JPH0677472A - Surge protective element - Google Patents

Surge protective element

Info

Publication number
JPH0677472A
JPH0677472A JP3335859A JP33585991A JPH0677472A JP H0677472 A JPH0677472 A JP H0677472A JP 3335859 A JP3335859 A JP 3335859A JP 33585991 A JP33585991 A JP 33585991A JP H0677472 A JPH0677472 A JP H0677472A
Authority
JP
Japan
Prior art keywords
exposed
base region
region
base
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3335859A
Other languages
Japanese (ja)
Other versions
JP3142617B2 (en
Inventor
Koichi Ota
鋼一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP03335859A priority Critical patent/JP3142617B2/en
Priority to US07/946,092 priority patent/US5352905A/en
Publication of JPH0677472A publication Critical patent/JPH0677472A/en
Application granted granted Critical
Publication of JP3142617B2 publication Critical patent/JP3142617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes

Abstract

PURPOSE:To obtain a thyristor-type surge protective element wherein its surge operating performance and its surge breaking performance are both excellent and its manufacture is easy. CONSTITUTION:An N1 base and a P1 emitter as well as an N2 base and a P2 emitter are formed respectively on both faces of, e.g. a P-type semiconductor common substrate, and the N1 and N2 bases are partly exposed on surfaces in a plurality of parts so as to be passed through the P1 and P2 emitters. The N1 and N2 bases which have been exposed on both faces are separated and arranged in such a way that no overlapped part exists, the P1 and P2 emitters and the exposed N1 and N2 bases are constituted in such a way that they are short-circuited on the individual faces and that they form respectively one electrode, and the relation-ship of Wp/2<=D<=2W between the distance D between the exposed N1 and N2 bases and the thickness Wp of the P-type semiconductor common substrate as well as of Wp<=phi<=4Wp between the size phi of the exposed N1 and N2 bases and the Wp is established. Thereby, it is possible to achieve the purpose of the title element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遮断性能とサージ動作性
能にすぐれた製造容易なサイリスタ型のサージ防護素子
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thyristor type surge protection element which has excellent breaking performance and surge operation performance and is easy to manufacture.

【0002】[0002]

【従来の技術】図6(a)に示すPNPNP層からなる
基本構造をもち、図6(b)に示す電流電圧特性(一方
向のみを示す)をもつ両方向のサイリスタ型サージ防護
素子は、小型安価であるなどから通信回路などの弱電回
路のサージ防護用としてよく使用されている。この防護
素子は基本動作回路を示す図7のように、被保護回路H
の両端間に接続して使用され、例えば図6(b)に示す
サージ防護素子ZのVBOを越える電圧値をもつサージS
が線路に侵入したとき、直ちにオンして被保護回路Hの
保護を行うものである。この場合サージ防護素子Zはサ
ージ電流の通過後、電源電圧E0 により流される電流を
直ちに遮断して、サージ侵入前の状態に戻ることが求め
られる。そのためには公知のように防護素子Zの保持電
流IH が IH >E0 /R ただし R:回路インピーダンス E0 :電源電圧 の関係を満足することを要し、良好な遮断性能を得るた
めには保持電流IH が大であることが求められる。とこ
ろで保持電流IH は従来から知られているように、例え
ば図6(a)により説明したサイリスタ型サージ防護素
子Zの各領域の構造、即ち各領域の不純物濃度や厚みな
どの選定により大にすることが可能である。しかし一方
この方法による保持電流IH の増大は、同時にサージ電
流容量を小にする結果をもたらし、両者はトレードオフ
の関係となる。従って両者を同時に満足させることは必
ずしも容易ではなく、しかも不純物濃度の精密な制御な
どを必要とするため製造も難しい。そこでその対策とし
て図8(a)(b)に示す電極を除いた上面図と、その
A−A’矢視断面図の構成をもつ素子が提案された。こ
の素子は例えばP半導体共通基板の一面に設けたN1
ース領域が、複数箇所においてP1 エミッタ領域を突き
抜けて表面に露呈し、N2 ベース領域が複数箇所におい
てP2 エミッタ領域を突き抜けて表面に露呈すると同時
に、前記露呈N1 ベース領域S1 とP1 エミッタ領域が
金属電極T1 により短絡され、前記露呈N2 ベース領域
2 がP2 エミッタ領域と金属電極T2 により短絡され
た構造をもつサージ防護素子である。
2. Description of the Related Art A bidirectional thyristor type surge protection device having a basic structure composed of a PNPNP layer shown in FIG. 6A and having a current-voltage characteristic (showing only one direction) shown in FIG. Because of its low cost, it is often used for surge protection of weak electric circuits such as communication circuits. This protection element is a protected circuit H as shown in FIG.
Is used by connecting between both ends of the surge protection device Z, for example, a surge S having a voltage value exceeding V BO of the surge protection element Z shown in FIG.
When it enters the line, it is turned on immediately to protect the protected circuit H. In this case, the surge protection element Z is required to immediately cut off the current passed by the power supply voltage E 0 after passing the surge current and return to the state before the surge intrusion. For that purpose, as is well known, the holding current I H of the protective element Z needs to satisfy the relation of I H > E 0 / R, where R: circuit impedance E 0 : power supply voltage, and in order to obtain a good breaking performance. Is required to have a large holding current I H. By the way, as is known in the art, the holding current I H is largely set by, for example, selecting the structure of each region of the thyristor type surge protection device Z described with reference to FIG. 6A, that is, the impurity concentration and thickness of each region. It is possible to On the other hand, however, the increase of the holding current I H by this method also brings about a result of reducing the surge current capacity at the same time, and the two are in a trade-off relationship. Therefore, it is not always easy to satisfy both of them, and moreover, manufacturing is difficult because precise control of impurity concentration is required. Therefore, as a countermeasure against this, an element having a top view excluding the electrodes shown in FIGS. 8A and 8B and a cross-sectional view taken along the line AA ′ of the element has been proposed. In this device, for example, the N 1 base region provided on one surface of the P semiconductor common substrate penetrates the P 1 emitter region at a plurality of positions and is exposed on the surface, and the N 2 base region penetrates a P 2 emitter region at a plurality of positions to the surface. At the same time, the exposed N 1 base region S 1 and the P 1 emitter region are short-circuited by the metal electrode T 1 , and the exposed N 2 base region S 2 is short-circuited by the P 2 emitter region and the metal electrode T 2. It is a surge protection device with.

【0003】[0003]

【発明が解決しようとする課題】この提案されたサージ
防護素子の構造によれば、以下に記載する動作説明から
明らかなように、露呈N1 ,N2 ベース領域S1 ,S2
を設けることのない従来のサージ防護素子に比べて、露
呈N1 ,N2 ベース領域S1 ,S2 の数、配置等によっ
て保持電流IH を増大させることができるので製造も容
易である。しかしその反面保持電流IH を増大させるた
め、例えば露呈N1 ベース領域の数や面積を増大させる
と、これに比例して図6(b)に示すスイッチング電流
S を増大させる。従って遮断性能を向上できても、サ
ージに対する動作性能を低下させる欠点がある。即ちこ
の提案されたサージ防護素子の電極T1 からT2 方向
(図8(b)中矢印参照)のタンオン時、印加電圧が接
合J2 の耐圧VBOを越えると、図8(b)のように電流
0 ,I1 ,I2 等の成分からなる電流Iが流れる。こ
のうちI1成分とN2 ベース領域の実効横方向抵抗RN
による電圧降下が接合J1 を順バイアスし、このバイア
ス電圧が接合J1 の立上り電圧を越えると、始めて接合
1から正孔の注入が起こって、電極T1 ,T2 間をタ
ンオフするに至る。このため露呈N1 ベース領域S1
ない構造のものに比べて、スイッチング電流IS を増大
させる。次にオン状態では露呈N1 ベース領域S1 の直
下においては導通せず、P1 エミッタ領域の直下の部分
においてのみ導通して、接合J1 からの正孔の注入と接
合J3 からの電子の注入によりオン状態が保持される。
またオン状態が低下してタンオフする過程では、接合J
1 より注入された正孔は露呈N1 ベース領域S1におい
て再結合する。このため実効注入効率を下げ、露呈N1
ベース領域S1 のない構造のものに比べて保持IH を増
大させる。
According to the structure of the proposed surge protection element, as is apparent from the operation description given below, the exposed N 1 , N 2 base regions S 1 , S 2 are exposed.
Since the holding current I H can be increased depending on the number and arrangement of the exposed N 1 and N 2 base regions S 1 and S 2 as compared with a conventional surge protection element that does not include the above, it is easy to manufacture. However, in order to increase the holding current I H , for example, if the number or area of the exposed N 1 base regions is increased, the switching current I S shown in FIG. 6B is increased in proportion to this. Therefore, even if the breaking performance can be improved, there is a drawback that the operating performance against a surge is lowered. That is, when the applied voltage exceeds the withstand voltage V BO of the junction J 2 at the time of tan-on in the direction from the electrode T 1 to the electrode T 2 of the proposed surge protection element (see the arrow in FIG. Thus, the current I composed of the components such as the currents I 0 , I 1 , and I 2 flows. Of these, the effective lateral resistance R N of the I 1 component and the N 2 base region
Voltage drop due to the forward biasing the junction J 1, when the bias voltage exceeds the threshold voltage of the junction J 1, the first time by the injection of holes going from the junction J 1, between the electrode T 1, T 2 to Tan'ofu Reach Therefore, the switching current I S is increased as compared with the structure having no exposed N 1 base region S 1 . Next, in the ON state, conduction does not occur immediately under the exposed N 1 base region S 1 , but conduction occurs only under the P 1 emitter region, and injection of holes from the junction J 1 and electrons from the junction J 3 occur. The ON state is maintained by the injection of.
Also, in the process of turning off due to the decrease of the on-state, the junction J
The holes injected from 1 are recombined in the exposed N 1 base region S 1 . Therefore, the effective injection efficiency is reduced, and the exposure N 1
The retention I H is increased as compared to the structure having no base region S 1 .

【0004】以上の動作機構によるスイッチング電流I
S の増大と、保持電流IH の増大効果は、図8(b)の
電流I1 の流路に沿ったN2 ベース領域の実効横方向抵
抗RN が小さい程大となる。従って同一チップ面積では
露呈N1 ベース領域S1 間の距離が小となるから、露呈
1 ベース領域S1 の数が多い程大となることは明らか
である。しかしながら図8(b)に示したN1 ベース領
域からN2 ベース領域に直接流れる電流成分I0 は、タ
ンオン動作に寄与しない無効電流として流れ、付加電流
としてスイッチング電流IS のみを増加させることにな
る。なお図8(b)の電流成分I2 も無効電流である
が、これは図6(a)に示した従来のものと同じである
ので説明を省略する。即ち以上から図8に示した露呈N
1 ベース領域S1 を設けた構造では、Sの数を多くする
程保持電流IH の増大効果は大であるが、その反面露呈
1 ベース領域S1 の数と面積に比例して不必要な電流
0 が流れて、スイッチング電流ISの増大を招く結果
となるため、サージ動作性能を低下させることになる。
更にサイリスタ型素子のタンオンにおいては、最もタン
オンの容易な一点において先ずタンオンし、そののちタ
ンオンした領域が全面積、例えば図8のP1 領域に拡が
る過程をとるのが通常である。従ってオン面積の増大速
度がサージ電流の増加速度より遅いと、タンオン過程で
電流密度が過大となり、これが限度をこすと素子を破壊
することになる。このため電流の立上りの速いサージに
対しては防護が不充分となる。これを防ぐためには電流
の立上りの速いサージの場合にも、少なくともその電流
の増大に対応して円滑にオン面積が増大することが必要
である。しかし保持電流IH の増大を図るため、図8の
露呈N1 ベース領域S1 の数と増大させるとその相互距
離も小さくなるので、一点から始まったオンが全面に拡
がるのを妨害する。このためこれによってもサージ電流
容量を低下させて、サージ動作性能を低下させる。
The switching current I by the above operating mechanism
The effect of increasing S and increasing the holding current I H is greater as the effective lateral resistance R N of the N 2 base region along the flow path of the current I 1 in FIG. 8B is smaller. Therefore, in the same chip area, the distance between the exposed N 1 base regions S 1 becomes small, and it is obvious that the larger the number of exposed N 1 base regions S 1 , the larger. However, the current component I 0 directly flowing from the N 1 base region to the N 2 base region shown in FIG. 8B flows as a reactive current that does not contribute to the tan-on operation, and only the switching current I S is increased as an additional current. Become. The current component I 2 in FIG. 8 (b) is also a reactive current, but this is the same as the conventional one shown in FIG. 6 (a), and therefore its explanation is omitted. That is, from the above, the exposure N shown in FIG.
In the structure in which the 1 base region S 1 is provided, the effect of increasing the holding current I H is greater as the number of S is increased, but on the other hand, the exposure is unnecessary in proportion to the number and area of the N 1 base region S 1. Current I 0 flows, resulting in an increase in the switching current I S , which results in deterioration of the surge operation performance.
Further, in the tan-on of the thyristor type element, it is usual to first tan-on at a point where the tan-on is the easiest, and then the tan-on region spreads over the entire area, for example, the P 1 region in FIG. Therefore, if the increasing rate of the on-area is slower than the increasing rate of the surge current, the current density becomes excessive in the tan-on process, and if this exceeds the limit, the element will be destroyed. For this reason, protection is insufficient for surges with a rapid rise of current. In order to prevent this, even in the case of a surge with a rapid rise of current, it is necessary to smoothly increase the on-area in response to the increase in current. However, if the number of exposed N 1 base regions S 1 in FIG. 8 is increased in order to increase the holding current I H , the mutual distance also becomes smaller, so that the ON starting from one point is prevented from spreading to the entire surface. Therefore, this also reduces the surge current capacity and the surge operation performance.

【0005】[0005]

【発明の目的】本発明は前記した従来構造の問題点を一
挙に解決しうるサージ防護素子、即ちサージ動作性能を
犠牲にすることなく遮断性能を向上させうる製造容易な
サージ防護素子の提示にある。
It is an object of the present invention to provide a surge protection element which can solve the above-mentioned problems of the conventional structure all at once, that is, a surge protection element which can improve the interruption performance without sacrificing the surge operation performance. is there.

【0006】[0006]

【課題を解決するための本発明の手段】本発明の目的は
次の手段により達成される。即ち図1に示す本発明の基
本構造を示す実施例図のように、P半導体共通基板の両
面にそれぞれN1 ベース領域とP1 エミッタ領域、N2
ベース領域とP2 エミッタ領域とを設けると共に、前記
1 ベース領域およびN2 ベース領域の一部が互いに重
ならない交互配置のもとに複数箇所において、それぞれ
前記P1 およびP2 エミッタ領域を突き抜けて表面に露
呈する、露呈N1 およびN2 ベース領域S1 およびS2
を形成させ、この露呈N1 ベース領域S1 とP1 エミッ
タ領域、および露呈N2 ベース領域S1 とP2 エミッタ
領域とを、それぞれ各面において短絡してそれぞれ一つ
の電極T1,T2 をなすように構成する。また図1中に
示す両面の露呈N1 ベース領域S1と露呈N2 ベース領
域S2 間の最短距離Dと、前記P半導体共通基板の中央
部の厚さWP との間 WP /2≦D≦2WP をもたせ、また更に露呈N1 およびN2 ベース領域
1 ,S2 の最大幅φとP半導体共通基板の厚さWP
の間に WP ≦φ≦4WP の関係をもたせることにより達成される。
The objects of the present invention are achieved by the following means. That is, as shown in the embodiment of the present invention shown in FIG. 1, the N 1 base region, the P 1 emitter region and the N 2 base region are formed on both sides of the P semiconductor common substrate.
A base region and a P 2 emitter region are provided, and the N 1 base region and the N 2 base region penetrate through the P 1 and P 2 emitter regions, respectively, at a plurality of locations under an alternating arrangement in which a part of the N 1 base region and the N 2 base region do not overlap each other. Exposed N 1 and N 2 base regions S 1 and S 2
And the exposed N 1 base region S 1 and P 1 emitter region and the exposed N 2 base region S 1 and P 2 emitter region are short-circuited on each surface to form one electrode T 1 , T 2 respectively. It is configured to Further, between the shortest distance D between the exposed N 1 base region S 1 and the exposed N 2 base region S 2 shown in FIG. 1 and the thickness W P of the central portion of the P semiconductor common substrate, W P / 2 ≤D≤2W P , and further, the relationship of W P ≤φ≤4 W P between the maximum width φ of the exposed N 1 and N 2 base regions S 1 and S 2 and the thickness W P of the P semiconductor common substrate. It is achieved by having.

【0007】[0007]

【作用】以上からわかるように本発明は、両面の露呈N
1 およびN2 ベース領域S1 ,S2 を有効面積とする逆
向きの単位サイリスタが中央のP半導体共通基板、即ち
Pベース領域を共通として交互に配置された構造であっ
て、次のように動作する。電極T1 →T2 方向における
オン状態では、露呈N2 ベース領域S2 の部分が導通し
ている。電流が減少してタンオフに至る動作における露
呈N1 ベース領域S1 の作用は、図8(a)(b)を用
いて前記した従来素子の露呈N1 ベース領域S1 のそれ
と同じである。従って本発明によれば同一チップ面積の
場合、露呈N1 およびN2 ベース領域S1 およびS2
数を増し、S1 とS2 間の距離Dを小さくすることによ
り、保持電流IH を増大させて遮断性能を向上させるこ
とができる。次にタンオン過程では、図1に示すように
露呈N1 ベース領域S1 に対向する部分には、P2 エミ
ッタ領域が位置している。従って本発明の構造では、図
8によって前記した従来の構造のものと異なり、無効電
流成分I0 が流れるのが阻止される。このためI0 に起
因するスイッチング電流IS の増大によるサージ動作性
能の低下を生ずることがないもので、これは電極T2
1 方向の動作時において同じである。また本発明では
露呈N2 ベース領域S2 に対応する部分が、各々一つの
単位サイリスタを形成している。従ってS2 の面積を小
(同一チップ面積で数を大)にすれば、この中でのオン
の拡がり速度の問題を解決することができる。このため
前記タンオン時の電流密度の増大による電流密度の低下
の問題も解決でき、更に本発明では従来の構造と異な
り、単位サイリスタがチップ全面に分散された形となる
ため、オン時の発熱が分散される。従ってこれによって
も電流容量の増大を図りうるもので、以上については電
極T2 →T1 方向の動作においても同様である。従って
本発明によれば従来の構造のものに比べて、サージ動作
性能と遮断性能の共にすぐれた製造容易なサージ防護素
子を実現できる。
As can be seen from the above, the present invention is applicable to both sides of the exposure N
1 and N 2 base regions S 1 and S 2 are effective areas, and unitary thyristors in opposite directions are arranged alternately with the central P semiconductor common substrate, that is, the P base regions in common, as follows. Operate. In the ON state in the direction of the electrode T 1 → T 2 , the exposed N 2 base region S 2 is conductive. Action of exposed N 1 base region S 1 in operation current reaches the Tan'ofu decreases is the same as that of exposed N 1 base region S 1 of the prior art device described above with reference to FIG. 8 (a) (b). Therefore, according to the present invention, for the same chip area, the holding current I H can be reduced by increasing the number of exposed N 1 and N 2 base regions S 1 and S 2 and reducing the distance D between S 1 and S 2. It can be increased to improve the blocking performance. Next, in the tan-on process, as shown in FIG. 1, the P 2 emitter region is located in the portion facing the exposed N 1 base region S 1 . Therefore, in the structure of the present invention, unlike the conventional structure described above with reference to FIG. 8, the reactive current component I 0 is prevented from flowing. Therefore, the surge operation performance is not deteriorated due to the increase of the switching current I S due to I 0, which is caused by the electrode T 2
The same is true during operation in the T 1 direction. Further, in the present invention, the portions corresponding to the exposed N 2 base region S 2 each form one unit thyristor. Therefore, if the area of S 2 is made small (the number is large with the same chip area), the problem of the ON spread speed in this can be solved. Therefore, the problem of a decrease in current density due to an increase in current density at the time of tan-on can be solved. Furthermore, unlike the conventional structure, the unit thyristor is distributed over the entire surface of the chip, and therefore heat generation at the time of on-state is generated. Distributed. Therefore, this can also increase the current capacity, and the same applies to the above in the operation in the direction of the electrode T 2 → T 1 . Therefore, according to the present invention, it is possible to realize a surge protection element which is superior in both surge operation performance and interruption performance and easy to manufacture as compared with the conventional structure.

【0008】以上に加えて本発明においては、露呈N1
ベース領域S1 と露呈N2 ベース領域は、それぞれDの
間隔をもつように設けられ、しかも前記したように露呈
1ベース領域S1 はP2 エミッタ領域と対面し、露呈
2 ベース領域S2 はP1 エミッタ領域と対面した構造
をもつ、従って以下に説明するように距離Dを、製造技
術上の加工精度などと関連のもとに適切に選定すること
により、サージ動作性能を更に向上させることができ、
また露呈ベース領域S1 とS2 の大きさφを製造技術上
の加工精度などと関連させて適切に選定することによ
り、タンオン過程におけるオン面積の拡がり速度を更に
向上させて電流容量を向上できる。
In addition to the above, in the present invention, the exposure N 1
The base region S 1 and the exposed N 2 base region are provided so as to have an interval of D, respectively, and as described above, the exposed N 1 base region S 1 faces the P 2 emitter region and is exposed to the exposed N 2 base region S. 2 has a structure facing the P 1 emitter region. Therefore, as described below, by properly selecting the distance D in relation to the processing accuracy in manufacturing technology, surge operation performance is further improved. Can be
Further, by appropriately selecting the size φ of the exposed base regions S 1 and S 2 in relation to the processing accuracy in manufacturing technology, etc., it is possible to further improve the on-area spreading speed in the tan-on process and improve the current capacity. .

【0009】即ちオン時本発明の構造においては、電流
2 が露呈ベース領域S1 からS2へと、P半導体共通
基板を斜めに横切って流れるが、これは接合J1 の順バ
イアスには無効な電流であり、スイッチング電流IS
増大させる一因となっている。従って電流I2 を小とす
ることによりサージ動作性能を向上しうる。この電流I
2 は図1(c)中における、電流の流路を考えることに
より理解されるように、間隔DとWP に関係し、WP
例えば一定とした場合Dが小になるに伴い急激に大にな
り、Dが負となると図8で示した従来構造における無効
電流成分I0 と同じになる。一方図1において露呈ベー
ス領域S1 ,S2 の面積を一定としたとき距離Dを大に
すると、S1 ,S2 が数が減って露呈ベース領域の総面
積、従って電流容量の減少を招くことになる。このため
Dをあまり大にすることは好ましくない。従って以上か
ら距離Dには厚さWP に対して最適な範囲があり、Dを
露呈ベース領域の形状や配置、各層の構造、例えば不純
物濃度や厚さとの関連、製造技術上の加工精度などを考
慮して最適に選定することにより、サージ動作性能を更
に向上できる。実験によれば最適範囲として WP /2≦D≦2WP ………(1) とするのが適当であるとする結果が得られた。
That is, in the structure of the present invention when turned on, the current I 2 flows from the exposed base region S 1 to S 2 diagonally across the P semiconductor common substrate, which is not the forward bias of the junction J 1. This is an invalid current, which is one of the causes of increasing the switching current I S. Therefore, the surge operation performance can be improved by reducing the current I 2 . This current I
2 is related to the distance D and W P as can be understood by considering the flow path of the current in FIG. 1 (c), and when W P is constant, for example, as D becomes smaller, When it becomes large and D becomes negative, it becomes the same as the reactive current component I 0 in the conventional structure shown in FIG. On the other hand, in FIG. 1, when the distance D is increased when the area of the exposed base regions S 1 and S 2 is constant, the number of S 1 and S 2 is reduced and the total area of the exposed base regions, and thus the current capacity, is reduced. It will be. Therefore, it is not preferable to make D too large. Therefore, from the above, the distance D has an optimum range for the thickness W P , and D is exposed. The shape and arrangement of the base region, the structure of each layer, for example, the relation with the impurity concentration and the thickness, the processing accuracy in manufacturing technology, etc. The surge operation performance can be further improved by optimally selecting in consideration of the above. According to the experiment, the optimum range is set as W P / 2 ≦ D ≦ 2W P (1).

【0010】次にタンオン過程におけるオン面積の拡が
りに関係して、露呈ベース領域S1,S2 の大きさφに
ついて説明する。図2は本発明において電流I1 が増加
して接合J1 を順バイアスし、タンオンが始まる過程を
示す部分拡大図である。電極T1 →T2 方向の動作にお
いては順バイアス露呈N2 ベース領域S2 の真上の中央
部において最大となる。従ってこの部分で先ず正孔の注
入ih が起こり、接合J3 からの電子注入ie と相まっ
て、この部分からタンオンが始まって露呈N2 ベース領
域全面に拡がることになる。この拡がり現象は主として
注入キャリア(電子と正孔)の縦および横方向の拡散に
よって定まる。このため露呈N2 ベース領域S2 の大き
さφは、P半導体共通基板の厚さWP に依存し、φ/2
がWP 程度であれば動作時間は縦方向のキャリア移動時
間のみによってほぼ定まり、これを越えるとオンが全面
に拡がるまでに要する時間は大となる。従って電流密度
が過大となるのを招かないためには、電流の立上り速度
が速い用途(商用商波交流のような遅いものでは殆ど問
題はない)に対しては、露呈N2 ベース領域S2 の大き
さについて上限を設けることが有効であり、これは電極
2 →T1 方向の動作についても全く同様に云える。一
方露呈ベース領域S1 ,S2 間の距離Dが前記(1)式
により制限された条件のもとで、露呈ベース領域S1
2 の大きさが小さいと、同一チップ面積では電流容量
を定めるS1 ,S2 の総面積が小さくなる。従ってさこ
の面から露呈ベース領域S1 とS2 の面積の下限に制限
を受けざるを得ない。従ってφについても電流の立上り
の速い用途に対してはP半導体共通基板の厚さWP に関
して最適範囲があり、これを満足させることにより更に
電流容量を増大させることができる。実験によれば最適
範囲は、露呈ベース領域S1 ,S2 の形状や配置、各層
の構造例えば不純物濃度や厚さ、製造上の加工精度など
の条件、露呈ベース領域の距離Dなどを加味して WP ≦φ≦4WP ……………(2) とするのが適当であるとする結果が得られた。
Next, the size φ of the exposed base regions S 1 and S 2 will be described with reference to the spread of the on-area in the tan-on process. FIG. 2 is a partially enlarged view showing a process in which the current I 1 increases and the junction J 1 is forward biased to start tanning in the present invention. In the operation in the direction of the electrode T 1 → T 2 , the forward bias exposure N 2 becomes maximum in the central portion just above the base region S 2 . Accordingly occur injection i h of first holes in this section, together with an electron injection i e from the junction J 3, so that the single note from this portion spreads exposed N 2 base entire region starting. This spreading phenomenon is mainly determined by vertical and horizontal diffusion of injected carriers (electrons and holes). Therefore, the size φ of the exposed N 2 base region S 2 depends on the thickness W P of the P semiconductor common substrate, and φ / 2
Is approximately W P , the operation time is almost determined only by the carrier movement time in the vertical direction, and if it exceeds this, the time required for the ON to spread to the entire surface becomes long. Therefore, in order to prevent the current density from becoming excessively high, the exposure N 2 base region S 2 is used for applications in which the current rising speed is fast (a slow one such as commercial commercial wave AC causes almost no problem). It is effective to set an upper limit with respect to the magnitude of the above, which can be said to be exactly the same for the operation in the direction of the electrode T 2 → T 1 . On the other hand, if the size of the exposed base regions S 1 and S 2 is small under the condition that the distance D between the exposed base regions S 1 and S 2 is limited by the equation (1), the current capacity is the same in the same chip area. The total area of S 1 and S 2 that determines Therefore, from this point of view, there is no choice but to be limited by the lower limit of the area of the exposed base regions S 1 and S 2 . Therefore, as for φ, there is an optimum range for the thickness W P of the P semiconductor common substrate for applications in which the current rises quickly, and by satisfying this range, the current capacity can be further increased. According to the experiment, the optimum range takes into consideration the shape and arrangement of the exposed base regions S 1 and S 2 , the structure of each layer such as the concentration and thickness of impurities, the conditions such as processing accuracy in manufacturing, and the distance D of the exposed base region. As a result, it was found that it is appropriate to set W P ≦ φ ≦ 4 W P (2).

【0011】[0011]

【実施例】以上本発明について説明したが、例えば一方
向極性の侵入サージが殆どである回路の保護のため、例
えば図3,図4の変形構成をとることができる。また2
つの線路と接地間にサージが同時に侵入したときの保護
をも確実に行えるようにするため、図5のように本発明
の2箇の素子を複合した3端子構成とすることもでき
る。次にこれらについて説明する。図3((a)図は電
極を除いた上面図、(b)図はそのA−A’部矢視断面
図)の例は、上下面の露呈N1 ,N2 ベース領域S1
2 の面積をS2 >Sとなるように異ならせる。そして
電極T2 →T1 方向の電流容量に比べてT1 →T2方向
の電流容量が大となるようにして、同一チップ面積のも
とに一方向の電流容量を犠牲にして他方向の電流容量を
増大させたもので、S1 ,S2 の面積が異なるほかはW
P /2≦D≦2WP の条件を含めて、図1に示したもの
と本質的に同じである。次に図4((a)図は電極を除
いた上面図、(b)図はそのA−A’部矢視断面図)の
例は図3の例と同様に一方向の電流容量を他方向の電流
容量に比べ大としたもので、この例では露呈N2 ベース
領域S2 を連続した一つの領域としている点が異なるの
みであり、実質的な動作,作用,効果については変わる
ものはない。また更に図5((a)図は電極を除いた上
面図、(b)図はそのA−A’部矢視断面図、(c)図
は基本保護回路図)の例は、本発明を3端子複合素子に
適用したもので、サージ電圧が図(c)のように、線路
1 と接地G間に印加された場合には、電極T1 −T3
間が動作し、線路L2 と接地G間に印加された場合に
は、電極T2 −T3 間が動作するようにする(サージの
極性が逆の場合も同様である)。またPベース領域とN
2 ベース領域を共通として、電極T1 −T3 間が動作し
たときこれに縦続して電極T2 −T3 間が動作し、電極
2 −T3 間が動作したとき電極T1 −T3 間が縦続動
作するようにして、接地Gに対して線路L1 とL2 に同
時に正逆サージが侵入したときにも、時間差なくT1
3 間およびT2 −T3 が同時に動作して、線路L1
2 間に横サージを生じないようにし、これによる被防
護回路Hの損傷などを招かないようにしたものである。
なお以上における説明では、露呈ベース領域S1 ,S2
の形状を円形としているが、これは本発明の本質ではな
く、本発明の範囲内において種々の形状から考えられ
る。またS1 ,S2 との配置についても同様である。こ
の場合露呈ベース領域の露呈形状が円形以外の場合に
は、距離Dについては最短距離、露呈ベース領域S1
2 の大きさφについては最大径を考えればよい。また
以上においては伝導型がP1 1 PN2 2 型である場
合について説明したが、逆の伝導型であるN1 1 NP
2 2 としても、本発明が同様に成立することは云うま
でもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been described above. For example, in order to protect a circuit in which a unidirectional polarity intrusion surge is mostly present, for example, modified configurations shown in FIGS. 3 and 4 can be adopted. Again 2
In order to ensure protection when surges simultaneously enter between one line and the ground, a three-terminal configuration in which two elements of the present invention are combined as shown in FIG. 5 can be used. Next, these will be described. 3 ((a) is a top view without electrodes, (b) is a sectional view taken along the line AA 'in FIG. 3), the upper and lower surfaces are exposed N 1 , N 2 base regions S 1 ,
The area of S 2 made different so as to be S 2> S. Then, the current capacity in the T 1 → T 2 direction is set to be larger than that in the electrode T 2 → T 1 direction, and the current capacity in one direction is sacrificed in the same chip area while the current capacity in the other direction is sacrificed. The current capacity is increased, and W is different except that the areas of S 1 and S 2 are different.
It is essentially the same as that shown in FIG. 1 including the condition of P / 2 ≦ D ≦ 2W P. Next, the example of FIG. 4 (FIG. 4A is a top view without electrodes, FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. 4B) shows the same unidirectional current capacity as the example of FIG. The current N is larger than the current capacity in the direction, and in this example, the exposed N 2 base region S 2 is a single continuous region. The only difference is the actual operation, action, and effect. Absent. Further, the example of FIG. 5 (FIG. 5A is a top view without electrodes, FIG. 5B is a sectional view taken along the line AA ′ in FIG. 5C, and FIG. 5C is a basic protection circuit diagram) show the present invention. 3 which was applied to a terminal composite element, such as the surge voltage is FIG (c), when applied with the line L 1 and the ground G, the electrode T 1 -T 3
When the voltage is applied between the line L 2 and the ground G, the electrodes T 2 and T 3 are operated (the same applies when the polarity of the surge is opposite). In addition, P base area and N
As a common two base regions, the electrode T 2 -T 3 between operates by cascade thereto when between electrodes T 1 -T 3 is operated, the electrode T 1 -T when between electrodes T 2 -T 3 is operated Even if the forward and reverse surges simultaneously enter the lines L 1 and L 2 with respect to the ground G by cascading between the three, T 1
Between T 3 and T 2 −T 3 operate simultaneously, and the lines L 1 ,
A lateral surge is not generated between L 2 and the protected circuit H is not damaged by this.
In the above description, the exposed base regions S 1 , S 2
Although the shape is circular, this is not the essence of the present invention, and various shapes can be considered within the scope of the present invention. The same applies to the arrangement of S 1 and S 2 . In this case, when the exposed shape of the exposed base region is other than circular, the distance D is the shortest distance, the exposed base region S 1 ,
Regarding the size φ of S 2, the maximum diameter may be considered. Further, although the case where the conductivity type is the P 1 N 1 PN 2 P 2 type has been described above, the opposite conductivity type is N 1 P 1 NP.
It goes without saying that the present invention is similarly applicable to 2 N 2 .

【0012】[0012]

【発明の効果】以上から明らかなように本発明によれ
ば、サージ動作性能と遮断性能にすぐれ、しかも雷サー
ジなどの立上りの速いサージに対しても十分な保護を行
いうるすぐれたサージ防護素子を提供しうるもので、通
信回路などの雷サージ防護などこの種サージ防護にすぐ
れた効果を奏する。
As is apparent from the above, according to the present invention, an excellent surge protection element having excellent surge operation performance and cutoff performance, and being capable of sufficiently protecting against surges such as lightning surges having a fast rising edge. It provides excellent effects for this type of surge protection such as protection against lightning surges in communication circuits and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造を示す実施例の説明図であ
る。
FIG. 1 is an explanatory view of an embodiment showing the basic structure of the present invention.

【図2】本発明におけるタンオンが始まる過程の説明図
である。
FIG. 2 is an explanatory diagram of a process of starting tan-on in the present invention.

【図3】本発明の他の実施例の説明図である。FIG. 3 is an explanatory diagram of another embodiment of the present invention.

【図4】本発明の他の実施例の説明図である。FIG. 4 is an explanatory diagram of another embodiment of the present invention.

【図5】本発明を3端子複合素子に適用した例の説明図
である。
FIG. 5 is an explanatory diagram of an example in which the present invention is applied to a three-terminal composite element.

【図6】従来のサージ防護素子の説明図である。FIG. 6 is an explanatory diagram of a conventional surge protection element.

【図7】従来のサージ防護素子の基本動作回路である。FIG. 7 is a basic operation circuit of a conventional surge protection element.

【図8】特性の改善されたサージ防護素子の説明図であ
る。
FIG. 8 is an explanatory diagram of a surge protection element having improved characteristics.

【符号の説明】[Explanation of symbols]

0 電源電圧 R 回路インピーダンス Z サージ防護素子 H 被保護回路 S サージ D 露呈N1 ベース領域S1 と露呈N2 ベース領域S2
間の距離 WP P共通半導体基板の厚み φ 露呈N1 ベース領域S1 と露呈N2 ベース領域S2
の大きさ
E 0 Power supply voltage R Circuit impedance Z Surge protection element H Protected circuit S Surge D Exposure N 1 Base area S 1 and Exposure N 2 Base area S 2
Distance between W P P Common semiconductor substrate thickness φ Exposed N 1 base region S 1 and exposed N 2 base region S 2
Size of

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 P(N)半導体共通基板の両面にそれぞ
れN1 (P1 )ベース領域とP1 (N1 )エミッタ領
域、N2 (P2 )ベース領域とP2 (N2 )エミッタ領
域を設け、前記N1 (P1 )ベース領域およびN2 (P
2 )ベース領域の一部が複数箇所においてそれぞれ前記
1 (N1 )およびP2 (N2 )エミッタ領域を突き抜
けて表面に露呈し、かつ両面の露呈N1 とN2 ベース領
域が互いに重なる部分がないようにはなれて交互に配置
されて、各面においてそれぞれ前記P1 (N1 )エミッ
タ領域と露呈N1 (P1 )ベース領域およびP
2 (N2 )エミッタ領域と露呈N2 (P2 )ベース領域
とが短絡されて一つの電極をなすように構成されると共
に、前記両面の露呈N1 とN2 のベース領域間の最短距
離Dと、中央のP(N)半導体共通基板の厚さWP との
関係をWP /2≦D≦2WPとしたことを特徴とするサ
ージ防護素子。
1. A N 1 (P 1 ) base region and a P 1 (N 1 ) emitter region, and an N 2 (P 2 ) base region and a P 2 (N 2 ) emitter, respectively, on both surfaces of a P (N) semiconductor common substrate. A region is provided, and the N 1 (P 1 ) base region and N 2 (P 1 ) are provided.
2 ) Part of the base region penetrates the P 1 (N 1 ) and P 2 (N 2 ) emitter regions and is exposed to the surface at a plurality of locations, and the exposed N 1 and N 2 base regions on both sides overlap each other. They are arranged so as not to have any parts and are alternately arranged, and the P 1 (N 1 ) emitter region, the exposed N 1 (P 1 ) base region and the P 1
The 2 (N 2 ) emitter region and the exposed N 2 (P 2 ) base region are short-circuited to form one electrode, and the shortest distance between the exposed N 1 and N 2 base regions on both surfaces. A surge protection element characterized in that the relationship between D and the thickness W P of the central P (N) semiconductor common substrate is W P / 2 ≦ D ≦ 2W P.
【請求項2】 請求項1において、露呈N1 とN2 ベー
ス領域の最大径φと中央のP(N)半導体共通基板の厚
さWP との関係をWP ≦φ≦4WP としたことを特徴と
するサージ防護素子。
2. The method of claim 1, the relationship between the exposed N 1 and N 2 of the maximum diameter phi a central base region P (N) of the semiconductor common substrate thickness W P was W P ≦ φ ≦ 4W P Surge protection element characterized by
【請求項3】 請求項1において、両面露呈N1 とN2
ベース領域の面積を異ならせたことを特徴とするサージ
防護素子。
3. The double sided exposure N 1 and N 2 according to claim 1.
A surge protection element characterized by having different areas of the base region.
【請求項4】 請求項1において、片面の露呈ベース領
域が互いに連続した一つの領域をなすことを特徴とする
サージ防護素子。
4. The surge protection element according to claim 1, wherein the exposed base regions on one surface form one continuous region.
【請求項5】 請求項1〜4の構造を基本構成要素とす
る複合型のサージ防護素子。
5. A composite type surge protection device having the structure according to any one of claims 1 to 4 as a basic constituent element.
JP03335859A 1991-11-27 1991-11-27 Surge protection element Expired - Fee Related JP3142617B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03335859A JP3142617B2 (en) 1991-11-27 1991-11-27 Surge protection element
US07/946,092 US5352905A (en) 1991-11-27 1992-09-17 Semiconductor surge suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03335859A JP3142617B2 (en) 1991-11-27 1991-11-27 Surge protection element

Publications (2)

Publication Number Publication Date
JPH0677472A true JPH0677472A (en) 1994-03-18
JP3142617B2 JP3142617B2 (en) 2001-03-07

Family

ID=18293186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03335859A Expired - Fee Related JP3142617B2 (en) 1991-11-27 1991-11-27 Surge protection element

Country Status (2)

Country Link
US (1) US5352905A (en)
JP (1) JP3142617B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699015B1 (en) * 1992-12-04 1995-02-24 Sgs Thomson Microelectronics Surge protection device.
US5483086A (en) * 1993-04-20 1996-01-09 Shindengen Electric Manufacturing Co., Ltd. Four layer semiconductor surge protector having plural short-circuited junctions
FR2709872B1 (en) * 1993-09-07 1995-11-24 Sgs Thomson Microelectronics Bidirectional shockley diode.
US5500377A (en) * 1994-09-06 1996-03-19 Motorola, Inc. Method of making surge suppressor switching device
US5815359A (en) * 1995-09-08 1998-09-29 Texas Instruments Incorporated Semiconductor device providing overvoltage protection against electrical surges of positive and negative polarities, such as caused by lightning
JP2002184952A (en) * 2000-12-15 2002-06-28 Shindengen Electric Mfg Co Ltd Semiconductor device and its manufacturing method
JP3742636B2 (en) * 2003-08-27 2006-02-08 ファナック株式会社 Surge voltage suppressor
CN103956387A (en) * 2014-05-15 2014-07-30 安徽芯旭半导体有限公司 Surge protection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391310A (en) * 1964-01-13 1968-07-02 Gen Electric Semiconductor switch
US3907615A (en) * 1968-06-28 1975-09-23 Philips Corp Production of a three-layer diac with five-layer edge regions having middle region thinner at center than edge
NL162658C (en) * 1969-04-08 1980-06-16 Organon Nv METHOD FOR CONVERTING A 17BETA HYDROXY STERID INTO THE COMPATIBLE 17 ALFA HYDROXY COMPOUND
SE414357B (en) * 1978-08-17 1980-07-21 Asea Ab OVERVOLTAGE PROTECTION FOR PROTECTION OF SEMICONDUCTOR COMPONENTS OF LOW EFFECT TYPE
US4644437A (en) * 1985-11-01 1987-02-17 At&T Bell Laboratories Telephone subscriber loop overvoltage protection integrated circuit
US4905119A (en) * 1988-06-27 1990-02-27 Teccor Electronics, Inc. Solid state overvoltage protection circuit
US4967256A (en) * 1988-07-08 1990-10-30 Texas Instruments Incorporated Overvoltage protector
JPH0614546B2 (en) * 1990-02-09 1994-02-23 新電元工業株式会社 Compound thyristor

Also Published As

Publication number Publication date
JP3142617B2 (en) 2001-03-07
US5352905A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
EP0581246B1 (en) MIS-type semiconductor device
US4646117A (en) Power semiconductor devices with increased turn-off current ratings and limited current density in peripheral portions
US4967256A (en) Overvoltage protector
JPH05183114A (en) Semiconductor device
JP2862027B2 (en) Insulated gate bipolar transistor
US4617583A (en) Gate turn-off thyristor
SE431381B (en) DOUBLE FLOOD PROTECTION
SE455552B (en) SEMICONDUCTOR DEVICE INCLUDING AN OVERVOLTAGE CIRCUIT
JPS6016753B2 (en) Semiconductor switching device and its control method
JPH0677472A (en) Surge protective element
JPH05226638A (en) Semiconductor device
JPH0465552B2 (en)
US4646122A (en) Semiconductor device with floating remote gate turn-off means
JPH10326900A (en) Diode for electric power
US6472686B1 (en) Silicon carbide (SIC) gate turn-off (GTO) thyristor apparatus and method for high power control
JP2784458B2 (en) Surge protection element
JP3216315B2 (en) Insulated gate bipolar transistor
JP2802970B2 (en) Planar type two-terminal bidirectional thyristor
JPS5931869B2 (en) Electrostatic induction thyristor
JP3046423B2 (en) Surge protection element
CN111682060B (en) Composite Pin Schottky diode with various cell designs
JP2018190838A (en) diode
JPH06104456A (en) Breakover diode
JP3085482B2 (en) Surge protection element
JP2009206193A (en) Triac

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees