JPH03156903A - Manufacture of joined ferrite - Google Patents

Manufacture of joined ferrite

Info

Publication number
JPH03156903A
JPH03156903A JP1295110A JP29511089A JPH03156903A JP H03156903 A JPH03156903 A JP H03156903A JP 1295110 A JP1295110 A JP 1295110A JP 29511089 A JP29511089 A JP 29511089A JP H03156903 A JPH03156903 A JP H03156903A
Authority
JP
Japan
Prior art keywords
ferrite
polycrystalline
polycrystalline ferrite
added
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295110A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
啓之 鈴木
Keiichi Kagami
慶一 鏡
Takeshi Hosoya
健 細谷
Tomosaburo Kitamura
北村 友三郎
Hidemasa Tamura
英雅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1295110A priority Critical patent/JPH03156903A/en
Publication of JPH03156903A publication Critical patent/JPH03156903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To suppress the instability of a boundary between polycrystalline ferrite and single crystal ferrite by a method wherein one or more elements selected among Ca, Zr, Ta, K, Cs and Rb and added to the polycrystalline ferrite and the mixture is baked and then the single crystal ferrite is bonded to the baked polycrystalline ferrite by thermocompression bonding. CONSTITUTION:One or more elements selected among Ca, Zr, Ta, K, Cs and Rb are added to polycrystalline ferrite and the mixture is baked. The respective elements may be added to the polycrystalline ferrite, for example, by a method wherein oxides, carbonates, hydroxides, organometal compounds, etc., of the respective elements are added to the powder of polycrystalline ferrite and the mixture powder is press-molded and sintered in a process afterwards. Then, single crystal ferrite is bonded to the molded and sintered polycrystalline ferrite by thermocompression bonding. With this constitution, a joined ferrite which has little instability of the boundary, single-crystallization of the polycrystalline ferrite and grain growth created at the time of thermocompression bonding can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、磁気ヘッドのコア材等として用いられる接合
フェライI・の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a bonded ferrite I used as a core material of a magnetic head.

〔発明の概要] 本発明は、単結晶フェライトと多結晶フェライトを熱間
加圧によって接合一体化するに際し、使用する多結晶フ
ェライトに予めCa、Zr、TaK  Cs  Rbの
少なくとも1種を添加し焼成しておくことで、接合界面
における多結晶フェライトの単結晶化や粒成長を抑制し
ようとするものである。
[Summary of the Invention] The present invention involves adding at least one of Ca, Zr, and TaK Cs Rb to the polycrystalline ferrite to be used in advance when bonding and integrating single-crystal ferrite and polycrystalline ferrite by hot pressing. This is intended to suppress single crystallization and grain growth of polycrystalline ferrite at the bonding interface.

〔従来の技術] 例えばビデオテープレコーダに用いられる磁気ヘッドに
おいては、摺動ノイズを低減させCN比を改善するため
に、これまでの単結晶フェライトヘッドから、磁気コア
に単結晶フェライトと多結晶フェライトの接合フェライ
トを用いた複合型ヘッドへとそのヘッド構造が切り換え
られつつある。
[Prior Art] For example, in magnetic heads used in video tape recorders, monocrystalline ferrite and polycrystalline ferrite are used in the magnetic core, instead of conventional single-crystal ferrite heads, in order to reduce sliding noise and improve the CN ratio. The head structure is being switched to a composite head using bonded ferrite.

前記複合型ヘッドは、高飽和磁束密度を有する単結晶フ
ェライトをフロントギャップ側に、高透磁率を存する多
結晶フェライトをハックギャップ側に配したもので、簡
単な構造でありながら高密度記録が可能で優れた電磁変
換効率を発揮するという長所を有するものである。
The composite head has a single-crystal ferrite with high saturation magnetic flux density on the front gap side and a polycrystalline ferrite with high magnetic permeability on the hack gap side, making it possible to perform high-density recording despite its simple structure. It has the advantage of exhibiting excellent electromagnetic conversion efficiency.

前述の複合型ヘッドにおいて磁気コアとして用いられる
接合フェライトは、通常は、鏡面研磨した単結晶フェラ
イト、多結晶フェライトを水または硝酸で仮接着した後
、窒素等の還元雰囲気中で加圧、加熱処理(いわゆるホ
ットプレス)することで製造されている。
The bonded ferrite used as the magnetic core in the aforementioned composite head is usually made by temporarily bonding mirror-polished single-crystal ferrite or polycrystalline ferrite with water or nitric acid, and then applying pressure and heat treatment in a reducing atmosphere such as nitrogen. (so-called hot pressing).

しかしながら、かかる手法によって熱間接合した場合、
単結晶フェライトと多結晶フェライトの界面で多結晶フ
ェライトの単結晶化や粒成長が起こり、前記界面がラン
ダムに移動するという現象がしばしば観察される。
However, when hot bonding is performed using such a method,
Single crystallization and grain growth of polycrystalline ferrite occur at the interface between single-crystal ferrite and polycrystalline ferrite, and a phenomenon in which the interface moves randomly is often observed.

この界面の移動は摺動ノイズの原因となることから極力
抑制する必要がある。
This movement of the interface must be suppressed as much as possible since it causes sliding noise.

このような状況から、本願出願人は、先に特開昭63−
14311号公報において、単結晶フェライトと多結晶
フェライトの界面に酸化物磁性薄膜を介在せしめ、前記
界面の移動を抑制する技術を提案した。前記酸化物磁性
薄膜を介在せしめると、不連続粒成長現象により界面で
の粒成長が抑えられることが確認されている。
Under these circumstances, the applicant of the present application first applied
In Japanese Patent No. 14311, a technique was proposed in which an oxide magnetic thin film was interposed at the interface between single crystal ferrite and polycrystalline ferrite to suppress movement of the interface. It has been confirmed that when the oxide magnetic thin film is interposed, grain growth at the interface is suppressed due to the discontinuous grain growth phenomenon.

〔発明が解決しようとする課題] ところで、接合フェライトを製造するにあたっては、前
述の界面移動の抑制が要求されるのは勿論であるが、同
時になるべく生産性を上げ製造コストを引き下げること
が要求されるのも当然である。
[Problem to be solved by the invention] By the way, in manufacturing bonded ferrite, it is of course required to suppress the above-mentioned interface movement, but at the same time, it is also required to increase productivity as much as possible and reduce manufacturing costs. It is natural that

かかる観点から見た時、前記酸化物磁性薄膜の形成は、
設備投資の点5生産性の点等において不利である。すな
わち、前記酸化物磁性薄膜を形成するには、スパッタ装
置等が必要となって多大な設備投資が必要となるうえ、
接合に際して余分な工程が加わることになり、また成膜
も長時間に及び生産性が低下することになる。
From this point of view, the formation of the oxide magnetic thin film is as follows:
It is disadvantageous in terms of capital investment and productivity. That is, in order to form the oxide magnetic thin film, a sputtering device and the like are required, which requires a large amount of equipment investment, and
An extra step is added to the bonding process, and film formation also takes a long time, resulting in a decrease in productivity.

そこで本発明は、前述の従来の実情に鑑みて提案された
ものであって、単結晶フェライトと多結晶フェライトの
界面の移動を抑制することができ、しかも生産性や製造
コストの点でも優れた接合フェライトの製造方法を提供
することを目的とする。
Therefore, the present invention was proposed in view of the above-mentioned conventional situation, and is capable of suppressing the movement of the interface between single crystal ferrite and polycrystalline ferrite, and is also excellent in terms of productivity and manufacturing cost. An object of the present invention is to provide a method for manufacturing a bonded ferrite.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前記目的を達成するために長期に亘り鋭
意研究を重ねた結果、多結晶フェライトに予めCa、Z
r、Ta、に、Cs、Rbのいずれかを添加し焼成して
おくと熱間加圧時の単結晶化や粒成長が抑制され、した
がって通常のプロセスをそのまま踏襲して接合すること
ができるとの知見を得るに至った。
As a result of extensive research over a long period of time in order to achieve the above object, the inventors of the present invention have previously added Ca and Z to polycrystalline ferrite.
If either Cs or Rb is added to r, Ta, and fired, single crystallization and grain growth during hot pressing are suppressed, and therefore it is possible to join by following the usual process. We have come to the conclusion that

本発明の製造方法は、かかる知見に栽づいて完成された
ものであって、多結晶フェライトにCa。
The manufacturing method of the present invention was completed based on this knowledge, and includes Ca in polycrystalline ferrite.

Zr、Ta、に、Cs、Rbの少なくとも1種を添加し
て焼成した後、単結晶フェライトを接合して加熱圧着す
ることを特徴とするものである。
The method is characterized in that at least one of Cs and Rb is added to Zr, Ta, and fired, and then a single crystal ferrite is joined and heat-pressed.

〔作用〕[Effect]

Ca、Zr、Ta、に、Cs、Rbの少なくとも1種を
添加して焼成した多結晶フェライトを単結晶フェライト
と接合して熱間加圧した場合、通常の多結晶フェライト
を用いた場合と比較して単結晶化や粒成長が少なく、多
結晶フェライト−単結晶フェライトの界面の動きが抑制
される。
When polycrystalline ferrite made by adding at least one of Cs and Rb to Ca, Zr, Ta, and fired is bonded to single crystal ferrite and hot pressurized, compared with the case when normal polycrystalline ferrite is used. As a result, single crystallization and grain growth are reduced, and movement of the polycrystalline ferrite-single crystal ferrite interface is suppressed.

〔実施例) 以下、本発明を適用した実施例について説明する。〔Example) Examples to which the present invention is applied will be described below.

本実施例において、接合フェライトを製造するには、先
ず用いる多結晶フェライトにCa、Zr。
In this example, in order to manufacture the bonded ferrite, Ca and Zr are first added to the polycrystalline ferrite used.

Ta、に、Cs、Rbの1種もしくは2種以上を添加し
、これを焼成しておく。
One or more of Cs and Rb is added to Ta, and this is fired.

前記各元素の添加方法としては、多結晶フェライトの粉
体時に前記各元素の酸化物、炭酸化合物。
As a method of adding each of the above-mentioned elements, oxides and carbonate compounds of each of the above-mentioned elements are added to the powder of polycrystalline ferrite.

水酸化物、有機金属化合物等を添加しておき、後の工程
を進めて成型プレスし焼結する方法が挙げられる。ある
いは、上記各元素の水酸化物含有溶液、有機金属化合物
溶液(例えばアルコラード溶液1アセチルアセトン溶液
等)、炭酸化合物懸濁液等に多結晶フェライト粉末を投
入し、ろ過(脱水)後に乾燥もしくは溶液に入れた状態
のまま加熱乾燥し、これを成型プレスし焼結しても良い
An example is a method in which a hydroxide, an organometallic compound, etc. are added in advance, and subsequent steps are performed to form, press, and sinter. Alternatively, polycrystalline ferrite powder is added to a hydroxide-containing solution of each of the above elements, an organometallic compound solution (for example, Alcolade solution 1 acetylacetone solution, etc.), a carbonate compound suspension, etc., and after filtration (dehydration), it is dried or dissolved. It is also possible to heat and dry it as it is, press it into a shape, and sinter it.

さらには、成型プレスした未焼結のフェライト粉末ブロ
ックの接合面あるいは全面に、上記溶液を滴下もしくは
塗布することにより含浸させ、しかる後に焼結するよう
にしても良い。
Furthermore, the above-mentioned solution may be dripped or applied onto the bonding surface or the entire surface of an unsintered ferrite powder block that has been molded and pressed, and then sintered.

次いで、上i1cのようにして作製した多結晶フェライ
トに単結晶フェライトを接合し、加熱圧着する。加熱圧
着の条件(温度、圧力等)は、接合フェライトを製造す
る際の通常の条件をそのまま適用することができる。
Next, single crystal ferrite is joined to the polycrystalline ferrite produced as in step i1c above, and heat-pressed. The conditions for heat-pressing (temperature, pressure, etc.) can be the same as those normally used for manufacturing bonded ferrite.

このように前述の各元素を添加して焼結された多結晶フ
ェライトと単結晶フェライトとを熱間加圧すると、接合
時の界面の動きや多結晶フエライl−の単結晶化2粒成
長が少ない接合フェライトが得られる。
When polycrystalline ferrite and single-crystal ferrite, which have been sintered with the above-mentioned elements added, are hot-pressed, the movement of the interface during bonding and the single-crystal two-grain growth of polycrystalline ferrite l- are suppressed. Less junction ferrite is obtained.

本発明者等は、実際に上述の処理方法によりK(カリウ
ム)が添加、焼成されたMn−Zn多結晶フェライトと
無処理のMn−Zn多結晶フェライトを用いて2種類の
接合フェライトを作製した。
The present inventors actually produced two types of bonded ferrite using Mn-Zn polycrystalline ferrite to which K (potassium) was added and fired by the above-mentioned processing method and untreated Mn-Zn polycrystalline ferrite. .

なお、前者を用いた場合を実施例、後者を用いた場合を
比較例とする。
Note that the case where the former is used is an example, and the case where the latter is used is a comparative example.

すなわち、鏡面加工したMn−Zn多結晶フェライトと
単結晶フェライトとを仮接着した後、5kg / cd
の圧力を加えつつ窒素雰囲気中で1220°C12時間
の加圧、加熱処理を行い、2種類の接合フェライト(実
施例及び比較例)を作製した。
That is, after temporarily adhering mirror-finished Mn-Zn polycrystalline ferrite and single crystal ferrite, 5kg/cd
Pressure and heat treatment were performed at 1220° C. for 12 hours in a nitrogen atmosphere while applying a pressure of

実施例と比較例とは、使用した多結晶フェライトが異な
る以外は全て同一条件である。
The Examples and Comparative Examples are all under the same conditions except that the polycrystalline ferrite used is different.

加圧加熱処理後の接合状態を第1図及び第2図に示す。The bonded state after the pressure and heat treatment is shown in FIGS. 1 and 2.

第1図は実施例における接合状態を示すもので、第2図
は比較例における接合状態を示すものである。いずれも
倍率は200倍である。
FIG. 1 shows a bonded state in an example, and FIG. 2 shows a bonded state in a comparative example. In both cases, the magnification is 200x.

これら第1図及び第2図を比較してみると、前述の元素
を添加して焼成した多結晶フェライトを使用した場合、
すなわち実施例では単結晶−多結晶の界面における多結
晶フェライトの単結晶化や粒成長が少ないことがわかる
。したがって、接合前後の界面の動きも少なく、界面が
フラットである。
Comparing these figures 1 and 2, it is found that when polycrystalline ferrite fired with the above-mentioned elements added is used,
That is, it can be seen that in the examples, there is little single crystallization or grain growth of polycrystalline ferrite at the single crystal-polycrystal interface. Therefore, there is little movement of the interface before and after bonding, and the interface is flat.

同様に、Ca、Zr、Ta、Cs、Rhをそれぞれ添加
し焼成した多結晶フェライトを使用して接合フェライト
を作製したところ、やはり界面近傍の多結晶フェライト
の単結晶化や粒成長が抑えられ、界面の移動が少ないも
のであった。
Similarly, when bonded ferrite was produced using polycrystalline ferrite that had been fired with the addition of Ca, Zr, Ta, Cs, and Rh, single crystallization and grain growth of the polycrystalline ferrite near the interface were suppressed. There was little movement of the interface.

以」二、本発明の具体的な実施例について説明したが、
本発明がこの実施例に限定解釈されるものでないことは
言うまでもない。
In the following, specific embodiments of the present invention have been described.
It goes without saying that the present invention is not limited to this embodiment.

[発明の効果] 以上の説明からも明らかなように、本発明においては、
Ca、Zr、Ta、に、Cs、Rbの少なくともII!
!T!を添加して焼成した多結晶フェライトを単結晶フ
ェライトと接合して加熱圧着するようにしているので、
多結晶フェライトの単結晶化や粒成長を抑え界面の移動
を抑制することができる。
[Effect of the invention] As is clear from the above explanation, in the present invention,
At least II of Ca, Zr, Ta, Cs, and Rb!
! T! The polycrystalline ferrite that has been fired with the addition of
It is possible to suppress the single crystallization and grain growth of polycrystalline ferrite, and to suppress the movement of the interface.

したがって、例えば磁気ヘッドのコア材の製造に本発明
を適用すれば、摺動ノイズの少ない磁気ヘッドの作製が
可能となる。
Therefore, if the present invention is applied to, for example, manufacturing a core material of a magnetic head, it becomes possible to manufacture a magnetic head with less sliding noise.

また、本発明の製造方法においては、従来の接合フェラ
イトの製造工程をそのまま踏襲することができ、何ら新
たな工程を加える必要がないことから、設備投資や生産
性の点でも有利である。
Further, the manufacturing method of the present invention can follow the conventional manufacturing process of bonded ferrite as is, and there is no need to add any new process, which is advantageous in terms of equipment investment and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はKを添加し焼成した多結晶フェライトを使用し
た接合フェライトの界面近傍の結晶粒の様子を示す顕微
鏡写真(倍率200倍)であり、第2図は無処理の多結
晶フェライトを使用した接合フェライトの界面近傍の結
晶粒の様子を示す顕微鏡写真(倍率200倍)である。
Figure 1 is a micrograph (200x magnification) showing the appearance of crystal grains near the interface of bonded ferrite using polycrystalline ferrite fired with K added, and Figure 2 is a photo taken using untreated polycrystalline ferrite. 2 is a micrograph (200x magnification) showing the appearance of crystal grains near the interface of the bonded ferrite.

Claims (1)

【特許請求の範囲】[Claims] 多結晶フェライトにCa,Zr,Ta,K,Cs,Rb
の少なくとも1種を添加して焼成した後、単結晶フェラ
イトを接合して加熱圧着することを特徴とする接合フェ
ライトの製造方法。
Ca, Zr, Ta, K, Cs, Rb in polycrystalline ferrite
1. A method for producing a bonded ferrite, which comprises adding at least one of the following and firing the same, followed by bonding single crystal ferrite and heat-pressing the bonded single crystal ferrite.
JP1295110A 1989-11-15 1989-11-15 Manufacture of joined ferrite Pending JPH03156903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295110A JPH03156903A (en) 1989-11-15 1989-11-15 Manufacture of joined ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295110A JPH03156903A (en) 1989-11-15 1989-11-15 Manufacture of joined ferrite

Publications (1)

Publication Number Publication Date
JPH03156903A true JPH03156903A (en) 1991-07-04

Family

ID=17816424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295110A Pending JPH03156903A (en) 1989-11-15 1989-11-15 Manufacture of joined ferrite

Country Status (1)

Country Link
JP (1) JPH03156903A (en)

Similar Documents

Publication Publication Date Title
US4675988A (en) Method for producing a magnetic head core
JPH03156903A (en) Manufacture of joined ferrite
KR960005400B1 (en) Magnetic head including single crystal and polycrystalline ferrites with interfacial oxide layer
EP0593003B1 (en) Magnetic head and method of making same
JP2770432B2 (en) Manufacturing method of bonded ferrite
JP2682042B2 (en) Magnetic head
Withop Manganese-zinc ferrite processing, properties and recording performance
JPH0512620A (en) Magnetic head
JP3284638B2 (en) Manufacturing method of bonded ferrite
JPH07133165A (en) Production of joined ferrite
US3736657A (en) Method of manufacturing a transducer head for magnetic recording/reproducing apparatus
KR930006585B1 (en) Thin film and manufacturing method for magnetic head
JPH0855713A (en) Manufacture of composite magnetic material
JPH02107577A (en) Production of joint ferrite
JPH07326014A (en) Joined ferrite material for magnetic head and magnetic head
KR950007905Y1 (en) Mixed magnetic head
JPH06231933A (en) Manufacture of junction ferrite
KR0178783B1 (en) Manufacture of magnetic head
KR100239478B1 (en) Manufacturing method of magnetic head
JPH05258939A (en) Bonded ferrite
KR100232141B1 (en) Manufacturing method of magnetic head
JPH0782040A (en) Production of ferrite core
JPH02107578A (en) Production of joint ferrite
JPH05128423A (en) Magnetic head
JPH07130526A (en) Manufacture of compound magnetic material