JPH03155674A - Bidirectional 2-pole thyristor - Google Patents

Bidirectional 2-pole thyristor

Info

Publication number
JPH03155674A
JPH03155674A JP29542989A JP29542989A JPH03155674A JP H03155674 A JPH03155674 A JP H03155674A JP 29542989 A JP29542989 A JP 29542989A JP 29542989 A JP29542989 A JP 29542989A JP H03155674 A JPH03155674 A JP H03155674A
Authority
JP
Japan
Prior art keywords
region
current
thyristor
overlapping
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29542989A
Other languages
Japanese (ja)
Other versions
JPH0685435B2 (en
Inventor
Koichi Ota
太田 鋼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP1295429A priority Critical patent/JPH0685435B2/en
Publication of JPH03155674A publication Critical patent/JPH03155674A/en
Publication of JPH0685435B2 publication Critical patent/JPH0685435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bidirectional 2-pole thyristor which can be mass-produced stably with a high yield rate and has a large withstanding current for a surge by providing a region in which the overlapping distance of P (N) layers is relatively small in comparison with the one of the other region in the overlapping part of P (N) layers on both surfaces of the thyristor. CONSTITUTION:While the overlapping width of a P1 and P2 layer in a usual thyristor is d over the whole length of an overlapping part, a region C in which the overlapping width shown as d' is made to be small is locally provided in the central region part of the element and in this region, and the distance in the lateral direction between an N1 and N2 layer is shortened by (d-d'). Thereby, the positional distributions of current amplification factors alphaN, alphaP become the ones in that (alphaN+alphaP) expressing a turn-on condition is forced to exhibit a maximum peak concentrated near the region C and this corresponds equivalently making base widths WN and WP small. Therefore, the withstanding current for a lightning surge can be improved decreasing an electric power loss in a turn-on region.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はPNPNP (NPNPN)型双方向性2端子
サイリスタにかかるもので、その雷サージ電流耐量の向
上と、製造の歩留まりの向上に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a PNPNP (NPNPN) type bidirectional two-terminal thyristor, and is concerned with improving its lightning surge current withstand capability and manufacturing yield. be.

(従来技術とその解決すべき問題点) 不純物拡散のような通常の方法により作られる第1図(
a)Cb)に示す断面図および上部金属電極の図示を省
略した平面図の如きP、N+ P  Nz Pg型構造
をもつ2端子サイリスクは広く用いられている。(なお
図中M + 9M zは金属電極、11は絶縁膜例えば
330g膜、dはP、とPtNの重なり幅を示す)また
最近においては小型安価であってサージ電流耐量が大き
く、しかも2端子であるので使用が簡単であるなどの理
由から、通信回線その他における雷サージ防護用などと
して広く使用されている。
(Prior art and its problems to be solved) Fig. 1 (
A two-terminal silicon risk having a P, N+ P Nz Pg type structure, as shown in the cross-sectional view and plan view with the upper metal electrode omitted, shown in a) Cb) is widely used. (In the figure, M + 9M z is a metal electrode, 11 is an insulating film, for example, a 330g film, and d is P, and the overlap width of PtN.) In addition, recently, wires that are small and inexpensive, have high surge current resistance, and have two terminals Because it is easy to use, it is widely used for lightning surge protection in communication lines and other areas.

しかし現在のサイリスタではその構造上サージ特に雷サ
ージの如き、急峻な立上りの電流サージに対する耐量の
現在以上の向上を望むことは無理がある。しかもサイリ
スクの縦構造や、各層の不純物温度、厚み、さらには各
構造の幾何学的位置などのばらつきによって大きく影響
されてサージ電流耐量のばらつきを生じるのを防ぎ得な
い。そこで高度なプロセス技術の適用などにより上記の
ような影響を極力排除しようとしているが、プロセス技
術の精度向上などには限界があるため、す−ジ電流耐量
のばらつきを少なくしての量産には困難がある。従って
、従来の構造によっては雷サージ電流耐量にすぐれた双
方向性2端子サイリスクを歩留まりよく作ることはでき
にくい。
However, due to the structure of current thyristors, it is unreasonable to expect any further improvement in their ability to withstand current surges with a steep rise, such as surges, especially lightning surges. Moreover, it is impossible to prevent variations in the surge current resistance due to the large influence of variations in the vertical structure of the SIRISK, the impurity temperature and thickness of each layer, and even the geometrical position of each structure. Therefore, efforts are being made to eliminate the above-mentioned effects as much as possible by applying advanced process technology, but since there are limits to improving the accuracy of process technology, it is difficult to mass produce by reducing the variation in current withstand capacity. There are difficulties. Therefore, depending on the conventional structure, it is difficult to produce a bidirectional two-terminal circuit with high lightning surge current resistance with a high yield.

以下にその理由を第1図に示した本発明に関係する通常
の双方向性2端子サイリスクについて第2図を参照して
説明する。
The reason for this will be explained below with reference to FIG. 2 regarding the normal bidirectional two-terminal risk related to the present invention shown in FIG.

前記第1図の双方向性2端子サイリスタの要部断面図を
示す第2図(a)において、図中(+)(−)の方向に
電圧を印加すると、印加電圧の殆どは接合J、にかかり
、電圧電流特性を示す第2図(b)のステップ1のよう
に電流Iは殆ど流れない。電圧が接合J、のブレークオ
ーバ電圧VIOに達してこれを越えると、ターンオン移
行領域である第2図(b)のステップ2のように電流I
が増加する。すると第2図(a)中に示す破線矢印のよ
うにN1層より電子の注入量が増加する。このためめN
IPNzトランジスタの電流増幅率α8は、その電流依
存性により増加する。
In FIG. 2(a), which shows a cross-sectional view of the essential parts of the bidirectional two-terminal thyristor shown in FIG. As shown in step 1 of FIG. 2(b) showing the voltage-current characteristics, almost no current I flows. When the voltage reaches and exceeds the breakover voltage VIO of junction J, the current I
increases. Then, the amount of electrons injected from the N1 layer increases as indicated by the broken line arrow in FIG. 2(a). For this reason N
The current amplification factor α8 of the IPNz transistor increases due to its current dependence.

一方N2層を横方向に流れる電流成分によってN2層の
横方向抵抗による電圧降下を生じ、これが接合J4に順
方向バイアスをかける。このため第2図(a)中に実線
矢印で示すように正孔の注入が起こり、これにもとづく
電流によってトランジスタP、N、Pの電流増幅率α、
が増加する。その結果αN+αP−1になって接合J、
が逆方向耐圧を保持できなくなるため、第2図(b)の
ターンオン移行領域であるステップ3を経過してステッ
プ4のオン領域に移行するが、この場合オンは最初−点
で行われ、その後のキャリアの拡散により素子の全面に
拡がってオンとなる。
On the other hand, the current component flowing laterally through the N2 layer causes a voltage drop due to the lateral resistance of the N2 layer, which applies a forward bias to the junction J4. For this reason, hole injection occurs as shown by the solid arrow in FIG. 2(a), and the current amplification factor α of the transistors P, N, and
increases. As a result, αN + αP-1 becomes the junction J,
is no longer able to maintain the reverse direction breakdown voltage, it passes through step 3, which is the turn-on transition region in FIG. Due to the diffusion of carriers, the device spreads over the entire surface of the device and turns on.

以上のように第1図のサイリスタはターンオン動作を行
うが、ここで雷サージのように急峻な立上りの電流サー
ジに対する耐量は、第2図(a)のターンオン移行領域
で、あるステップ2.3即ちターンオン時に生ずる電力
損失と、−点における初期点弧が全ターンオン面積に拡
がるまでのスピードによって定まり、特に前者によると
ころが大きい。
As described above, the thyristor shown in Fig. 1 performs a turn-on operation, but the withstand capability against a steeply rising current surge such as a lightning surge is limited to a certain step 2.3 in the turn-on transition region shown in Fig. 2 (a). That is, it is determined by the power loss that occurs during turn-on and the speed at which the initial ignition at the - point spreads to the entire turn-on area, with the former being particularly important.

そこで第2図(ロ)のターンオン移行領域を示すステッ
プ2.3における動作を第2図によって更に詳しく説明
する。
Therefore, the operation in step 2.3 showing the turn-on transition region in FIG. 2(b) will be explained in more detail with reference to FIG.

即ち第2図(b)のステップ2において接合J、を横切
って流れる電流の密度、従って接合J2を横切って流れ
る電流I、の密度は、第2図(C)に示すPt、Pg層
の重なり部dの中心からの距離Xと電流電圧の関係図中
の曲線(1)のように、各層の横方向抵抗のため素子の
中心0に近い部分(短絡部に近い部分)A点において最
も大きくなる。
That is, the density of the current flowing across the junction J in step 2 of FIG. 2(b), and therefore the density of the current I flowing across the junction J2, is determined by the overlap of the Pt and Pg layers shown in FIG. 2(C). As shown by curve (1) in the relationship between distance Become.

(なお第2図(b)のステップ2において負性抵抗を示
す場合には、この電流の集中傾向は更に強まる。)その
結果N2層を流れる電流は第2図(C)中の曲線(n)
のようになり、この電流によって生ずる電圧降下、即ち
第2図(a)の接合J4の順バイアスは、第2図(C)
中の曲線(I[)のようにA点近傍まで急激に増加し、
そののちその増加は緩やかになる。このためこの順バイ
アス電圧により接合J4を通って順方向電流が流れ出す
が、その電流りの密度は第2図(C)中の曲線(IV)
の如く素子の中心部0より離れたB点において最大とな
る。
(In addition, if negative resistance is shown in step 2 of FIG. 2(b), this tendency of current concentration becomes even stronger.) As a result, the current flowing through the N2 layer is the curve (n )
The voltage drop caused by this current, that is, the forward bias of junction J4 in FIG. 2(a), is as shown in FIG. 2(C).
As shown in the middle curve (I[), it increases rapidly up to the vicinity of point A,
After that, the increase slows down. Therefore, a forward current flows through the junction J4 due to this forward bias voltage, but the density of the current flow is as shown by the curve (IV) in Figure 2 (C).
It is maximum at point B, which is far from the center 0 of the element, as shown in FIG.

ここでターンオン条件であるα8+αp=1に関係する
電流増幅率のα4.α2は、双方向性サイリスタの短絡
エミッタ構造にもとづく前記電流11+I2の電流分布
に依存し、また依存の程度は縦構造やNr P r N
z P層の不純物濃度、厚み、ライフタイム等、更には
各構造の位置的不均一等によって大きく変化する。この
ため電流増幅率α8は依存度に対応して、第2図(d)
に示す距離Xと電流増幅率の関係図のようにA点におい
て最大となり、A点から離れるに伴い減少する。一方電
流増幅率α、の依存度に対応して第2図(d)に示すよ
うにB点において最大となり、これから離れるに伴って
減少する。従ってα8とα2の最大点は位置のずれをも
ち、またこの位置のずれは変動するが、これは定性的に
第3図に示す如(ベース幅WNとW、を変化させること
に相当し、例えばA点に対してB点が離れるに伴いベー
ス幅WN、W、を増大させて、ターンオン条件のα8+
αP−1における電流増幅率α8.α、を実効的に減少
させたことに相当する。このためターンオン現象の時間
的推移を考えればターンオンタイムを増大させたことに
なり、前記ターンオン移行時における電力損失を増加さ
せることになる。即ち従来のサイリスタ構造によっては
現在以上のサージ電流耐量の向上は望み得ない。
Here, the current amplification factor α4. is related to the turn-on condition α8+αp=1. α2 depends on the current distribution of the current 11+I2 based on the short-circuited emitter structure of the bidirectional thyristor, and the degree of dependence varies depending on the vertical structure and Nr P r N
z It varies greatly depending on the impurity concentration, thickness, lifetime, etc. of the P layer, as well as the positional non-uniformity of each structure. Therefore, the current amplification factor α8 corresponds to the dependence as shown in Fig. 2(d).
As shown in the relationship between distance On the other hand, corresponding to the dependence on the current amplification factor α, it reaches a maximum at point B, as shown in FIG. 2(d), and decreases as the distance from this point increases. Therefore, the maximum points of α8 and α2 have a positional deviation, and this positional deviation varies, but this qualitatively corresponds to changing the base widths WN and W, as shown in FIG. For example, the base widths WN and W are increased as point B is separated from point A, and the turn-on condition α8+
Current amplification factor α8 at αP-1. This corresponds to effectively reducing α. Therefore, considering the time course of the turn-on phenomenon, the turn-on time is increased, and the power loss during the turn-on transition is increased. That is, with the conventional thyristor structure, it is impossible to hope for any further improvement in surge current withstand capability.

これに加えて実効的α8.α、の減少やターンオン時間
の増加などの程度は製造上における前記縦構造のばらつ
き等によって影響され、これに伴い初期点弧位置をもば
らつかせ、ターンオン後のターンオン面積の拡がり速度
をもばらつかせる。
In addition to this, effective α8. The degree of decrease in α and increase in turn-on time is affected by variations in the vertical structure during manufacturing, etc., which causes variations in the initial ignition position and the speed at which the turn-on area spreads after turn-on. Let me use it.

従って従来構造によっては現在以上の急峻な立上りの電
流サージ耐量をもつ双方向性2端子サイリスクを、歩留
まりよく製造することはできに(い。
Therefore, depending on the conventional structure, it is not possible to manufacture a bidirectional two-terminal circuit with a high yield with a current surge resistance with a steeper rise than the current one.

(発明の目的) 本発明は不純物拡散などの従来の通常の製造手段を用い
て、サージ電流耐量にすぐれた双方向性2端子サイリス
クを歩留まりよく安定に量産しうる手段の提供を目的と
するもである。
(Objective of the Invention) The purpose of the present invention is to provide a means for stably mass-producing a bidirectional two-terminal circuit with excellent surge current resistance with high yield by using conventional manufacturing methods such as impurity diffusion. It is.

(問題点を解決するための本発明の手段)本発明は上記
サージ電流耐量の低下とばらつきの原因がα8とα、の
相対的位置ずれに起因することを解明した結果にもとづ
き着想されたものであって、本発明は電流分布を面構造
的手段によって強制的に変化させ、電流増幅率α8.α
、の位置的分布を第5図のように局限することにより、
α、とα、の最大点の位置ずれ少なくして前記従来技術
の問題点の解決を図ったものである。次に本発明を実施
例によって説明する。
(Means of the present invention for solving the problem) The present invention was conceived based on the result of elucidating that the cause of the decrease and variation in the surge current withstand capacity is due to the relative positional deviation between α8 and α. According to the present invention, the current distribution is forcibly changed by planar structure means, and the current amplification factor α8. α
By localizing the positional distribution of , as shown in Figure 5,
This is an attempt to solve the problems of the prior art by reducing the positional deviation between the maximum points of α and α. Next, the present invention will be explained by examples.

(実施例) 第4図(a)(b)は本発明の一実施例の構成を示す断
面図、および上部金属電極M1.絶縁膜I7の図示を省
略した平面図(第1図、第2図と同一符号部分は同等部
分を示す)であって、本発明の特徴とするところは次の
点にある。
(Embodiment) FIGS. 4(a) and 4(b) are cross-sectional views showing the structure of an embodiment of the present invention, and upper metal electrode M1. This is a plan view in which the insulating film I7 is not shown (the same reference numerals as in FIGS. 1 and 2 indicate the same parts), and the features of the present invention are as follows.

第1図に示した従来のサイリスタにおけるPI+P!層
の重なり幅は、重なり部の全長においてdであるが、本
発明においては第4図中に示すd″の如く、素子の中央
部に重なり幅を局部的に小さくした領域部Cを設けて、
この部分におけるN。
PI+P! in the conventional thyristor shown in FIG. The overlapping width of the layers is d in the total length of the overlapping part, but in the present invention, a region C where the overlapping width is locally reduced is provided in the center of the element as shown in d'' in FIG. ,
N in this part.

Nt層の横方向の距離d−d’ だけ短くしたことを特
徴とするものである。
This is characterized in that the lateral distance of the Nt layer is shortened by dd'.

二のようにすれば第2図(a)のターンオン移行領域で
あるステップ2における電流は、第4図のlIのように
C領域に集中して流れる。その結果CeI域の電流密度
が大となって、同一電流IにおいてC領域の近傍の電流
増幅率α8を極めて太き(する。
2, the current in step 2, which is the turn-on transition region in FIG. 2(a), flows concentratedly in region C as shown in FIG. 4 as indicated by lI. As a result, the current density in the CeI region becomes large, making the current amplification factor α8 near the C region extremely thick for the same current I.

一方接合J4の順バイアス即ちN2層の横方向電圧降下
は、上記のようにCf、p域に電流が集中することから
、P+、Pg層の重なり輻dが小となった分を補って、
PiNi層の境界下に沿ってほぼ等しい値となる。その
結果22層からの正孔の注入により、電流はI2のよう
にほぼ均一に分布し、電流増幅率α、もPiNt層の境
界下に沿ってほぼ等しくなる。このため電流増幅率α2
.αPの位置分布は、第5図に示す横方向距離Xと電流
増幅率の関係図中の実線図示のようになり、(図中の破
線曲線は本発明のCji域をもたないときの電流増幅厚
α8とα、の位置分布である)ターンオン条件を示すα
8+α、はC領域の近傍に強制的に局限されて最大にな
って、等節約に前記第3図により説明したベース幅WN
とW、とを小にしたことに相当する。従ってターンオン
領域における電力損失を少なくして雷サージ電流耐量を
向上できる。また初期点弧位置もC9JI域に強制的に
局限されて点弧極として作用する。このため初期点弧位
置のばらつきを生じにく(なり、歩留まりのよい量産が
可能となる。
On the other hand, the forward bias of the junction J4, that is, the lateral voltage drop of the N2 layer, compensates for the small overlap radiation d of the P+ and Pg layers because the current concentrates in the Cf and p regions as described above.
The values are approximately equal along the bottom of the boundary of the PiNi layer. As a result, due to the injection of holes from the 22nd layer, the current is distributed almost uniformly like I2, and the current amplification factor α is also approximately equal along the bottom of the boundary of the PiNt layer. Therefore, the current amplification factor α2
.. The position distribution of αP is as shown by the solid line in the relationship between the lateral distance X and the current amplification factor shown in FIG. α indicates the turn-on condition (position distribution of amplification thickness α8 and α)
8+α, is forcibly localized to the vicinity of the C area and becomes the maximum, and the base width WN explained in FIG.
This corresponds to making W and smaller. Therefore, power loss in the turn-on region can be reduced and lightning surge current resistance can be improved. Further, the initial firing position is also forcibly localized to the C9JI area, which acts as a firing pole. Therefore, variations in the initial ignition position are less likely to occur, and mass production with high yield is possible.

以上説明した本発明の作用は、PNPNP型双方向性2
端子サイリスタの構造が対称であることから、反対方向
に電流を流した場合も同様に得られる。
The action of the present invention explained above is based on the PNPNP type bidirectional 2
Since the structure of the terminal thyristor is symmetrical, the same results can be obtained when the current is passed in the opposite direction.

従って本発明によれば従来と変わることのない不純物拡
散等の製造手段を用いて、雷サージのような急峻な立上
りをもつサージ電流に対する耐量の大きい双方向性2端
子サイリスタを歩留まりよく製造でき経済的となる。
Therefore, according to the present invention, a bidirectional two-terminal thyristor with high resistance to surge currents with a steep rise such as lightning surges can be manufactured with high yield and economically by using manufacturing methods such as impurity diffusion that are unchanged from conventional manufacturing methods. become a target.

なお以上においてはPNPNP導電型のものについて説
明したが、NPNPN導電型の双方向性2端子サイリス
タ、更にはその一部にPNPNP(NPNPN)構造を
もつ複合サイリスクにも適用して同様な効果を奏するこ
とができる。
In addition, although the PNPNP conductivity type has been described above, the same effect can be achieved by applying it to a bidirectional two-terminal thyristor of the NPNPN conductivity type, or even to a composite thyristor having a PNPNP (NPNPN) structure in a part thereof. be able to.

また以上では説明を判り易くするため模式的構造図によ
って説明したが、素子の信鯨度の確保などのため、例え
ばチャンネルストッパなど通常必要とする手段をとりう
ろことは云うまでもない。
In addition, although the above description has been explained using a schematic structural diagram to make the explanation easier to understand, it goes without saying that normally necessary means such as a channel stopper, for example, may be used to ensure reliability of the element.

(発明の効果) 以上の説明から明らかなように本発明によれば、素子両
面のP (N)層の重なり部に他の重なり部に比べて重
なり距離の短い領域を設ける単なる幾何学的面構造の変
更のみの簡単な手段により、不純物拡散など従来と全(
同じ製造手法を用いて急峻な立上りのサージ電流耐量の
大きい双方向性2端子サイリスタを歩留まりよく製造し
うるすぐれた効果を有する。
(Effects of the Invention) As is clear from the above description, according to the present invention, a mere geometrical surface is provided in which an overlapping region of P (N) layers on both sides of the element has a shorter overlapping distance than other overlapping regions. By simply changing the structure, it is possible to completely eliminate conventional problems such as impurity diffusion.
This method has an excellent effect in that a bidirectional two-terminal thyristor having a large surge current resistance with a steep rise can be manufactured with high yield using the same manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来素子の説明図、第4図、
第5図は本発明の一実施例の説明図である。
Figures 1, 2, and 3 are explanatory diagrams of conventional elements; Figure 4;
FIG. 5 is an explanatory diagram of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] PNPNP(NPNPPN)型双方向性2端子サイリス
タにおいて、両面のP(N)層の重なり部に、その重な
り距離が他の部分に比較して相対的に小さい領域を設け
たことを特徴とする双方向性2端子サイリスタ。
A PNPNP (NPNPPN) type bidirectional two-terminal thyristor, characterized in that an area where the P(N) layers on both sides overlap is provided with a region where the overlap distance is relatively small compared to other parts. Tropical two-terminal thyristor.
JP1295429A 1989-11-14 1989-11-14 Bidirectional 2-terminal thyristor Expired - Fee Related JPH0685435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295429A JPH0685435B2 (en) 1989-11-14 1989-11-14 Bidirectional 2-terminal thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295429A JPH0685435B2 (en) 1989-11-14 1989-11-14 Bidirectional 2-terminal thyristor

Publications (2)

Publication Number Publication Date
JPH03155674A true JPH03155674A (en) 1991-07-03
JPH0685435B2 JPH0685435B2 (en) 1994-10-26

Family

ID=17820489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295429A Expired - Fee Related JPH0685435B2 (en) 1989-11-14 1989-11-14 Bidirectional 2-terminal thyristor

Country Status (1)

Country Link
JP (1) JPH0685435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569609A (en) * 1993-09-07 1996-10-29 Sgs-Thomson Microelectronics S.A. Bidirectional Shockley diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201359A (en) * 1982-05-19 1983-11-24 Nec Corp Bidirectional semiconductor device
JPS59132167A (en) * 1983-01-18 1984-07-30 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201359A (en) * 1982-05-19 1983-11-24 Nec Corp Bidirectional semiconductor device
JPS59132167A (en) * 1983-01-18 1984-07-30 Toshiba Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569609A (en) * 1993-09-07 1996-10-29 Sgs-Thomson Microelectronics S.A. Bidirectional Shockley diode

Also Published As

Publication number Publication date
JPH0685435B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
KR101679108B1 (en) Phase control thyristor with improved pattern of local emitter shorts dots
KR20070084339A (en) Passivation structure with voltage equalizing loops
JPS6362905B2 (en)
JPS58219763A (en) 2-terminal overcurrent protecting device
JP2706120B2 (en) GTO power thyristor
JPS6016753B2 (en) Semiconductor switching device and its control method
JPH03155674A (en) Bidirectional 2-pole thyristor
JPH077837B2 (en) Surge protection device
JPH0485963A (en) Semiconductor protective element
JPH0677472A (en) Surge protective element
US8884359B2 (en) Field-effect transistor with self-limited current
JPH03155675A (en) Bidirectional 2-pole thyristor
US5486709A (en) Surge protection device
JP2802970B2 (en) Planar type two-terminal bidirectional thyristor
US6521919B2 (en) Semiconductor device of reduced thermal resistance and increased operating area
JP5405029B2 (en) TRIAC
US3783350A (en) Thyristor device
JPH0133951B2 (en)
US3979767A (en) Multilayer P-N junction semiconductor switching device having a low resistance path across said P-N junction
JPH03239367A (en) Bidirectional 2-terminal thyristor
CN113270398B (en) Two-way bidirectional surge protector and manufacturing method thereof
JP5371164B2 (en) Bidirectional two-terminal thyristor
JPH09232598A (en) Surge protection device and manufacture thereof
JPH0777268B2 (en) Surge absorber
JP5777761B2 (en) Thyristor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees