JPH03155483A - Method for joining graphite to titanium or titanium alloy - Google Patents

Method for joining graphite to titanium or titanium alloy

Info

Publication number
JPH03155483A
JPH03155483A JP29102189A JP29102189A JPH03155483A JP H03155483 A JPH03155483 A JP H03155483A JP 29102189 A JP29102189 A JP 29102189A JP 29102189 A JP29102189 A JP 29102189A JP H03155483 A JPH03155483 A JP H03155483A
Authority
JP
Japan
Prior art keywords
titanium
graphite
joining
alloy
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29102189A
Other languages
Japanese (ja)
Other versions
JP2676413B2 (en
Inventor
Osamu Saito
修 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanashi Prefecture
Original Assignee
Yamanashi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi Prefecture filed Critical Yamanashi Prefecture
Priority to JP1291021A priority Critical patent/JP2676413B2/en
Publication of JPH03155483A publication Critical patent/JPH03155483A/en
Application granted granted Critical
Publication of JP2676413B2 publication Critical patent/JP2676413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To firmly adhere graphite to titaniums or titanium alloys as-solid state without using brazing material by holding the joining faces of the graphite and the titaniums or titanium alloys under specific conditions. CONSTITUTION:At the time of joining the graphite 5 to the titaniums or titanium alloys 6, the joining faces of both are held under the following conditions. Namely, A: to hold the joining faces in a vacuum or under existence of inert gas B: to pressurize these C: to hold these at >=850 deg.C temperature. The titanium alloy to be used means the alloy of aluminum, vanadium, molybdenum, manganese, tin, zirconium, etc., with the titanium.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、黒鉛(石墨、グラファイト)と、チタンま
たはチタン合金との接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for joining graphite (graphite, graphite) and titanium or a titanium alloy.

更に詳しくは黒鉛とチタンまたはチタン合金とを、高温
かつ真空(または不活性気体の存在)下において、接着
面を加圧保持することによって、両者な固相(固体)の
まま極めて強固に接合させることができるようにした黒
鉛とチタンまたはチタン合金との接合方法に関するもの
である。
More specifically, graphite and titanium or titanium alloys are bonded extremely firmly while both remain in a solid state by pressurizing and holding the adhesive surfaces under high temperature and vacuum (or in the presence of an inert gas). The present invention relates to a method for joining graphite and titanium or a titanium alloy, which makes it possible to bond graphite to titanium or titanium alloy.

〈従来の技術と発明が解決しようとする問題点〉黒鉛は
熱、及び電気の良導体で、高い融点(3500℃)と優
れた耐熱衝撃性を有することから、各種電極材料、炉の
内張材、モーターブラシ、鋳造用モウルド(mould
)材等に広(使用されている。また、原子炉内壁材(中
性子減速材)としての特性が優れていることから、近年
その適用が検討されており、このため金属と強固に接合
させる技術の開発が望まれている。
<Problems to be solved by conventional technology and invention> Graphite is a good conductor of heat and electricity, and has a high melting point (3500°C) and excellent thermal shock resistance, so it is used as various electrode materials and furnace lining materials. , motor brush, casting mold
) materials, etc. Also, due to its excellent properties as a nuclear reactor inner wall material (neutron moderator), its application has been considered in recent years, and for this reason, technology to firmly bond it with metal is being considered. development is desired.

さて、黒鉛とチタンまたはチタン合金との接合は、従来
両者の接合面にロウ材(主成分としてチタン、ジルコニ
ウムを含む)を挾む(介する)と共に、高温真空下に一
定時間保持する真空ロウ付法により行われてきた(特開
昭63−112095号公報(日本原子力研究所)、及
び日本金属学会:金属セラミック接合研究会資料(平成
元年2月2日)参照)。
Conventionally, graphite and titanium or titanium alloys are bonded by sandwiching a brazing material (containing titanium and zirconium as main components) on the bonding surfaces of the two, and by vacuum brazing, which is held under high-temperature vacuum for a certain period of time. (Refer to Japanese Unexamined Patent Application Publication No. 112095/1989 (Japan Atomic Energy Research Institute) and Japan Institute of Metals: Metal Ceramic Bonding Study Group Materials (February 2, 1989)).

しかしながら従来法は、接着面にロウ材を介する(挾む
)溶融接合であるため、ロウ材の性質が、互いに接合し
て形成された接合素材の品質に大きく影響し、次のよう
な欠点を有している。
However, since the conventional method uses fusion bonding with a brazing material interposed between the bonding surfaces, the properties of the brazing material greatly affect the quality of the bonded materials formed by bonding them together, resulting in the following drawbacks: have.

(イ)ロウ材の融点が高いと、接合時に金属材料(チタ
ンまたはチタン合金)が変質してしまう、また黒鉛と金
属両者の熱膨張率の差により割れが生じ易(なる。
(a) If the melting point of the brazing material is high, the metal material (titanium or titanium alloy) will change in quality during joining, and cracks will easily occur due to the difference in thermal expansion coefficient between graphite and the metal.

(ロ)ロウ材の融点が低いと、接合時は問題は生じない
ものの、できた接合素材はロウ材の融点以下でしか使用
できない。
(b) If the melting point of the brazing material is low, no problems will occur during joining, but the resulting joining material can only be used at temperatures below the melting point of the brazing material.

(ハ)ロウ材そのものの強度が問題となる場合がある。(c) The strength of the brazing material itself may be a problem.

そこで発明者は、接着面にロウ材を使用しないでも、黒
鉛とチタンまたはチタン合金とを強固に接合(接着)さ
せる方法(固相状態での接合)について鋭意研究した結
果、両者の接合面を無酸素の雰囲気下に、加圧状態で一
定以上の高温に保持すれば、驚くべきことに、黒鉛とチ
タンまたはチタン合金とを極めて強固に接合(接着)さ
せることができることを知り本願発明を完成した。
Therefore, the inventor conducted intensive research on a method of firmly bonding (adhering) graphite and titanium or titanium alloy without using a brazing material on the bonding surface (solid state bonding). Surprisingly, he discovered that graphite and titanium or titanium alloys could be extremely strongly bonded (adhered) by keeping them under pressure and at a high temperature above a certain level in an oxygen-free atmosphere, and completed the present invention. did.

く問題を解決するための手段〉 すなわち、本願発明は次の構成を有すものである。Means to solve problems〉 That is, the present invention has the following configuration.

r黒鉛と、チタンまたはチタン合金とを接合(接着)さ
せるに際し、両者の接合面を下記に記載する(A)、(
B)、及び(C)の条件下に保持することを特徴とする
黒鉛とチタンまたはチタン合金との接合方法。
r When bonding (adhering) graphite and titanium or titanium alloy, the bonding surfaces of both are described below (A), (
A method for joining graphite and titanium or a titanium alloy, characterized by holding the material under the conditions of B) and (C).

(A)真空下または不活性気体の存在下に保持すること
(A) Maintaining under vacuum or in the presence of an inert gas.

(B)加圧すること。(B) Apply pressure.

(C)850℃以上の温度に保持すること、1この発明
において使用される黒鉛は、天然、または人造のいずれ
の黒鉛(石墨、グラファイト)であっても使用できる0
本願発明の方法を実施すると、黒鉛によっては接合し難
いか、または接合不完全な場合が生ずることがある。し
かし、この場合には、理由は必ずしも明らかではないが
、黒鉛を予め接合温度以上に空焼きしておけばよい。
(C) Maintaining the temperature at 850°C or higher; 1. The graphite used in this invention can be either natural or artificial graphite (graphite, graphite).
When the method of the present invention is carried out, some graphites may be difficult to bond or may be incompletely bonded. However, in this case, although the reason is not necessarily clear, the graphite may be preheated to a temperature higher than the bonding temperature.

この発明において使用されるチタン合金とは、チタンと
アルミニウム、バナジウム、モリブデン、マンガン、錫
、ジルコニウム等との合金をいう(例 Ti−6AI−
4V合金、Tj−8AI−I M o −IV金合金T
l−8Mn−合金、TiTi−6AI−2Sn−42r
−2合金等)。
The titanium alloy used in this invention refers to an alloy of titanium with aluminum, vanadium, molybdenum, manganese, tin, zirconium, etc. (Example: Ti-6AI-
4V alloy, Tj-8AI-IM o -IV gold alloy T
l-8Mn-alloy, TiTi-6AI-2Sn-42r
-2 alloy, etc.).

この発明において、黒鉛とチタンまたはチタン合金との
接合面を真空下または不活性気体の存在下に保持する理
由は、黒鉛及びチタン合金が高温で着火しない(酸化さ
れない)ためである。
In this invention, the reason why the bonding surface between graphite and titanium or titanium alloy is maintained under vacuum or in the presence of an inert gas is that graphite and titanium alloy do not ignite (do not oxidize) at high temperatures.

この発明において、黒鉛とチタンまたはチタン合金との
接合面には、通常研磨処理、有機溶媒での洗浄等の前処
理を施す、そして、この接合面に対して1通常数kg/
cm”以上に加圧した状態のままで接合処理を行う。
In this invention, the bonding surface between graphite and titanium or titanium alloy is usually subjected to a pretreatment such as polishing or cleaning with an organic solvent, and the bonding surface is usually subjected to several kg/
The bonding process is performed while the pressure is still applied to a pressure of 1.5 cm or more.

従来、本願発明に係る接合方法のような、−見非常に簡
単な接合方法が知られていなかったのは、次の(イ)及
び(ロ)の理由によるものと思われる。
The reason why a very simple joining method such as the joining method according to the present invention has not been known so far is probably due to the following reasons (a) and (b).

(イ)黒鉛とチタンまたはチタン合金との接合は、他の
金属と同様にロウ材の使用が不可欠であるとの固定観念
が広く存在したこと。
(a) There was a widespread fixed idea that the use of brazing metal was essential for joining graphite with titanium or titanium alloys, just as with other metals.

(ロ)ロウ材を使用して接着面を加圧すると、はとんど
全てのログ材が接着面から排除されてしまうため、加圧
処理が全くされないか、または極めて不十分な加圧処理
しかされたことがなかったこと。
(b) When applying pressure to the bonding surface using brazing wood, almost all of the log material is removed from the bonding surface, resulting in either no pressure treatment or extremely insufficient pressure treatment. But it had never happened before.

〈実施例〉 (1)接合装置として、市販のホットプレス装置(第1
図)を用い、接合試料は第2図に示すようにa、bの2
種類の形状とした。
<Example> (1) As a bonding device, a commercially available hot press device (first
2), and the bonded sample is 2 parts a and b as shown in Fig. 2.
It has a variety of shapes.

種々の接合条件により接合処理を施した後、aタイプの
試料は、第3図の形状に加工後第4図の方法で、またb
タイプの試料は第5図に示す方法で引張り試験を行った
After performing bonding processing under various bonding conditions, the sample of type a was processed into the shape shown in Fig. 3, and then processed by the method shown in Fig. 4, and b
A tensile test was carried out on a sample of the type according to the method shown in FIG.

なお、接合前処理として、接合面は$1OOOのエメリ
ー紙で研磨した後、アセトン中で洗浄し接合装置(第1
図)にセットした。雰囲気が10−’  Torr以下
に達した後、第6図に示すように、所定の温度、加圧力
、時間で接合処理を行った。
As a pre-bonding treatment, the bonding surfaces were polished with $100 emery paper, washed in acetone, and placed in the bonding device (No. 1).
(Figure). After the atmosphere reached 10-' Torr or less, a bonding process was performed at a predetermined temperature, pressure, and time, as shown in FIG.

(2)作製した接合試料に対し、前項の方法で弓張り試
験を行い接合部の強度を調べた。引張り試験は室温で行
い、引張り速度は0.5mm/minとした。
(2) The produced bonded sample was subjected to a bow tension test using the method described in the previous section to examine the strength of the bonded portion. The tensile test was conducted at room temperature, and the tensile speed was 0.5 mm/min.

なお、用いた黒鉛素材は、■ニスイージーのMG−Y、
及びMG−3の2種類、チタン素材は工業用純チタン第
3種(CPTi)及びTi−6A 1−4V合金(6−
4Ti)(7)2種類でその引張り強さを第1表(巻末
以下同じ)に示す、また、第2表及び第3表に各接合条
件で作成した試料の引張り試験結果を示す。
In addition, the graphite material used was ■Ni-Easy's MG-Y,
and MG-3, and the titanium materials are industrially pure titanium type 3 (CPTi) and Ti-6A 1-4V alloy (6-
4Ti) (7) The tensile strengths of the two types are shown in Table 1 (same at the end of the book), and Tables 2 and 3 show the tensile test results of samples prepared under each bonding condition.

第2表及び第3表の結果によれば、本願発明の方法によ
り黒鉛とチタンまたはチタン合金を接合した後、両者を
分離(分割)しようとすれば黒鉛部分に破壊(破断)が
起こることが分かる(第7図)、すなわち、黒鉛とチタ
ンまたはチタン合金は、極めて強固に接合し、接合部分
の強度は素材以上の強度に達していることが分かる。
According to the results in Tables 2 and 3, after graphite and titanium or titanium alloy are joined by the method of the present invention, if an attempt is made to separate (split) the two, destruction (rupture) will occur in the graphite part. As can be seen (Fig. 7), it can be seen that graphite and titanium or titanium alloy are extremely strongly bonded, and the strength of the bonded portion exceeds that of the raw material.

〈発明の効果〉 以上のようにこの発明に係る黒鉛とチタンまたはチタン
合金との接合方法によれば、ロウ材を全く使用すること
なく両者を固体(固相)状のままで極めて強固に接着さ
せることができるという効果を有し、その応用範囲は極
めて広い。
<Effects of the Invention> As described above, according to the method for joining graphite and titanium or titanium alloy according to the present invention, the two can be bonded extremely firmly while remaining in a solid state without using any brazing material. The range of applications is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は接合装置(ホットプレス装置)を示す図(断面
図)、第2図は接合試料a及びbの形状を示す図(正面
図)、第3図は接合試料aの引張試験片の形状を示す図
(正面図)、第4図は接合試料aの引張り試験方法を示
す図(正面図)、第5図は接合試料すの引張り試験方法
を示す図(断面図)、第6図は接合プロセスを示す図、
第7図は接合試料すの試験片の破断形態を示す図(正面
図)である。 1・・・油圧シリンダー 2・・・ヒーター 3・・・熱電対 4・・・接合試料 5・・・黒鉛 6・・・チタンまたはチタン合金 7・・・真空ポンプ 8・・・ロードセル 9・・・破断面 なお、第7図中のTは接合温度を示し、FCは炉冷の略
号である。
Fig. 1 is a cross-sectional view showing the bonding device (hot press device), Fig. 2 is a front view showing the shapes of bonded samples a and b, and Fig. 3 is a tensile test piece of bonded sample a. Figure 4 is a diagram showing the tensile test method for bonded sample a (front view), Figure 5 is a diagram showing the tensile test method for bonded sample A (cross-sectional view), and Figure 6 is a diagram showing the shape (front view). is a diagram showing the joining process,
FIG. 7 is a diagram (front view) showing the fracture form of a test piece of a bonded sample. 1... Hydraulic cylinder 2... Heater 3... Thermocouple 4... Bonded sample 5... Graphite 6... Titanium or titanium alloy 7... Vacuum pump 8... Load cell 9... - Fractured surface Note that T in FIG. 7 indicates the joining temperature, and FC is an abbreviation for furnace cooling.

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛と、チタンまたはチタン合金とを接合(接着
)させるに際し、両者の接合面を下記に記載する(A)
、(B)、及び(C)の条件下に保持することを特徴と
する黒鉛とチタンまたはチタン合金との接合方法。 (A)真空下または不活性気体の存在下に保持すること
。 (B)加圧すること。 (C)850℃以上の温度に保持すること。
(1) When bonding (adhering) graphite and titanium or titanium alloy, the bonding surfaces of both are described below (A)
, (B), and (C). (A) Maintaining under vacuum or in the presence of an inert gas. (B) Apply pressure. (C) Maintain the temperature at 850°C or higher.
JP1291021A 1989-11-10 1989-11-10 Method for joining graphite and titanium or titanium alloy Expired - Fee Related JP2676413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291021A JP2676413B2 (en) 1989-11-10 1989-11-10 Method for joining graphite and titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291021A JP2676413B2 (en) 1989-11-10 1989-11-10 Method for joining graphite and titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JPH03155483A true JPH03155483A (en) 1991-07-03
JP2676413B2 JP2676413B2 (en) 1997-11-17

Family

ID=17763429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291021A Expired - Fee Related JP2676413B2 (en) 1989-11-10 1989-11-10 Method for joining graphite and titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JP2676413B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081362A (en) * 2006-09-27 2008-04-10 Kwansei Gakuin Method for producing bonded material of tantalum and carbon, gradient composition structure of tantalum and carbon, method for producing tantalum tube and pit carbon core, tantalum tube and pit carbon core, method for producing tantalum carbide wire, and tantalum carbide wire
CN114178638A (en) * 2021-12-03 2022-03-15 湘潭大学 Welding method for high-strength graphite pipe and titanium alloy pipe sleeved composite component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111979A (en) * 1984-11-07 1986-05-30 科学技術庁金属材料技術研究所長 Manufacture of bonded material of graphite and high melting point metal
JPH01111783A (en) * 1987-05-13 1989-04-28 Shin Meiwa Ind Co Ltd Joined structure of carbon and ceramics, carbon or metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111979A (en) * 1984-11-07 1986-05-30 科学技術庁金属材料技術研究所長 Manufacture of bonded material of graphite and high melting point metal
JPH01111783A (en) * 1987-05-13 1989-04-28 Shin Meiwa Ind Co Ltd Joined structure of carbon and ceramics, carbon or metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081362A (en) * 2006-09-27 2008-04-10 Kwansei Gakuin Method for producing bonded material of tantalum and carbon, gradient composition structure of tantalum and carbon, method for producing tantalum tube and pit carbon core, tantalum tube and pit carbon core, method for producing tantalum carbide wire, and tantalum carbide wire
CN114178638A (en) * 2021-12-03 2022-03-15 湘潭大学 Welding method for high-strength graphite pipe and titanium alloy pipe sleeved composite component

Also Published As

Publication number Publication date
JP2676413B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US6528123B1 (en) Coating system to permit direct brazing of ceramics
US4838474A (en) Method of diffusion bonding of aluminum or alumina ceramics
JPH0723264B2 (en) Method for joining silicon carbide molded body members
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPH03155483A (en) Method for joining graphite to titanium or titanium alloy
JPH0520392B2 (en)
GB2241914A (en) Diffusion bonding of aluminium-lithium alloys
JPH0446070A (en) Method for joining metal member to ceramics or cermet member
JPS5877784A (en) Production of composite material
CN111018555A (en) Connecting material for connecting silicon carbide with crack self-healing characteristic and application thereof
JPH0337165A (en) Adhesion between ceramics and metal
JPH0492871A (en) Ceramic-metal binding body and production thereof
Moore et al. Diffusion brazing NiAl with self-generated filler metal
JP3464563B2 (en) Method for producing composite
JP3215554B2 (en) Method of joining materials with different coefficients of thermal expansion
JPH0134954B2 (en)
JPH04158994A (en) Cold joining method by superfine particles
JPH0371952B2 (en)
JPH0328391B2 (en)
KR100403790B1 (en) Method for bonding ceramic with metal using magnesium
JP3154361B2 (en) Solid phase diffusion bonding method and material of particle dispersed composite member
JPH0337166A (en) Adhesion between ceramics and metal
JP3100022B2 (en) Solid phase diffusion bonding using insert material
JPS61117173A (en) Method of bonding ceramic and metal
JPS60195067A (en) Diffusion bonding method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees