JPH03158735A - Method for inspecting optical distortion in exposure device - Google Patents
Method for inspecting optical distortion in exposure deviceInfo
- Publication number
- JPH03158735A JPH03158735A JP1297448A JP29744889A JPH03158735A JP H03158735 A JPH03158735 A JP H03158735A JP 1297448 A JP1297448 A JP 1297448A JP 29744889 A JP29744889 A JP 29744889A JP H03158735 A JPH03158735 A JP H03158735A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- wafer
- deformation rate
- mask
- transferred
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 13
- 230000004075 alteration Effects 0.000 claims abstract description 19
- 238000005259 measurement Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 25
- 238000010586 diagram Methods 0.000 description 12
- 238000007689 inspection Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70591—Testing optical components
- G03F7/706—Aberration measurement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、半導体露光装置における光学歪検査方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical strain inspection method in a semiconductor exposure apparatus.
(従来の技術)
従来、このような分野の技術としては、例えば以下に示
すようなものがあった。WJち、半導体製造工程で用い
る露光装置の収差の検査は、ライン・アンド・スペース
(L&S)若しくはシーメンスターマスクのパターンを
ウェハ上に転写し、干渉縞の広がりを読み取るものであ
った。(Prior Art) Conventionally, as technologies in this field, there have been the following, for example. Inspection of aberrations in exposure equipment used in the semiconductor manufacturing process involves transferring a line and space (L&S) or Siemens star mask pattern onto a wafer and reading the spread of interference fringes.
ここでは、後者のシーメンスターマスクを用いる光学歪
検査方法について説明する。Here, the latter optical strain inspection method using a Siemens star mask will be explained.
第5図はウェハ面での読み取り場所を示す図、第6図は
そのシーメンスターパターンを示す図(第5図のA部拡
大図)である。FIG. 5 is a diagram showing the reading location on the wafer surface, and FIG. 6 is a diagram showing the Siemens star pattern (an enlarged view of part A in FIG. 5).
このシーメンスターマスクを用いる光学歪検査方法にお
いては、シーメンスターマスクをウェハ上に転写し、干
渉縞aの広がりの違いを読み取ることにより、45°方
向、90°方向のズレをチエツクする。In this optical strain inspection method using a Siemens star mask, the Siemens star mask is transferred onto a wafer and the difference in spread of interference fringes a is read to check for deviations in the 45° direction and 90° direction.
光学的な収差成分がなければ、通常、干渉縞aの広がる
度合いは45°方向、90@方向において−敗し、縞は
円弧状に広がっていく。If there is no optical aberration component, the degree of spread of the interference fringes a will normally decrease in the 45° direction and the 90° direction, and the fringes will spread in an arc shape.
なお、この装置は中心点Oを中心にウェハを傾けるII
構を備えているため、干渉縞aの広がりは1枚のウェハ
でチエツクすることができる。ウェハを1頃けるWII
Iのない装置については、フォーカスをシフトさせるこ
とで、同一のチエツクが可能である。Note that this device tilts the wafer around the center point O.
Because of this structure, the spread of interference fringes a can be checked using a single wafer. WII for loading wafers once
For devices without I, the same check can be performed by shifting the focus.
(発明が解決しようとする課題)
しかしながら、以上述べた方法では、個々のプロセスに
よる干渉縞の見え方が違うことや、読取者によって縞の
境目の判断が異なることにより、読み取り誤差が大きく
なるという問題点があった。(Problem to be Solved by the Invention) However, with the method described above, reading errors become large due to differences in the appearance of interference fringes depending on the individual processes and differences in the judgment of borders between fringes depending on the reader. There was a problem.
このようなことから、実際のパターンには収差が残ると
いう不具合があった。For this reason, there was a problem that aberrations remained in the actual pattern.
本発明は、以上述べたプロセスによる干渉縞の見え方の
違いと、読取者による読み取り誤差を除去するため、干
渉縞の広がりを読み取るのではなく、ウェハ上に転写さ
れたマスクパターンを測長し、その変形率を求めること
により、個人差による光学的歪データのバラツキが小さ
く、収差の管理が容易な露光装置における光学歪検査方
法を提供することを目的とする。The present invention measures the length of the mask pattern transferred onto the wafer, rather than reading the spread of the interference fringes, in order to eliminate the difference in appearance of the interference fringes due to the process described above and the reading error caused by the reader. It is an object of the present invention to provide an optical distortion inspection method for an exposure apparatus in which the variation in optical distortion data due to individual differences is small and aberrations can be easily managed by determining the deformation rate.
(課題を解決するための手段)
本発明は、上記目的を達成するために、半導体製造工程
で用いる露光装置における光学歪検査方法において、マ
スクパターンをウェハ上に転写する工程と、該転写され
たパターンの形状を測定する工程と、該測定結果に基づ
いて転写されたパターンの変形率を求める工程と、該変
形率に基づいて光学系の収差を検査する工程とを施すよ
うにしたものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical distortion inspection method in an exposure apparatus used in a semiconductor manufacturing process, which includes a step of transferring a mask pattern onto a wafer, and a step of transferring a mask pattern onto a wafer. The method includes a step of measuring the shape of the pattern, a step of determining the deformation rate of the transferred pattern based on the measurement result, and a step of inspecting the aberration of the optical system based on the deformation rate. .
(作用)
本発明によれば、上記したように、シーメンスターマス
クの代わりに、実際のパターン(コンタクトホール)を
ウェハ上に転写し、測長するようにしたので、ウェハ内
での収差をチエツクすることができる。(Function) According to the present invention, as described above, an actual pattern (contact hole) is transferred onto the wafer and the length is measured instead of the Siemens star mask, so aberrations within the wafer can be checked. can do.
また、フォーカスをlN10UT側にシフトすることに
より、焦点深度内での収差の出具合もチエ・7りするこ
とができる。Furthermore, by shifting the focus to the 1N10UT side, the degree of aberration within the depth of focus can be changed.
更に、マスクの寸法も明確になるため、ウェハ上に転写
したパターン測長結果に基づくデータにバラツキが生じ
ることもない。Furthermore, since the dimensions of the mask are clear, there will be no variation in the data based on the length measurement results of the pattern transferred onto the wafer.
(実施例)
以下、本発明の実施例について図面を参照しながら詳細
に説明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の実施例を示すマスクパターン例を示す
図、第2図は本発明の収差がなく正常なウェハ上転写パ
ターン例を示す図、第3図は本発明の45°方向に収差
がある場合のウェハ上転写パターン例を示す図、第4図
は本発明の90°方向に収差がある場合のウェハ上転写
パターン例を示す図である。FIG. 1 is a diagram showing an example of a mask pattern according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a normal transfer pattern on a wafer without aberration according to the present invention, and FIG. FIG. 4 is a diagram showing an example of a transferred pattern on a wafer when there is an aberration, and FIG. 4 is a diagram showing an example of a transferred pattern on a wafer when there is an aberration in the 90° direction according to the present invention.
(1)まず、第1図に示すように、半径r (0,4〜
1.5μm程度)の円(コンタクトホールパターン)を
マスク側に設置(現在の解像度チエツクマスクに追加)
し、ウェハ上にそのマスクパターンを転写する。(1) First, as shown in Figure 1, radius r (0,4~
1.5μm) circle (contact hole pattern) is installed on the mask side (added to the current resolution check mask)
Then, the mask pattern is transferred onto the wafer.
(2)次いで、転写されたパターンの形状を測定する。(2) Next, measure the shape of the transferred pattern.
その結果、光学的に収差がなければ、第2図に示すよう
に、ウェハ上転写パターンは円になる。As a result, if there is no optical aberration, the transferred pattern on the wafer will be circular, as shown in FIG.
なお、ここで、21の露光装置の場合はマスクr:ウエ
ハrで転写され、5:1の縮小露光装置の場合はマスク
「:ウエハr / 5で転写される。Note that in the case of the 21 exposure device, the image is transferred as mask r:wafer r, and in the case of the 5:1 reduction exposure device, the image is transferred as mask ``:wafer r/5''.
また、収差が45°方向に生じた場合は、第3図に示す
ように、ウェハ上転写パターンは楕円形になる。更に、
収差が90°方向に生じた場合は、第4図に示すような
楕円形になる。Furthermore, when aberration occurs in the 45° direction, the transferred pattern on the wafer becomes elliptical, as shown in FIG. Furthermore,
If the aberration occurs in the 90° direction, it will become an ellipse as shown in FIG.
(3)そこで、第3図及び第4図における最大寸法(M
ay)と最小寸法(Win)を測定し、次式に代入しそ
の変形率を求める。即ち、
変形率(%) = ((Max −Min)/ Max
) X100である。(3) Therefore, the maximum dimension (M
ay) and the minimum dimension (Win) are measured and substituted into the following equation to obtain the deformation rate. That is, deformation rate (%) = ((Max - Min)/Max
) X100.
(4)続いて、露光装置の焦点深度内でフォーカスをシ
フトさせて変形率を測定する。これは、露光装置の性能
(光学歪)を調査するためのものである。ここで、変形
率として定めた値から外れた装置においては、再度調整
を行う、また、装置メーカ側の工場出荷時の最終検査項
目として検査を行えば、歪を最小に抑えた装置を確保す
ることができる。(4) Next, shift the focus within the depth of focus of the exposure device and measure the deformation rate. This is to investigate the performance (optical distortion) of the exposure device. Here, if the device deviates from the value determined as the deformation rate, it should be adjusted again, and if the device manufacturer performs the inspection as a final inspection item at the time of factory shipment, it will ensure that the device has minimal distortion. be able to.
このような変形率の検査は、光源部エネルギーのバラツ
キ、ディストーシゴン、L & Sをチエツクした同一
プロセスを用いて行う。Such a deformation rate inspection is performed using the same process that checks the variation in light source energy, distortion, and L&S.
上記において、コンタクトホールが円でない場合でも、
90’方向45°方向の距離が等しくなるマスクパター
ンであれば測定が可能である0例えば、第7図に示すよ
うに、AE=BF=CG=DHを満足する正八角形のマ
スクパターンであってもよい。In the above, even if the contact hole is not circular,
Measurement is possible if the mask pattern has equal distances in the 90' direction and 45° direction.For example, as shown in FIG. 7, if the mask pattern is a regular octagon satisfying AE=BF=CG=DH Good too.
なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
(発明の効果)
以上、詳細に説明したように、本発明によれば、ウェハ
上に転写されたマスクパターンを測長し、その変形率を
求めるようにしたので、個人差による光学的歪データの
バラツキが小さく、収差を管理していく上で実用的な効
果を奏することができる。(Effects of the Invention) As described above in detail, according to the present invention, the length of the mask pattern transferred onto the wafer is measured and its deformation rate is determined, so that optical distortion data due to individual differences is The variation is small, and a practical effect can be achieved in controlling aberrations.
更に、レンズ単体からこの検査を行えば、組立時に発生
する歪の管理も行うことができる。Furthermore, by performing this inspection on a single lens, it is possible to manage distortions that occur during assembly.
第1図は本発明の実施例を示すマスクパターン例を示す
図、第2図は本発明の収差がなく正常なウェハ上転写パ
ターン例を示す図、第3図は本発明の45°方向に収差
がある場合のウェハ上転写パターン例を示す図、第4図
は本発明の90°方向に収差がある場合のウェハ上転写
パターン例を示す図、第5図はウェハ面での読み取り場
所を示す図、第6図はそのシーメンスターパターンを示
す図、第7図は本発明の他の実施例を示すマスクパター
ン例を示す図である。FIG. 1 is a diagram showing an example of a mask pattern according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a normal transfer pattern on a wafer without aberration according to the present invention, and FIG. A diagram showing an example of a pattern transferred on a wafer when there is aberration, FIG. 4 is a diagram showing an example of a pattern transferred on a wafer when there is an aberration in the 90° direction according to the present invention, and FIG. 5 shows a reading location on the wafer surface. FIG. 6 is a diagram showing the Siemens star pattern, and FIG. 7 is a diagram showing an example of a mask pattern showing another embodiment of the present invention.
Claims (1)
方法において、 (a)マスクパターンをウェハ上に転写する工程と、(
b)該転写されたパターンの形状を測定する工程と、 (c)該測定結果に基づいて転写されたパターンの変形
率を求める工程と、 (d)該変形率に基づいて光学系の収差を検査する工程
とを有する露光装置における光学歪検査方法。[Claims] A method for inspecting optical distortion in an exposure apparatus used in a semiconductor manufacturing process, comprising: (a) transferring a mask pattern onto a wafer;
b) measuring the shape of the transferred pattern; (c) determining the deformation rate of the transferred pattern based on the measurement results; and (d) calculating the aberration of the optical system based on the deformation rate. A method for inspecting optical distortion in an exposure apparatus, comprising: a step of inspecting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1297448A JPH03158735A (en) | 1989-11-17 | 1989-11-17 | Method for inspecting optical distortion in exposure device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1297448A JPH03158735A (en) | 1989-11-17 | 1989-11-17 | Method for inspecting optical distortion in exposure device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03158735A true JPH03158735A (en) | 1991-07-08 |
Family
ID=17846644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1297448A Pending JPH03158735A (en) | 1989-11-17 | 1989-11-17 | Method for inspecting optical distortion in exposure device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03158735A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2387239A (en) * | 2002-04-05 | 2003-10-08 | Zarlink Semiconductor Ltd | Improvements in reticles in MEMS and IC processes |
-
1989
- 1989-11-17 JP JP1297448A patent/JPH03158735A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2387239A (en) * | 2002-04-05 | 2003-10-08 | Zarlink Semiconductor Ltd | Improvements in reticles in MEMS and IC processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7894660B2 (en) | Image processing alignment method and method of manufacturing semiconductor device | |
KR102124896B1 (en) | Indirect determination of processing parameters | |
US4790023A (en) | Method for measuring dimensions of fine pattern | |
JPH0444307A (en) | Manufacture of semiconductor device | |
US5978094A (en) | Alignment device and method based on imaging characteristics of the image pickup system | |
JP2002512384A (en) | Method for measuring position of pattern structure on mask surface | |
US5237393A (en) | Reticle for a reduced projection exposure apparatus | |
JPH03158735A (en) | Method for inspecting optical distortion in exposure device | |
KR20180040186A (en) | Inspection method, inspection system, and method of forming semiconductor package using the same | |
JPS587055B2 (en) | Gap setting device in proximity aligner | |
KR20230047898A (en) | Method of obtaining array of plurality of shot regions on substrate, exposure method, exposure apparatus, method of manufacturing article, non-transitory computer-readable storage medium, and information processing apparatus | |
TWI722386B (en) | Determination method, exposure method, exposure device, article manufacturing method, and storage medium | |
JPH0265151A (en) | Line width loss measuring method | |
KR102413895B1 (en) | Patterning method, lithography apparatus, and article manufacturing method | |
US5552251A (en) | Reticle and method for measuring rotation error of reticle by use of the reticle | |
JP3050498B2 (en) | Adjustment method of position shift amount measuring optical system and position shift amount measurement apparatus | |
US6662145B1 (en) | Method, equipment, and recording medium for controlling exposure accuracy | |
JPS63286752A (en) | Defect inspecting or dimension measuring method for pattern | |
JP3547554B2 (en) | Wafer tilt detection method during exposure | |
JP3610834B2 (en) | Surface position detection method | |
US20020072131A1 (en) | In-line method of measuring effective three-leaf aberration coefficient of lithography projection systems | |
KR20020064453A (en) | Exposure system of semiconducter, and exposure method of semiconducter thereof | |
CN117666291A (en) | Measurement method and lithography process control system | |
JP3699894B2 (en) | Sample inspection equipment | |
US20030211411A1 (en) | Method for monitoring focus in lithography |