved simply by increasing the spinning speed of POY? As the spinning speed of POY increases, the toughness decreases significantly, and as a result, the durability of the tire cord, especially the fatigue resistance, decreases significantly. The reality is that it is not.

本発明者らはかかる問題について検討し、、寸法安定性
、タフネス、耐久性が良好で1ノ−ヨン代替が可能なタ
イヤコードについて鋭意研究した結果、ボリマ設計を根
本的に行ないボリマ中に生或ずる粒子を制御し,、かつ
紡糸時の配向特性をボリマ特性面からコント・冑一ルす
ることによりポリエステル!a維の物性を,rM.密:
<< ;(・ト,囲0,=二7ンl一ロールずることて
′−初めて」一記目的を3令づ−ることを見出したちの
て′ある。
The inventors of the present invention have considered this problem, and as a result of intensive research on tire cords that have good dimensional stability, toughness, and durability and can be used as a substitute for 1-no-yon, the inventors have fundamentally designed the voluminous material. By controlling certain particles and controlling and improving the orientation characteristics during spinning from the viewpoint of the polymer properties, polyester can be produced! The physical properties of a fibers were determined by rM. Dense:
<<;(・t, box 0, = 27 nl one roll '-' - for the first time') I found out that I can give three commands for one purpose.

すなわち、本発明の目的は {1}  カルボキシル末端基退( [COO}{] 
)が2 5 eg/ ton以下、ジエチレングリーj
・−ル含有量(DEG)が1.3wt%以−ト”て゛4
bり、極限粘度(IV)≧0■85 中間伸度十乾熱収縮(S)<8% 強伸度積( T ,/’? )≧2 5 + ].. 
]ターミナルモジュラス(TM)≦40g/ciζ′あ
るゴム補強用ポリエステル繊維およびその製造方法によ
り達或できる6 本発明のポリエステルとは王チl/ンテ1ノノタレー 
1−を主たる繰り返し単位とするボリ王ステルをさす。
That is, the purpose of the present invention is {1} carboxyl terminal group retirement ([COO}{]
) is 25 eg/ton or less, diethylene green
・The alcohol content (DEG) is 1.3 wt% or more”4
Intrinsic viscosity (IV)≧0■85 Intermediate elongation Ten-dry heat shrinkage (S)<8% Strong elongation product (T,/'?)≧2 5 + ]. ..
] Terminal modulus (TM)≦40g/ci
Refers to Bori-oh Stell whose main repeating unit is 1-.

ポリエステルとしては寸法安定性、強度の向上のために
、副生ジエチレングリコノ1.以外の第3戒分の添加や
、共重合、あるいは無機粒子等を実質的に含有l,ない
ポリエチレンテレフタレ− トこ′あることが好ましい
As a polyester, in order to improve dimensional stability and strength, by-product diethylene glycono1. It is preferable that polyethylene terephthalate is substantially free of addition of the third precept, copolymerization, or inorganic particles.

本発明のポリエスデル繊維の寸法安定性を示ず中間仲度
」一乾熱収縮、すなわち寸法安定性(8)は8%未満て
′ある必要がある。8が8%以−inでは低収縮、高モ
ジュラスのポリエステルコードは得られず、レーヨン代
替は不可能である。かかる観点からSは7,5%以下が
好まし,い。
The polyester fiber of the present invention exhibits no dimensional stability and must have an intermediate dry heat shrinkage, ie, dimensional stability (8) of less than 8%. If the amount of 8 is more than 8%, a polyester cord with low shrinkage and high modulus cannot be obtained, and it is impossible to substitute for rayon. From this point of view, S is preferably 7.5% or less.

本発明のポリエステル繊維のタフネス(T,r7>はT
F一≧23+11を満足する高タフネス繊維でなくては
ならない。一般に寸法安定性(S)が小さくなるように
高配向紡糸をし4ていくとタフネス(T./”T)も顕
著に低下してしまう。しかしながらタイヤコー ドεし
ての耐疲労性は同一のタフネスにおいては8が小さい方
が良い傾向にある。本発明者らの研究の結果、タイヤと
しての耐久性を十分満足するタフネスの限界は寸法安定
性(S)が小さくなると低くなること、すなわち寸法安
定性(S)が小さい2こころでは比較的低いタフネスて
′も耐久性が}I4足できるレベルに至ることを見出l
一ノと。かかるタフネスの下限値について鋭意検討1,
た結果、TJ7:≧28+11とすることによりI/−
 ヨン代替を狙うようなSが小さい領域て′あるならば
十分な耐久性(耐疲労性〉が達成できることδ・見出し
たのである。かかる観点から゛FFE≧2S+14を満
足する原糸を使用ずるとより好ま5しい結果が得られる
The toughness (T, r7> of the polyester fiber of the present invention is T
It must be a high toughness fiber that satisfies F1≧23+11. In general, when highly oriented spinning is carried out to reduce the dimensional stability (S), the toughness (T./''T) also decreases markedly. However, the fatigue resistance of the tire cord ε is the same. In terms of toughness, 8 tends to be better.As a result of research by the present inventors, the limit of toughness that satisfies the durability of a tire becomes lower as dimensional stability (S) decreases; It was found that with two hearts with low stability (S), even with relatively low toughness, the durability reaches a level where you can wear 4 pairs of shoes.
With Ichino. Intensive study on the lower limit of such toughness 1,
As a result, by setting TJ7: ≧28+11, I/-
They found that sufficient durability (fatigue resistance) can be achieved if S is in a small range, which is the type of yarn that is aimed at replacing Yong. More preferable results are obtained.

加えて本発明のポリエステル繊維のカルボキシル末端基
i (COOH)は2 5 eg/ ton以下である
必要がある。[COOH]が258Mtonを越えると
ゴム中の耐熱性が悪化し、タイヤコードとしての耐久性
が不足する,[COOH]は2 1 eg/ton以下
が好ましい。
In addition, the carboxyl terminal group i (COOH) of the polyester fiber of the present invention must be 2 5 eg/ton or less. If [COOH] exceeds 258 Mton, the heat resistance in the rubber deteriorates, resulting in insufficient durability as a tire cord. [COOH] is preferably 2 1 eg/ton or less.

さらに本発明のポリエステル繊維のジエチレングリコー
ル量(DEG>は1.3wt%以下である必要がある。
Furthermore, the amount of diethylene glycol (DEG>) in the polyester fiber of the present invention needs to be 1.3 wt% or less.

DECが1.3wt%を越えると寸法安定性が悪化し、
また耐久性が不良となる。かかる観点からDEGは1.
1wt%以下が好まし<0.9wt%以下がより好まし
い。
When DEC exceeds 1.3wt%, dimensional stability deteriorates,
Moreover, durability becomes poor. From this point of view, DEG is 1.
It is preferably 1 wt% or less, and more preferably <0.9 wt% or less.

本発明のポリエステル繊維の極限粘度(IV)は0.8
5以上である必要がある。IVが0.85未満ではいか
なる条件を採用しても耐久性が不十分である。かかる観
点からIVは0.9〜1,3が好ましい。
The intrinsic viscosity (IV) of the polyester fiber of the present invention is 0.8
Must be 5 or more. If IV is less than 0.85, durability is insufficient no matter what conditions are adopted. From this point of view, IV is preferably 0.9 to 1.3.

さらに本発明のポリエステル繊維のターミナルモジュラ
スは40g/d以下である必要がある。ターミナルモジ
ュラスが40g/dを越えるといかにタフネスの高い原
糸を得ても加撚時に強力が低下してしまい、タイヤコー
ドとしてのタフネスが低下し耐久性が不良となる。かか
る観点からターミナルモジュラスは30g/d以下が好
ましい。
Furthermore, the terminal modulus of the polyester fiber of the present invention must be 40 g/d or less. If the terminal modulus exceeds 40 g/d, no matter how tough the yarn is obtained, the strength will decrease during twisting, and the toughness as a tire cord will decrease, resulting in poor durability. From this point of view, the terminal modulus is preferably 30 g/d or less.

本発明の如<Tfl≧23+11が満足される高タフネ
スのポリエステル繊維は単に従来公知の高速紡糸延伸法
では到底得られないものである。
The high toughness polyester fiber satisfying <Tfl≧23+11 as in the present invention cannot be obtained simply by the conventionally known high-speed spinning and drawing method.

本発明の如く寸法安定性(S)が小さい領域でタフネス
を向上させるる方策について鋭意検討した結果、高速紡
糸の如き配向結晶化の場ではその配向結晶化挙動を厳密
に制御することが重要であることがわかった。
As a result of intensive study on measures to improve toughness in a region with low dimensional stability (S) as in the present invention, we found that it is important to strictly control the oriented crystallization behavior in oriented crystallization such as high-speed spinning. I found out something.

かかるPOYの構造制御は従来、主として冷却条件の制
御を中心に行なわれていたが、より詳しく研究した結果
、ボリマを製造する際の触媒組成を厳密にコントロール
することにより、ボリマ中の粒子を著しく減少すること
、又触媒の選定によりPOYの配同性および結晶性をコ
ントロールするというボリマ−面からの改質が有効であ
ることがわかった。かかる触媒組戒としては従来のゴム
補強材用途で倒のないアンチモン化合物とゲルマニウム
化合物の併用系が有効であることを見出したものである
. すなわちアンチモンとして30〜150ppmのアンチ
モン化合物およびゲルマニウムとして5〜120Ppm
のゲルマニウム化合物を重合触媒として使用することが
本発明の目的を達或するうえで有効であることがわかっ
た。
Conventionally, structural control of such POY has mainly focused on controlling cooling conditions, but as a result of more detailed research, it has been found that by strictly controlling the catalyst composition during the production of the polymer, the particles in the polymer can be significantly reduced. It was also found that modification from the polymer aspect, which involves controlling the conformation and crystallinity of POY by selecting a catalyst, is effective. We have found that a combination system of antimony compounds and germanium compounds is effective as such a catalyst composition, since it does not fall down when used as a conventional rubber reinforcing material. That is, 30 to 150 ppm antimony compound as antimony and 5 to 120 ppm as germanium.
It has been found that the use of a germanium compound as a polymerization catalyst is effective in achieving the object of the present invention.

アンチモン化合物としては三酸化アンチモン、五酸化ア
ンチモンが好ましく、ゲルマニウム化合物としては二酸
化ゲルマニウムが好ましい。
The antimony compound is preferably antimony trioxide or antimony pentoxide, and the germanium compound is preferably germanium dioxide.

アンチモン化合物の量が30ppm未満では重合反応性
を保つためには併用するゲルマニウム化合物を多量に用
いなくてはならならずコストが高くなるばかりでなく、
ジエチレングリコール量が高くなり、寸法安定性が低下
する。アンチモン化合物の量が150ppmを越えると
、併用するゲルマニウム化合物を増量してもアンチモン
化合物の還元により生戒する金属アンチモンの減少はは
かれず、糸の強度、タフネスの向上が図れないだけでな
くゴム中の耐熱性も低下する。またゲルマニウム化合物
の量が5ppm未満では、重縮合反応性を保つためには
使用するアンチモン化合物の量を150ppm以下にで
きない.又ゲルマニウム化合物の量がl20ppmを越
えるとコストが大巾にアップし、工業的に使用できない
だけでなく、DEGiも高くなり寸法安定性が悪化する
。ががる観点からアンチモン化合物の量はアンチモンと
して40〜120ppmが好ましく、80〜120pp
mが更に好ましい。又、ゲルマニウム化合物の量はゲル
マニウムとして6〜30ppmが好ましい。
If the amount of antimony compound is less than 30 ppm, a large amount of germanium compound must be used in combination in order to maintain polymerization reactivity, which not only increases cost, but also increases the cost.
The amount of diethylene glycol increases and the dimensional stability decreases. If the amount of antimony compound exceeds 150 ppm, even if the amount of germanium compound used in combination is increased, the reduction of antimony metal will not be achieved due to the reduction of the antimony compound, and the strength and toughness of the yarn will not be improved, and the rubber will deteriorate. The heat resistance inside also decreases. Furthermore, if the amount of germanium compound is less than 5 ppm, the amount of antimony compound used cannot be reduced to 150 ppm or less in order to maintain polycondensation reactivity. Moreover, if the amount of germanium compound exceeds 120 ppm, the cost will increase significantly and it will not only be impossible to use industrially, but also DEGi will be high and dimensional stability will deteriorate. From the viewpoint of anti-corrosion, the amount of the antimony compound is preferably 40 to 120 ppm as antimony, and 80 to 120 ppm.
m is more preferred. Further, the amount of the germanium compound is preferably 6 to 30 ppm as germanium.

上述の如くボリマの触媒組成を制御して糸中の欠陥を少
なくすることがタフネス、耐久性の向上に有効であるが
、かかる改善はアンチモン化合物の還元により析出する
アンチモン金属を少なくすることが特に有効である。す
なわち繊維中のアンチモンメタル量を5ppm以下、よ
り好よしは3ppm以下とすることが本発明の効果をよ
り高めるものである。
As mentioned above, controlling the catalyst composition of the bolymer to reduce defects in the yarn is effective in improving toughness and durability, but such improvement is particularly achieved by reducing the amount of antimony metal precipitated by reducing the antimony compound. It is valid. That is, the effect of the present invention is further enhanced by controlling the amount of antimony metal in the fiber to 5 ppm or less, more preferably 3 ppm or less.

以下に本発明のポリヱステル繊維を工業的に得る方法を
述べる。
A method for industrially obtaining the polyester fiber of the present invention will be described below.

アンチモンとして30〜1−50ppmのアンチモン化
合物およびゲルマニウムとして5 = 120ppmの
ゲルマニウム化合物を重合触媒として併用し、重縮合反
応を行なう。この際リン化合物としてリン酸を用い、か
つリン酸を重縮合初期て′、ア゛ンチモン化合物どゲル
マニウム化合物の添加以前に添加することが好ましい.
仕込み量、重合温度および重合時間の各条件を適宜選択
し、IV0.65以上、COOH≦25eg,,”to
n , D E G≦1−、3 W t%のボリエチ1
/ンテレフタレートチップを得た。
A polycondensation reaction is carried out using an antimony compound of 30 to 1 to 50 ppm as antimony and a germanium compound of 5 = 120 ppm as germanium as polymerization catalysts. In this case, it is preferable to use phosphoric acid as the phosphorus compound and to add phosphoric acid at the beginning of polycondensation and before addition of germanium compounds such as antimony compounds.
The conditions of charging amount, polymerization temperature, and polymerization time are selected appropriately, and IV0.65 or more, COOH≦25eg, "to
n, DE G≦1−, 3 W t% boriethylene 1
/nterephthalate chips were obtained.

かくして得たチップを常法に従がい、所望により固相重
合し、IV〕、,O以上のポリヱチレンテレフタレート
を得た。
The chips thus obtained were subjected to solid-phase polymerization, if desired, according to a conventional method to obtain polyethylene terephthalate of IV], , 0 or higher.

こうして得たチップを常法に従がい溶融紡糸し加熱筒で
徐冷した後、チムニー風で冷却固化しつつ引取る,この
際、紡糸機中の配管及びバック部品をクロ六メッキし、
アンチモン金属の析出(還元〉を抑制することが好まし
い。又、♂過用のフィルターとして絶対;戸過経3 0
 )t.以下の金属線( S U S )不織布を用い
ることが好ましい。さらに固相重今に使用するチッ素や
紡糸機内のチッ素中のダスト量を極力減少ずるとともに
チムニー風に用いた空気のi戸過を行ない、ダスト量を
減少することがより好ま1〜い。かがる製糸方法により
糸中に存在する異物数を800ケ/■以下、より好まl
〜くは500ケ/■以下のレベルに保つことがタフネス
、耐△性向上のため、好ましい方法である。
The chips obtained in this way are melt-spun according to the usual method, slowly cooled in a heating cylinder, and then cooled and solidified in a chimney wind before being collected. At this time, the piping and back parts in the spinning machine are plated with chrome-plated,
It is preferable to suppress the precipitation (reduction) of antimony metal.Also, as a filter for passing through males, it is absolutely
)t. It is preferable to use the following metal wire (SUS) nonwoven fabric. Furthermore, it is more preferable to reduce the amount of dust in the nitrogen used in the solid-phase polymer and the nitrogen in the spinning machine as much as possible, and to reduce the amount of dust by passing through the air using a chimney style. . The number of foreign substances present in the yarn is reduced to 800 pieces/■ or less, more preferably l
In order to improve toughness and Δ resistance, it is a preferable method to maintain the level of ~500 particles/■ or less.

かくして口金から吐出しt:糸条を配向度(Δn)が8
0X10−3以上、好ましくは(△n )が95X10
’以上となるように高配向紡糸する。(Δn)がsox
io−3未満のPOYを用いると寸法安定性が劣る。こ
の未延伸糸(POY〉を紡糸し、引続き又は一旦巻き収
った後ホットローラ延伸を行ない210゜C以上の温度
で熱セッI・ずる。21。0℃未満の温度で熱セットす
ると寸法安定性が劣る。この際延伸倍率は未延伸糸の破
断延伸倍率のO。93倍以下の倍率に設定することがタ
ーミナルモジュラスを小さくでき、かつ繊維中のボイド
等の欠陥が抑制できるので好ましい。
Thus, the yarn is discharged from the nozzle and the degree of orientation (Δn) is 8.
0X10-3 or more, preferably (△n) is 95X10
' Highly oriented spinning so that the (Δn) is sox
If POY of less than io-3 is used, the dimensional stability will be poor. This undrawn yarn (POY) is spun and subsequently or once rolled, then hot roller stretched and heat-set at a temperature of 210°C or higher.21. Dimensionally stable when heat-set at a temperature of less than 0°C. In this case, it is preferable to set the draw ratio to 0.93 times or less than the break draw ratio of the undrawn yarn because the terminal modulus can be reduced and defects such as voids in the fiber can be suppressed.

以−1二の方法で本発明のポリエステル繊維が得られる
が、さらに寸法安定性を良好とし、かつタフネスを高め
るためPOYの配向結晶化待性を抑制ずることが重要で
ある。かかる制御のため有効なボリマ組或について研究
した結果、リン化合物の秤類、量、添加方法等が重要な
ファクターとなることを見出した。
Although the polyester fiber of the present invention can be obtained by the following method, it is important to suppress the oriented crystallization resistance of POY in order to improve the dimensional stability and increase the toughness. As a result of research on effective volima compositions for such control, it was found that the scale, amount, addition method, etc. of the phosphorus compound are important factors.

リン化合物は一般にボリマの耐久性向上のたぬ使用され
るが、リン化合物が上記の如く繊維の寸法安定性をタフ
ネスの関係に影饗するというのは正に驚くべき事実であ
り、本発明者らの研究の結果見出された新知見である。
Phosphorus compounds are generally used to improve the durability of volima, but it is a truly surprising fact that phosphorus compounds affect the dimensional stability of fibers in relation to their toughness, as described above, and the present inventors This is a new finding discovered as a result of their research.

本発明者らの研究の結果、リン化合物としてはリン酸を
使用し、その適用量はリンとして10〜40ppm、か
つ添加時期はMW1合初期に添加すゐ.二とが好よ[2
いことを見出した。かかるリン化合物のコンI・ロール
により同一・の寸法安定性に対ずる繊維のタフネスを高
くできる。
As a result of the research conducted by the present inventors, phosphoric acid was used as the phosphorus compound, the amount applied was 10 to 40 ppm as phosphorus, and the timing of addition was at the beginning of MW1. Two is better [2
I discovered something. By using such a phosphorus compound, the toughness of the fiber can be increased for the same dimensional stability.

すなわちTFR≧23+14.0が達或できる。かかる
リン化合物が効果を発現する理由については明確でなb
1が、本発明者らはリン酸の如き3官能リン化合物を適
当遣重合初期に添加することでリン酸の増粘作用により
紡糸時の繊維構造形成が制御されるためと推定している
That is, TFR≧23+14.0 can be achieved. It is unclear why such phosphorus compounds exert their effects.
1. The present inventors assume that the formation of the fiber structure during spinning is controlled by the thickening effect of phosphoric acid by appropriately adding a trifunctional phosphorus compound such as phosphoric acid at the initial stage of polymerization.

[実施例] 以下に実施例により本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

なお実施例中の物性は次の様にして測定した。Note that the physical properties in the examples were measured as follows.

A、ボリマ中及び繊維中の金属星(アンチモン5ゲルマ
ニウム、リン量など) 螢光X線法番こより求めた。
A. Metal stars (antimony-5-germanium, phosphorus content, etc.) in the volima and fibers were determined using the fluorescent X-ray method.

B7カルボキシル末端基量( [COOH] )試料0
.5『を0−クl/ゾール10owlに溶解し、完全溶
解後冷却l一でからクロロホルム3mlを加え、N a
 O Hのメタノ〜ル溶液にて電位差滴定を行ない求め
た。
B7 carboxyl terminal group amount ([COOH]) sample 0
.. Dissolve 5' in 10 owl of 0-chloride/sol, and after completely dissolving, cool and add 3 ml of chloroform.
It was determined by potentiometric titration using a methanol solution of OH.

C.DEG量 試利をアルカリ分解した後、ガスクロマトグラフィを用
いて定量した. D.強仲度、中間伸度、ターミナルモジュラス東洋ボー
ルドウイン社製テンシロン引張試験機を用い、試長25
印、引取速度30cm/分でS−S曲線を求め強伸度を
算出した。
C. After a sample of DEG was subjected to alkaline decomposition, it was determined using gas chromatography. D. Tensile strength, intermediate elongation, terminal modulus using a Tensilon tensile tester manufactured by Toyo Baldwin Co., Ltd., with a test length of 25.
The strength and elongation were calculated by obtaining the SS curve at a drawing speed of 30 cm/min.

また同じS−S曲線から強度4.5g/dに対応する伸
度を読みとり中間伸度を求めた。
Further, from the same SS curve, the elongation corresponding to the strength of 4.5 g/d was read to determine the intermediate elongation.

ターミナルモジュラスは切断伸度より2.4%を減じた
点における応力と破断応力との差を2.4X10−2で
除して求めた。
The terminal modulus was determined by dividing the difference between the stress at the point where 2.4% was subtracted from the cutting elongation and the breaking stress by 2.4×10 −2 .

E.乾熱収縮率ΔSd 試料をかせ状にとり20℃、65%RHの温調室に24
時間以上放置したのち、試料の0.1g/dに相当する
荷重をかけて測定した長さnoの試料を、無張力状態で
150℃のオーブン中に工5分放置したのち、オーブン
から取り出し前記温調室で4時間放置し、再び上記荷重
をかけて測定した長さa1から次式により算出した。
E. Dry heat shrinkage rate ΔSd Take a sample in the form of a skein and place it in a temperature-controlled room at 20°C and 65% RH for 24 hours.
After being left for more than an hour, a sample of length no., which was measured by applying a load equivalent to 0.1 g/d of the sample, was left in an oven at 150°C for 5 minutes without tension, and then removed from the oven and described above. It was left in a temperature-controlled room for 4 hours, and the above load was applied again, and the measured length a1 was calculated using the following formula.

ΔSd= (Q o −U 1>/n o xlOO 
 (%〉F.糸中異物数 試料を1本ずつに分割しスライドガラスに糸をたるまな
いように張ってサンプリングした試料(長さ6国〉を、
オリンパス製光学顕微鏡(位相差法)を用い、倍率20
0倍でスキャンし、糸中異物の数をカウントする。測定
をN数5で行ない平均値X(ケ/6ω〉を求め、この値
を■あたりの異物数に換算する.G.極限粘度(IV> 温度25℃においてオルソクロ口フェノール(以下oc
pとする)10mlに対し試料0.8gを溶解し、オス
トワルド粘度計を用いて相対粘度(ηr)を下式により
求め、更にI■を算出する。
ΔSd= (Q o −U 1>/no xlOO
(%〉F. Number of foreign objects in the thread) The sample was divided into individual threads and the thread was stretched on a slide glass so that it did not slacken.
Using an Olympus optical microscope (phase contrast method), magnification 20
Scan at 0x magnification and count the number of foreign objects in the thread. Perform the measurement with N number 5, find the average value X (ke/6ω), and convert this value to the number of foreign substances per ■.
0.8 g of the sample is dissolved in 10 ml of the solution (referred to as p), and the relative viscosity (ηr) is determined using the following formula using an Ostwald viscometer, and I■ is also calculated.

ηr=η/ηo=tXd/toXdo I V=0.024277 r +0.2634η :
ボリマ溶液の粘度 η0:溶媒の粘度 t :溶液の落下時間(秒) d :溶液の密度(g/cd) to:OcPの落下時間(秒〉 do:OcPの密度(g/cJ) H.アンチモン金属量 ボリマ40gをオルソクロロフェノール(QC P >
 5 0 0011に溶解し遠心分離(l2.○OOr
pmX2時間)後、洗浄、乾燥する.得られた遠沈粒の
スペクトルをX線回折装置により測定し、スペクトルか
ら金属アンチモンを定量する。
ηr=η/ηo=tXd/toXdo I V=0.024277 r +0.2634η:
Viscosity of Bolima solution η0: Viscosity of solvent t: Falling time of solution (seconds) d: Density of solution (g/cd) to: Falling time of OcP (seconds) do: Density of OcP (g/cJ) H. Antimony Metal content Volima 40g was mixed with orthochlorophenol (QC P >
Dissolve in 500011 and centrifuge (l2.○OOr
pmX2 hours), then washed and dried. The spectrum of the obtained centrifuged grains is measured using an X-ray diffraction device, and metal antimony is determined from the spectrum.

■.ゴム中の耐熱性 コードをゴム中に埋め込み、150℃、6時間加硫後の
強力保持率で評価した.強力保持率60%以上を◎、5
0%以上60%未満をO、50%未満を×とした。
■. A heat-resistant cord in rubber was embedded in rubber, and the strength retention rate after vulcanization at 150°C for 6 hours was evaluated. Strong retention rate of 60% or more ◎, 5
0% or more and less than 60% was rated O, and less than 50% was rated x.

J.耐疲労性(GY寿命〉 ASTM−D885に準じチューブ内圧3.5 kg/
oJ、回転速度850rpm、チューブ角度90゜とし
てチューブの破裂時間を求めた。評価は従来のタイヤコ
ード(東レ(株〉製1 0 0 0−24 0−7 0
 3M)比1〜3割アップを◎、従来タイヤコード並〜
工割アップを○、それより劣るものをXとした。
J. Fatigue resistance (GY life) Tube internal pressure 3.5 kg/according to ASTM-D885
The bursting time of the tube was determined at oJ, rotational speed of 850 rpm, and tube angle of 90°. The evaluation is based on conventional tire cord (manufactured by Toray Industries, Inc. 100 0-24 0-70
3M) 1-30% increase ◎, same level as conventional tire cord
An increase in the labor cost is marked as ○, and an inferior result is marked as an X.

実施例1 テレフタル酸ジメチル100部とエチレングリコール5
0.2部に酢酸マンガン4水塩0,035部を添加し、
常法によりエステル交換反応を行なった.次いで得られ
た生戒物にリン酸を0.0091部(リンとして29p
pm)加えた後、二酸化ゲルマニウム0.0025部(
ゲルマニウムとして17ppm)を加え、さらに三酸化
アンチモン0.0125部(アンチモンとして104p
pm)加えて3時間10分重縮合反応を行なった。(重
合温度285℃〉得られたボリマの極限粘度(IV)は
0. 72、カルボキシル末端基量( [COOH] 
)は17.leg/ton ,DEG量は0.7wt%
であった。
Example 1 100 parts of dimethyl terephthalate and 5 parts of ethylene glycol
Add 0.035 parts of manganese acetate tetrahydrate to 0.2 parts,
Transesterification was carried out using a conventional method. Next, 0.0091 part of phosphoric acid (29 p as phosphorus) was added to the obtained raw material.
pm), then add 0.0025 parts of germanium dioxide (
17 ppm as germanium), and further added 0.0125 parts of antimony trioxide (104 parts as antimony).
pm) and a polycondensation reaction was carried out for 3 hours and 10 minutes. (Polymerization temperature: 285°C) The intrinsic viscosity (IV) of the obtained bolamer was 0.72, and the amount of carboxyl terminal groups ([COOH]
) is 17. leg/ton, DEG amount is 0.7wt%
Met.

該ボリマ中のアンチモン量は1。OOppm、ゲルマニ
ウム量は10ppm、リン量は20m)pmであった。
The amount of antimony in the Borima is 1. The amount of germanium was 10 ppm, and the amount of phosphorus was 20 m)pm.

また、ボリマ中のアンチモン金属楚は0.3ppmであ
った. 上述のボリマを160゜Cで5時間予備乾燥後225で
で同相重合し、IV=1、。35の固相重合チップを得
た。このチップをエクストルーダ型紡糸機で紡糸温度2
95゜Cにて紡糸した。
Furthermore, the amount of antimony metal in Borima was 0.3 ppm. The above-mentioned volima was pre-dried at 160° C. for 5 hours and then homopolymerized at 225° C., IV=1. Thirty-five solid phase polymerized chips were obtained. This chip is spun using an extruder type spinning machine at a temperature of 2
Spinning was carried out at 95°C.

この際フィルターとして絶対戸過経1−5μの金属不織
布を用い、口金は0.6mmφの丸孔を用いた。又、ボ
リマ配管及びバック部品のボリマと接触する部分にクロ
ムメッキをほどこすとともにボッパ内のチッ素、チムニ
ー用チッ素は全て1μのフィルターにて;戸過して使用
した。口金から吐出した糸を長さ25備、内径25−φ
、温度300℃の加熱筒で徐冷後、チムニー冷却風をあ
て冷却固化させ、給油した後表1に示す引取速度で引取
った。得られた未延伸系を延伸温度90℃、熱処理温度
240℃で倍率、リラックス率を変更し延伸系を得た.
延伸倍率はNQ1〜3は限界倍率の0.88〜0.92
倍に設定し、NQ4は限界倍率の0,95倍とした.こ
うして製造したポリエステル繊維の糸中の異物数は15
0ケ/■へ−450ケ/■であり、IV0.98〜1。
At this time, a metal nonwoven fabric with an absolute elapsed time of 1 to 5 μm was used as the filter, and a round hole with a diameter of 0.6 mm was used as the cap. In addition, chromium plating was applied to the parts of the bollima piping and back parts that come in contact with the bollima, and the nitrogen in the bopper and the nitrogen for the chimney were all passed through a 1μ filter before use. The thread discharged from the nozzle has a length of 25 mm and an inner diameter of 25-φ.
After being slowly cooled in a heating cylinder at a temperature of 300° C., the specimens were cooled and solidified by applying chimney cooling air, and after oiling, they were taken at the taking-up speed shown in Table 1. The resulting unstretched system was stretched at a stretching temperature of 90°C and a heat treatment temperature of 240°C, with the magnification and relaxation ratio changed to obtain a stretched system.
The stretching ratio is 0.88 to 0.92 which is the limit ratio for NQ1 to 3.
NQ4 was set to 0.95 times the limit magnification. The number of foreign substances in the polyester fiber yarn produced in this way was 15.
0 cases/■ to -450 cases/■, and IV 0.98 to 1.

01,カルボキシル末端基量は1 4e(1/toll
 , DEGは0.7wt%であった。次にこの延伸糸
に下撚をS方向に49T/1、Ocm、上撚りをZ方向
に49T/10anかけ生コードとした。
01, the amount of carboxyl terminal group is 1 4e (1/toll
, DEG was 0.7 wt%. Next, this drawn yarn was first twisted at 49T/1 0cm in the S direction, and final twisted at 49T/10an in the Z direction to form a raw cord.

次にこのコードをリッラー社製のコンビヱトリータを用
いて2浴法にて接着剤をディップして処理コードを作或
した. 表lに原糸および処理コードの物性を示す。
Next, a treated cord was prepared by dipping this cord in adhesive using a two-bath method using a combination treater manufactured by Riller. Table 1 shows the physical properties of the yarn and treated cord.

(以下余白) 表■から明らかなように未延伸糸のΔ1lが80XIO
−3未満のNa 1は寸法安定性が8%を越え、タイヤ
性能(レーヨン代替可能性)が不満足なレベルにあった
。又、NQ2と同一条件で延伸倍率を限界延伸倍率の0
.93倍より高くしたN(14はターミナルモジュラス
が40g/dをこえた.そのため原糸の強度は高いもの
の、強力保持率が悪くディップコードの強度が低くなり
耐疲労性が不満足であった。POYのΔnを80X10
−3以上とし、寸法安定性が8%未満、強仲度積T/−
≧2 S +1. ]−、ターミナルモジュラスが40
g/d以下のNo. 2、3がタイヤ性能、耐疲労性、
耐熱性とも良好なコードが得られたゆ 実施例2 使用する重合触媒の量を表2ク)如く変更する以外は実
施例1のNα2と同一の条件で延伸糸、処理コードを得
た.延伸糸特性の結果を表2に、また処理コードの結果
を表3に示す。
(Left below) As is clear from Table ■, Δ1l of undrawn yarn is 80XIO
When the Na 1 was less than -3, the dimensional stability exceeded 8%, and the tire performance (possibility of replacing rayon) was at an unsatisfactory level. Also, under the same conditions as NQ2, the stretching ratio was set to 0, which is the limit stretching ratio.
.. The terminal modulus of N (14), which was made higher than 93 times, exceeded 40 g/d. Therefore, although the strength of the yarn was high, the strength retention rate was poor, and the strength of the dip cord was low, resulting in unsatisfactory fatigue resistance.POY Δn of 80X10
-3 or more, dimensional stability less than 8%, strong median product T/-
≧2 S +1. ]−, the terminal modulus is 40
No. g/d or less. 2 and 3 are tire performance, fatigue resistance,
A cord with good heat resistance was obtained.Example 2 A drawn yarn and treated cord were obtained under the same conditions as Nα2 in Example 1, except that the amount of polymerization catalyst used was changed as shown in Table 2. The results of drawn yarn properties are shown in Table 2, and the results of treatment codes are shown in Table 3.

表2、表3から明らかなようにsbとして30〜150
ppmのアンチモン化合物、Geとして5〜120pp
mのゲルマニウム化合物を用いたNQ2、6、7はC 
O O H、DEG量とも良好であり、得られる繊維も
Tfl≧23+11を満たしゴム中耐熱性、耐疲労性と
も良好であった。
As is clear from Tables 2 and 3, sb is 30 to 150
ppm antimony compound, 5-120pp as Ge
NQ2, 6, 7 using m germanium compound are C
The O O H and DEG amounts were both good, and the resulting fibers also satisfied Tfl≧23+11 and had good heat resistance and fatigue resistance in rubber.

しかしsbとして150ppmを越えるアンチモン化合
物を用いたNα5とNα11はsbメタルが増加し繊維
のタフネスが低く、強伸度積TFτ≧2S+11と満足
しない。これらのNα5とN(111は耐疲労性が従来
品に比べ劣るものであった。又、sbとして30ppm
未満のアンチモン化合物を用いたNα8は重合反応性に
劣り、COOHが増加し糸中のCOOH量が250g/
tonを越えた。このためゴム中の耐熟性が不良であっ
た。
However, in Nα5 and Nα11 using an antimony compound exceeding 150 ppm as sb, the sb metal increases and the toughness of the fiber is low, and the strength elongation product TFτ≧2S+11 is not satisfied. These Nα5 and N(111) had inferior fatigue resistance compared to conventional products.
Nα8 using an antimony compound of less than
It exceeded a ton. Therefore, the aging resistance in rubber was poor.

又、sbとして30ppm未満のアンチモン化合物を用
い、ゲルマニウム化合物をGeとして120ppmより
増加させたNα9はDEG呈が1.3Wt%を越えた。
Further, in Nα9, in which less than 30 ppm of an antimony compound was used as sb and Ge was increased from 120 ppm as a germanium compound, the DEG expression exceeded 1.3 Wt%.

このため寸法安定性(S)が大きくなり、T(モ≧23
+1 1の要件も満たさなかった。N(19では耐疲労
性、ゴム中の耐熱性とも低下した。又、ゲルマニウム化
合物量がGeとして5Dpm未満のNQ 10は重合反
応性が劣り糸中の(Coo日)が25eMtonを越え
、耐熱性が不十分であった。
Therefore, the dimensional stability (S) increases, and T(Mo≧23
+1 Neither requirement 1 was met. In N(19), both the fatigue resistance and the heat resistance in the rubber decreased. In addition, NQ 10 with a germanium compound amount of less than 5 Dpm as Ge had poor polymerization reactivity, and the (Coo days) in the yarn exceeded 25 eMton, resulting in poor heat resistance. was insufficient.

実施例3 重合時に使用するリン化合物を同一モル数のリン酸トリ
メチルを用いる以外は実施例1のNo3と同一の条イ牛
で延伸糸を冑た。延伸糸の各物杜を表4に示す。
Example 3 A drawn yarn was cut using the same wire as in Example 1, No. 3, except that the same number of moles of trimethyl phosphate was used as the phosphorus compound used during polymerization. Table 4 shows the characteristics of each drawn yarn.

表   4 リン′種をり冫′酸からリン酸l−リメチノレにずるだ
けで繊維の寸法安定性が0.8%悪化[7lこ。
Table 4 Simply changing the phosphorus species from phosphoric acid to phosphoric acid l-rimethinolate deteriorated the dimensional stability of the fiber by 0.8% [7L].

このため寸法安定性は(Jぼ同様であるがタフイ・スは
劣るものて゛ある。すなわち、リン酸■・リメチル使い
−ζ′はrJU′≧23−}11を満7こさない。
For this reason, the dimensional stability is similar to that of J, but the toughness is inferior. That is, ζ' using phosphoric acid and dimethyl does not satisfy rJU'≧23-}11.

従−)で、N012の耐疲労性は従来品に比べa好なレ
ベル゛ζ′はあるもののNQ3より劣り、従来品との差
は少なくなる。
Although the fatigue resistance of N012 is a better level than the conventional product, it is inferior to NQ3, and the difference from the conventional product is small.

[発明の効果] 本発明のポリエステル繊維は寸法安定性が従来品に比べ
て著しく良好て゛かつタフネスも高い/:コめ、耐久性
、耐疲労性が良好なタフネスが得られる,特に本発明の
ポリ正ステル繊維はタイヤニ1−  ドとした時その収
縮率が低く、1ノーヨン尚代替が可能であるとともタイ
ヤ製法工程て゛行な,bれているボストキュアインフレ
ーション(PCI)工程を簡略化できる。
[Effects of the Invention] The polyester fiber of the present invention has significantly better dimensional stability and toughness than conventional products. Polyester fibers have a low shrinkage rate when used as a tire tire, and can be used as a substitute for tire tires, as well as simplifying the post cure inflation (PCI) process, which is commonly used in the tire manufacturing process. .

1−冗′「出願人 東レ株式会社1 - ``Applicant: Toray Industries, Inc.''

Claims (3)

【特許請求の範囲】[Claims] (1)カルボキシル末端基量([COOH])が25e
g/ton以下、ジエチレングリコール含有量(DEG
)が1.3wt%以下であり、極限粘度(IV)≧0.
85 中間伸度+乾熱収縮(S)<8% 強伸度積(T√E)≧2S+11 ターミナルモジュラス(TM)≦40g/dであるゴム
補強用ポリエステル繊維。
(1) Carboxyl terminal group amount ([COOH]) is 25e
g/ton or less, diethylene glycol content (DEG
) is 1.3 wt% or less, and the intrinsic viscosity (IV) is ≧0.
85 Polyester fiber for rubber reinforcement having intermediate elongation + dry heat shrinkage (S) <8% strong elongation product (T√E) ≧2S+11 terminal modulus (TM) ≦40 g/d.
(2)アンチモンとして30〜150ppmのアンチモ
ン化合物及びゲルマニウムとして5〜120ppmのゲ
ルマニウム化合物を重合触媒として用いたポリエステル
からなる請求項(1)記載のゴム補強用ポリエステル繊
維。
(2) The polyester fiber for rubber reinforcement according to claim (1), comprising a polyester using as a polymerization catalyst 30 to 150 ppm of an antimony compound as antimony and 5 to 120 ppm of a germanium compound as germanium.
(3)アンチモンとして30〜150ppmのアンチモ
ン化合物およびゲルマニウムとして5〜120ppmの
ゲルマニウム化合物を用いて得たポリエステルを、高配
向紡糸して極限粘度0.9以上、配向度(Δn)80× 10^−^3以上の高配向繊維とし、次いで限界延伸倍
率の0.93倍以下の倍率で延伸し、210℃以上の温
度で熱セットすることを特徴とするゴム補強用ポリエス
テル繊維の製造方法。
(3) Polyester obtained using 30 to 150 ppm of antimony compound as antimony and 5 to 120 ppm of germanium compound as germanium is highly oriented and spun to obtain an intrinsic viscosity of 0.9 or more and degree of orientation (Δn) of 80 x 10^- A method for producing polyester fibers for rubber reinforcement, which is characterized in that the fibers are highly oriented with an orientation of ^3 or more, then stretched at a stretching ratio of 0.93 times or less than the limit stretching ratio, and heat set at a temperature of 210° C. or higher.
JP1296587A 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement and method for producing the same Expired - Lifetime JP2887324B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1296587A JP2887324B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement and method for producing the same
AU66426/90A AU635356B2 (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
US07/721,545 US5242645A (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
PCT/JP1990/001491 WO1991007529A1 (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
DE69028693T DE69028693T2 (en) 1989-11-15 1990-11-15 RUBBER REINFORCING POLYESTER FIBER AND METHOD FOR THEIR PRODUCTION
KR1019910700743A KR940002693B1 (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
ZA909179A ZA909179B (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
CA002045134A CA2045134C (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof
EP90916815A EP0454868B1 (en) 1989-11-15 1990-11-15 Rubber-reinforcing polyester fiber and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296587A JP2887324B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10323092A Division JP3141862B2 (en) 1998-11-13 1998-11-13 Tire cords and tires

Publications (2)

Publication Number Publication Date
JPH03161508A true JPH03161508A (en) 1991-07-11
JP2887324B2 JP2887324B2 (en) 1999-04-26

Family

ID=17835477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296587A Expired - Lifetime JP2887324B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement and method for producing the same

Country Status (2)

Country Link
JP (1) JP2887324B2 (en)
ZA (1) ZA909179B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111534A (en) * 1995-10-11 1997-04-28 Tong Yang Nylon Co Ltd Polyester fiber for industrial use and its preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082643A1 (en) * 2009-01-16 2010-07-22 帝人ファイバー株式会社 Polyester fiber, process for producing the polyester fiber, and tire code, tire, fiber material for reinforcing belt and belt each comprising the polyester fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948014A (en) * 1982-09-14 1984-03-19 井関農機株式会社 Planting apparatus of seedling transplanter
JPS6088120A (en) * 1983-10-20 1985-05-17 Asahi Chem Ind Co Ltd Polyester yarn
JPS623170A (en) * 1985-06-28 1987-01-09 Suzuki Motor Co Ltd Pressure reduction starter
JPH01139816A (en) * 1987-11-24 1989-06-01 Kanebo Ltd Conjugate fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948014A (en) * 1982-09-14 1984-03-19 井関農機株式会社 Planting apparatus of seedling transplanter
JPS6088120A (en) * 1983-10-20 1985-05-17 Asahi Chem Ind Co Ltd Polyester yarn
JPS623170A (en) * 1985-06-28 1987-01-09 Suzuki Motor Co Ltd Pressure reduction starter
JPH01139816A (en) * 1987-11-24 1989-06-01 Kanebo Ltd Conjugate fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111534A (en) * 1995-10-11 1997-04-28 Tong Yang Nylon Co Ltd Polyester fiber for industrial use and its preparation

Also Published As

Publication number Publication date
ZA909179B (en) 1991-09-25
JP2887324B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
WO2017043082A1 (en) Method for producing pef yarn, pef yarn, and tire
KR940002693B1 (en) Rubber-reinforcing polyester fiber and process for preparation thereof
JP3835803B2 (en) High-strength polyethylene-2,6-naphthalate fiber with excellent spinnability
JP3141862B2 (en) Tire cords and tires
JP3789030B2 (en) High-strength polyester fiber and production method thereof
JPH03161508A (en) Polyester fiber for rubber reinforcement and production thereof
JPH11107038A (en) High heat stress polyester yarn
JP2822503B2 (en) Polyester fiber for high toughness rubber reinforcement
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
JP2022546821A (en) Heat-resistant polyester tire cord and tire containing the same
JPH03161509A (en) Polyester fiber for reinforcing rubber
JPH0323644B2 (en)
JPH04342602A (en) Pneumatic tire
JP2770509B2 (en) Polyester dip cord
JP2000199127A (en) Polyester fiber for rubber reinforcement
JP7009995B2 (en) Copolymerized polyester and composite fibers containing it
JPH09256220A (en) Polyester fiber for rubber reinforcement
JP4108873B2 (en) Polyester fiber
KR930010799B1 (en) Polyester fiber for tyre cord
KR960012825B1 (en) Polyester and dipping and the manufacturing method thereof
JPS58186607A (en) Preparation of polyester filamentary yarn having high tenacity
JPH04194024A (en) Production of polyester fiber
JPH03185141A (en) Polyester dip cord for rubber reinforcing
JPH02182914A (en) High-toughness polyester yarn, cord and tire made thereof