JPH03158735A - Method for inspecting optical distortion in exposure device - Google Patents

Method for inspecting optical distortion in exposure device

Info

Publication number
JPH03158735A
JPH03158735A JP1297448A JP29744889A JPH03158735A JP H03158735 A JPH03158735 A JP H03158735A JP 1297448 A JP1297448 A JP 1297448A JP 29744889 A JP29744889 A JP 29744889A JP H03158735 A JPH03158735 A JP H03158735A
Authority
JP
Japan
Prior art keywords
pattern
wafer
deformation rate
mask
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1297448A
Other languages
Japanese (ja)
Inventor
Hirohito Inoue
井上 博仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyazaki Oki Electric Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1297448A priority Critical patent/JPH03158735A/en
Publication of JPH03158735A publication Critical patent/JPH03158735A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To facilitate control over aberrations by measuring the shape of a mask pattern transferred onto a wafer and finding the deformation rate of the pattern. CONSTITUTION:A circle (contact hole pattern) which has a radius gamma (0.4 - 1.5mum) is installed on the mask side and the mask pattern is transferred onto the wafer. Then the shape of the transferred pattern is measured. Then the deformation rate is found from maximum size and minimum size. Then the focus of the exposure device is shifted within the depth of focus and the deformation rate is measured. A device whose deformation rate deviates from a determined value is re-adjusted. Thus, the device whose distortion is minimized is secured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体露光装置における光学歪検査方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical strain inspection method in a semiconductor exposure apparatus.

(従来の技術) 従来、このような分野の技術としては、例えば以下に示
すようなものがあった。WJち、半導体製造工程で用い
る露光装置の収差の検査は、ライン・アンド・スペース
(L&S)若しくはシーメンスターマスクのパターンを
ウェハ上に転写し、干渉縞の広がりを読み取るものであ
った。
(Prior Art) Conventionally, as technologies in this field, there have been the following, for example. Inspection of aberrations in exposure equipment used in the semiconductor manufacturing process involves transferring a line and space (L&S) or Siemens star mask pattern onto a wafer and reading the spread of interference fringes.

ここでは、後者のシーメンスターマスクを用いる光学歪
検査方法について説明する。
Here, the latter optical strain inspection method using a Siemens star mask will be explained.

第5図はウェハ面での読み取り場所を示す図、第6図は
そのシーメンスターパターンを示す図(第5図のA部拡
大図)である。
FIG. 5 is a diagram showing the reading location on the wafer surface, and FIG. 6 is a diagram showing the Siemens star pattern (an enlarged view of part A in FIG. 5).

このシーメンスターマスクを用いる光学歪検査方法にお
いては、シーメンスターマスクをウェハ上に転写し、干
渉縞aの広がりの違いを読み取ることにより、45°方
向、90°方向のズレをチエツクする。
In this optical strain inspection method using a Siemens star mask, the Siemens star mask is transferred onto a wafer and the difference in spread of interference fringes a is read to check for deviations in the 45° direction and 90° direction.

光学的な収差成分がなければ、通常、干渉縞aの広がる
度合いは45°方向、90@方向において−敗し、縞は
円弧状に広がっていく。
If there is no optical aberration component, the degree of spread of the interference fringes a will normally decrease in the 45° direction and the 90° direction, and the fringes will spread in an arc shape.

なお、この装置は中心点Oを中心にウェハを傾けるII
構を備えているため、干渉縞aの広がりは1枚のウェハ
でチエツクすることができる。ウェハを1頃けるWII
Iのない装置については、フォーカスをシフトさせるこ
とで、同一のチエツクが可能である。
Note that this device tilts the wafer around the center point O.
Because of this structure, the spread of interference fringes a can be checked using a single wafer. WII for loading wafers once
For devices without I, the same check can be performed by shifting the focus.

(発明が解決しようとする課題) しかしながら、以上述べた方法では、個々のプロセスに
よる干渉縞の見え方が違うことや、読取者によって縞の
境目の判断が異なることにより、読み取り誤差が大きく
なるという問題点があった。
(Problem to be Solved by the Invention) However, with the method described above, reading errors become large due to differences in the appearance of interference fringes depending on the individual processes and differences in the judgment of borders between fringes depending on the reader. There was a problem.

このようなことから、実際のパターンには収差が残ると
いう不具合があった。
For this reason, there was a problem that aberrations remained in the actual pattern.

本発明は、以上述べたプロセスによる干渉縞の見え方の
違いと、読取者による読み取り誤差を除去するため、干
渉縞の広がりを読み取るのではなく、ウェハ上に転写さ
れたマスクパターンを測長し、その変形率を求めること
により、個人差による光学的歪データのバラツキが小さ
く、収差の管理が容易な露光装置における光学歪検査方
法を提供することを目的とする。
The present invention measures the length of the mask pattern transferred onto the wafer, rather than reading the spread of the interference fringes, in order to eliminate the difference in appearance of the interference fringes due to the process described above and the reading error caused by the reader. It is an object of the present invention to provide an optical distortion inspection method for an exposure apparatus in which the variation in optical distortion data due to individual differences is small and aberrations can be easily managed by determining the deformation rate.

(課題を解決するための手段) 本発明は、上記目的を達成するために、半導体製造工程
で用いる露光装置における光学歪検査方法において、マ
スクパターンをウェハ上に転写する工程と、該転写され
たパターンの形状を測定する工程と、該測定結果に基づ
いて転写されたパターンの変形率を求める工程と、該変
形率に基づいて光学系の収差を検査する工程とを施すよ
うにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical distortion inspection method in an exposure apparatus used in a semiconductor manufacturing process, which includes a step of transferring a mask pattern onto a wafer, and a step of transferring a mask pattern onto a wafer. The method includes a step of measuring the shape of the pattern, a step of determining the deformation rate of the transferred pattern based on the measurement result, and a step of inspecting the aberration of the optical system based on the deformation rate. .

(作用) 本発明によれば、上記したように、シーメンスターマス
クの代わりに、実際のパターン(コンタクトホール)を
ウェハ上に転写し、測長するようにしたので、ウェハ内
での収差をチエツクすることができる。
(Function) According to the present invention, as described above, an actual pattern (contact hole) is transferred onto the wafer and the length is measured instead of the Siemens star mask, so aberrations within the wafer can be checked. can do.

また、フォーカスをlN10UT側にシフトすることに
より、焦点深度内での収差の出具合もチエ・7りするこ
とができる。
Furthermore, by shifting the focus to the 1N10UT side, the degree of aberration within the depth of focus can be changed.

更に、マスクの寸法も明確になるため、ウェハ上に転写
したパターン測長結果に基づくデータにバラツキが生じ
ることもない。
Furthermore, since the dimensions of the mask are clear, there will be no variation in the data based on the length measurement results of the pattern transferred onto the wafer.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示すマスクパターン例を示す
図、第2図は本発明の収差がなく正常なウェハ上転写パ
ターン例を示す図、第3図は本発明の45°方向に収差
がある場合のウェハ上転写パターン例を示す図、第4図
は本発明の90°方向に収差がある場合のウェハ上転写
パターン例を示す図である。
FIG. 1 is a diagram showing an example of a mask pattern according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a normal transfer pattern on a wafer without aberration according to the present invention, and FIG. FIG. 4 is a diagram showing an example of a transferred pattern on a wafer when there is an aberration, and FIG. 4 is a diagram showing an example of a transferred pattern on a wafer when there is an aberration in the 90° direction according to the present invention.

(1)まず、第1図に示すように、半径r (0,4〜
1.5μm程度)の円(コンタクトホールパターン)を
マスク側に設置(現在の解像度チエツクマスクに追加)
し、ウェハ上にそのマスクパターンを転写する。
(1) First, as shown in Figure 1, radius r (0,4~
1.5μm) circle (contact hole pattern) is installed on the mask side (added to the current resolution check mask)
Then, the mask pattern is transferred onto the wafer.

(2)次いで、転写されたパターンの形状を測定する。(2) Next, measure the shape of the transferred pattern.

その結果、光学的に収差がなければ、第2図に示すよう
に、ウェハ上転写パターンは円になる。
As a result, if there is no optical aberration, the transferred pattern on the wafer will be circular, as shown in FIG.

なお、ここで、21の露光装置の場合はマスクr:ウエ
ハrで転写され、5:1の縮小露光装置の場合はマスク
「:ウエハr / 5で転写される。
Note that in the case of the 21 exposure device, the image is transferred as mask r:wafer r, and in the case of the 5:1 reduction exposure device, the image is transferred as mask ``:wafer r/5''.

また、収差が45°方向に生じた場合は、第3図に示す
ように、ウェハ上転写パターンは楕円形になる。更に、
収差が90°方向に生じた場合は、第4図に示すような
楕円形になる。
Furthermore, when aberration occurs in the 45° direction, the transferred pattern on the wafer becomes elliptical, as shown in FIG. Furthermore,
If the aberration occurs in the 90° direction, it will become an ellipse as shown in FIG.

(3)そこで、第3図及び第4図における最大寸法(M
ay)と最小寸法(Win)を測定し、次式に代入しそ
の変形率を求める。即ち、 変形率(%) = ((Max −Min)/ Max
) X100である。
(3) Therefore, the maximum dimension (M
ay) and the minimum dimension (Win) are measured and substituted into the following equation to obtain the deformation rate. That is, deformation rate (%) = ((Max - Min)/Max
) X100.

(4)続いて、露光装置の焦点深度内でフォーカスをシ
フトさせて変形率を測定する。これは、露光装置の性能
(光学歪)を調査するためのものである。ここで、変形
率として定めた値から外れた装置においては、再度調整
を行う、また、装置メーカ側の工場出荷時の最終検査項
目として検査を行えば、歪を最小に抑えた装置を確保す
ることができる。
(4) Next, shift the focus within the depth of focus of the exposure device and measure the deformation rate. This is to investigate the performance (optical distortion) of the exposure device. Here, if the device deviates from the value determined as the deformation rate, it should be adjusted again, and if the device manufacturer performs the inspection as a final inspection item at the time of factory shipment, it will ensure that the device has minimal distortion. be able to.

このような変形率の検査は、光源部エネルギーのバラツ
キ、ディストーシゴン、L & Sをチエツクした同一
プロセスを用いて行う。
Such a deformation rate inspection is performed using the same process that checks the variation in light source energy, distortion, and L&S.

上記において、コンタクトホールが円でない場合でも、
90’方向45°方向の距離が等しくなるマスクパター
ンであれば測定が可能である0例えば、第7図に示すよ
うに、AE=BF=CG=DHを満足する正八角形のマ
スクパターンであってもよい。
In the above, even if the contact hole is not circular,
Measurement is possible if the mask pattern has equal distances in the 90' direction and 45° direction.For example, as shown in FIG. 7, if the mask pattern is a regular octagon satisfying AE=BF=CG=DH Good too.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、ウェハ
上に転写されたマスクパターンを測長し、その変形率を
求めるようにしたので、個人差による光学的歪データの
バラツキが小さく、収差を管理していく上で実用的な効
果を奏することができる。
(Effects of the Invention) As described above in detail, according to the present invention, the length of the mask pattern transferred onto the wafer is measured and its deformation rate is determined, so that optical distortion data due to individual differences is The variation is small, and a practical effect can be achieved in controlling aberrations.

更に、レンズ単体からこの検査を行えば、組立時に発生
する歪の管理も行うことができる。
Furthermore, by performing this inspection on a single lens, it is possible to manage distortions that occur during assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すマスクパターン例を示す
図、第2図は本発明の収差がなく正常なウェハ上転写パ
ターン例を示す図、第3図は本発明の45°方向に収差
がある場合のウェハ上転写パターン例を示す図、第4図
は本発明の90°方向に収差がある場合のウェハ上転写
パターン例を示す図、第5図はウェハ面での読み取り場
所を示す図、第6図はそのシーメンスターパターンを示
す図、第7図は本発明の他の実施例を示すマスクパター
ン例を示す図である。
FIG. 1 is a diagram showing an example of a mask pattern according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a normal transfer pattern on a wafer without aberration according to the present invention, and FIG. A diagram showing an example of a pattern transferred on a wafer when there is aberration, FIG. 4 is a diagram showing an example of a pattern transferred on a wafer when there is an aberration in the 90° direction according to the present invention, and FIG. 5 shows a reading location on the wafer surface. FIG. 6 is a diagram showing the Siemens star pattern, and FIG. 7 is a diagram showing an example of a mask pattern showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】  半導体製造工程で用いる露光装置における光学歪検査
方法において、 (a)マスクパターンをウェハ上に転写する工程と、(
b)該転写されたパターンの形状を測定する工程と、 (c)該測定結果に基づいて転写されたパターンの変形
率を求める工程と、 (d)該変形率に基づいて光学系の収差を検査する工程
とを有する露光装置における光学歪検査方法。
[Claims] A method for inspecting optical distortion in an exposure apparatus used in a semiconductor manufacturing process, comprising: (a) transferring a mask pattern onto a wafer;
b) measuring the shape of the transferred pattern; (c) determining the deformation rate of the transferred pattern based on the measurement results; and (d) calculating the aberration of the optical system based on the deformation rate. A method for inspecting optical distortion in an exposure apparatus, comprising: a step of inspecting.
JP1297448A 1989-11-17 1989-11-17 Method for inspecting optical distortion in exposure device Pending JPH03158735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297448A JPH03158735A (en) 1989-11-17 1989-11-17 Method for inspecting optical distortion in exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297448A JPH03158735A (en) 1989-11-17 1989-11-17 Method for inspecting optical distortion in exposure device

Publications (1)

Publication Number Publication Date
JPH03158735A true JPH03158735A (en) 1991-07-08

Family

ID=17846644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297448A Pending JPH03158735A (en) 1989-11-17 1989-11-17 Method for inspecting optical distortion in exposure device

Country Status (1)

Country Link
JP (1) JPH03158735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387239A (en) * 2002-04-05 2003-10-08 Zarlink Semiconductor Ltd Improvements in reticles in MEMS and IC processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387239A (en) * 2002-04-05 2003-10-08 Zarlink Semiconductor Ltd Improvements in reticles in MEMS and IC processes

Similar Documents

Publication Publication Date Title
US7894660B2 (en) Image processing alignment method and method of manufacturing semiconductor device
KR102124896B1 (en) Indirect determination of processing parameters
US4790023A (en) Method for measuring dimensions of fine pattern
JPH0444307A (en) Manufacture of semiconductor device
US5978094A (en) Alignment device and method based on imaging characteristics of the image pickup system
JP2002512384A (en) Method for measuring position of pattern structure on mask surface
US5237393A (en) Reticle for a reduced projection exposure apparatus
JPH03158735A (en) Method for inspecting optical distortion in exposure device
KR20180040186A (en) Inspection method, inspection system, and method of forming semiconductor package using the same
JPS587055B2 (en) Gap setting device in proximity aligner
KR20230047898A (en) Method of obtaining array of plurality of shot regions on substrate, exposure method, exposure apparatus, method of manufacturing article, non-transitory computer-readable storage medium, and information processing apparatus
TWI722386B (en) Determination method, exposure method, exposure device, article manufacturing method, and storage medium
JPH0265151A (en) Line width loss measuring method
KR102413895B1 (en) Patterning method, lithography apparatus, and article manufacturing method
US5552251A (en) Reticle and method for measuring rotation error of reticle by use of the reticle
JP3050498B2 (en) Adjustment method of position shift amount measuring optical system and position shift amount measurement apparatus
US6662145B1 (en) Method, equipment, and recording medium for controlling exposure accuracy
JPS63286752A (en) Defect inspecting or dimension measuring method for pattern
JP3547554B2 (en) Wafer tilt detection method during exposure
JP3610834B2 (en) Surface position detection method
US20020072131A1 (en) In-line method of measuring effective three-leaf aberration coefficient of lithography projection systems
KR20020064453A (en) Exposure system of semiconducter, and exposure method of semiconducter thereof
CN117666291A (en) Measurement method and lithography process control system
JP3699894B2 (en) Sample inspection equipment
US20030211411A1 (en) Method for monitoring focus in lithography