JP3154361B2 - Solid phase diffusion bonding method and material of particle dispersed composite member - Google Patents

Solid phase diffusion bonding method and material of particle dispersed composite member

Info

Publication number
JP3154361B2
JP3154361B2 JP16965493A JP16965493A JP3154361B2 JP 3154361 B2 JP3154361 B2 JP 3154361B2 JP 16965493 A JP16965493 A JP 16965493A JP 16965493 A JP16965493 A JP 16965493A JP 3154361 B2 JP3154361 B2 JP 3154361B2
Authority
JP
Japan
Prior art keywords
joining
particle
insert material
composite member
diffusion bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16965493A
Other languages
Japanese (ja)
Other versions
JPH071158A (en
Inventor
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP16965493A priority Critical patent/JP3154361B2/en
Publication of JPH071158A publication Critical patent/JPH071158A/en
Application granted granted Critical
Publication of JP3154361B2 publication Critical patent/JP3154361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は粒子分散複合部材を互い
に当接し、その間にインサート材を介設したあと、接合
面に圧力と熱を加えることにより、固相の状態で接合す
る固相拡散接合法と、該方法で接合した材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid-phase diffusion in which a particle-dispersed composite member is brought into contact with each other, an insert material is interposed therebetween, and pressure and heat are applied to the joint surface to join in a solid state. The present invention relates to a joining method and materials joined by the method.

【0002】[0002]

【従来の技術】部材を固相の状態で接合する方法とし
て、ハンダや銀,黄銅,銅等のろうを使用して、その物
理的粘着力や化学的結合力によって、部材を接合する方
法がある。また、微細な結晶粒組織を有する部材を用
い、この部材の接合しようとする面を高精度に仕上げ、
それらの接合面に圧力と熱を加えて固相で接合する方法
がある。この接合方法は、一般に拡散接合と呼ばれてお
り、その要領を図5に示す。即ち、接合しようとする部
材A,Bは金属材料であって、その結晶粒径が1μm以
下と細かく、接合面が十点平均粗さで0.1〜0.2μ
m 以下に仕上げられて清浄であることが要求される。そ
して、これらの接合部材A,Bを、加圧用の治具1,2
の間に挟み、所定の温度に加熱しながら所定の圧力Pの
もとで、真空容器3内の真空中で7.2〜18ks 程度
の時間をかけて接合される。なお、4は加熱用のヒータ
ー、5はオイルシールである。さらに、この固相拡散接
合の他の方法として、図6に示すように接合部材の間に
箔状金属などのインサート材10を挟み、前記と同じ要
領で圧力と熱を加えることで接合部材とインサートした
金属とを反応させて接合する方法がある。
2. Description of the Related Art As a method of joining members in a solid state, there is a method of joining members by using a solder, silver, brass, copper, or the like, and by using a physical adhesive force or a chemical bonding force. is there. Also, using a member having a fine grain structure, the surface to be joined of this member is finished with high precision,
There is a method in which pressure and heat are applied to these joining surfaces to join them in a solid phase. This bonding method is generally called diffusion bonding, and the procedure is shown in FIG. That is, the members A and B to be joined are made of a metal material, have a fine crystal grain size of 1 μm or less, and have a ten-point average roughness of 0.1 to 0.2 μm in ten-point average roughness.
m is required to be finished and clean. Then, these joining members A and B are connected to pressing jigs 1 and 2.
Are joined under a predetermined pressure P while heating to a predetermined temperature in a vacuum in the vacuum vessel 3 for about 7.2 to 18 ks. In addition, 4 is a heater for heating, and 5 is an oil seal. Further, as another method of the solid-phase diffusion bonding, as shown in FIG. 6, an insert material 10 such as a foil-like metal is sandwiched between the bonding members, and pressure and heat are applied in the same manner as described above, so that the bonding members are separated from each other. There is a method of bonding by reacting with the inserted metal.

【0003】[0003]

【発明が解決しようとする課題】前記ろう付け等による
方法は、接合強度が低く簡易接合の域を出ず、構造用部
材への利用には適していない。一方、図5に示す方法
は、部材の変形を極力抑えて接合でき、接合部強度も優
れているが、その接合条件として、前記のように部材の
結晶粒径が1μm 以下であることが必要であり、接合面
の仕上げ精度が高く、雰囲気が真空であること、接合時
間も7.2ks 以上かかるという欠点がある。また、イ
ンサート材を介設しておこなう方法は、図5に示す方法
の場合のような接合部材に要求される組織は必要なく、
繊維強化金属(以下FRMとする)や、粒子分散強化金
属(以下PRMとする)などの接合が難しい複合部材で
も接合ができる。また接合面の仕上げ精度も十点平均粗
さで1μm 以下でよい。しかし、接合界面近傍に、イン
サート材料と接合部材の成分とが互に拡散して脆い合金
層を形成する場合がある。
The above-mentioned method by brazing or the like has a low joining strength and does not come out of a simple joining area, and is not suitable for use as a structural member. On the other hand, the method shown in FIG. 5 enables joining while minimizing the deformation of the member and has excellent joint strength. However, the joining condition requires that the crystal grain size of the member be 1 μm or less as described above. However, there are disadvantages in that the finishing accuracy of the joining surface is high, the atmosphere is vacuum, and the joining time takes 7.2 ks or more. In addition, the method of interposing the insert material does not require the structure required for the joining member as in the case of the method shown in FIG.
It is possible to join even a composite member such as a fiber reinforced metal (hereinafter, referred to as FRM) or a particle dispersion reinforced metal (hereinafter, referred to as PRM), which is difficult to join. The finishing accuracy of the joint surface may be 10 μm or less in terms of ten-point average roughness. However, there are cases where the insert material and the components of the joining member diffuse into each other near the joining interface to form a brittle alloy layer.

【0004】また、PRMからなる接合部材を接合した
場合に図3に示すように、複合粒子が接合界面で凝集層
を形成することがある。この粒子凝集層はJIS AC
8AAl合金にSiC粒子10%を複合してなるPRM
同志に、厚さ50μm のCuインサートを挟み、803
Kの温度を3.6ks の間、加えた際に形成されたもの
である。これは、Al合金マトリックスが接合界面付近
でインサート材料Cuと反応合金化して融点が低くな
り、部分的に溶融したため形成されたものと考えられ
る。この凝集層は、803K以上からAC8A合金が溶
融して固相での拡散接合ができなくなるまでの温度範囲
で、形成されることが予想される。また、他の合金をマ
トリックスとするPRMも、ある温度域で同様な粒子凝
集層が形成されることが容易に予想できる。この粒子凝
集層は硬さ,靭性,伸び,熱膨張率等物性が他の部分と
異なるため、応力や熱応力が集中して破壊の起点になり
易く、好ましくない。さらに、この方法では、インサー
ト材料が層状に残留することが挙げられる。すなわち、
上記PRMとCuインサートを用い783Kの温度を
3.6ks の間、加えた際、両側が合金化してはいるが
Cuインサートが図4に示すような状態で層状に残留し
ている場合がある。これは加熱温度が低いかまたは加熱
時間が短いために、インサート材料が十分拡散できず残
留したものと考えられる。このようにインサート材料が
残留した場合も、接合強度が低く、好ましくない。本発
明は、前記事情に鑑みなされたもので、前記問題点を解
消した粒子分散複合部材の固相拡散接合法と、その材料
を提供することを目的とする。
In addition, when a joining member made of PRM is joined, as shown in FIG. 3, the composite particles sometimes form an aggregated layer at the joining interface. This particle aggregation layer is made according to JIS AC
PRM composed of 8AAl alloy and 10% SiC particles
With a 50μm-thick Cu insert, 803
It was formed when the temperature of K was applied for 3.6 ks. This is presumably because the Al alloy matrix was reactively alloyed with the insert material Cu in the vicinity of the bonding interface to lower the melting point and partially melt. This cohesive layer is expected to be formed in a temperature range from 803K or higher until the AC8A alloy melts and diffusion bonding in the solid phase cannot be performed. Further, it can be easily expected that a similar particle aggregation layer is formed in a certain temperature range also in a PRM using another alloy as a matrix. Since the physical properties such as hardness, toughness, elongation, and coefficient of thermal expansion of this particle agglomeration layer are different from those of other parts, stress and thermal stress tend to concentrate and become a starting point of fracture, which is not preferable. Furthermore, in this method, the insert material may remain in a layer form. That is,
When the temperature of 783 K is applied for 3.6 ks using the PRM and the Cu insert, the Cu insert may remain in a layered state as shown in FIG. 4, although both sides are alloyed. This is probably because the insert material could not be sufficiently diffused and remained because the heating temperature was low or the heating time was short. Even when the insert material remains in this way, the joining strength is low, which is not preferable. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-phase diffusion bonding method of a particle-dispersed composite member that solves the above-mentioned problems, and a material thereof.

【0005】[0005]

【課題を解決するための手段】前記目的に添い、本発明
は、Al合金をマトリックスとした粒子分散複合部材同
志をインサート材を介設して固相の状態で接合する場合
に、前記インサート材にCu箔又はZn箔を用い、温度
域786〜790K、加圧時間0.6〜10.0ks 、
加圧圧力0.1〜100MPa の条件で処理することに
よって接合面に残るインサート材の層を消失せしめると
ともに、複合部材に分散している粒子の接合面における
凝集を防止する固相拡散接合法によって、また該方法で
製造した材料を提供することによって前記課題を解消し
た。これによって、インサート材を用いたPRMの固相
接合において、接合界面に粒子凝集層が形成せず、かつ
インサート材が層状に残留しない良好な接合方法と接合
材料がえられる。
According to the above object, according to the present invention, there is provided a method of joining particles dispersed composite members in a solid phase with an insert made of an aluminum alloy as a matrix. Using Cu foil or Zn foil, temperature range 786-790K, pressurization time 0.6-10.0ks,
A solid phase diffusion bonding method is used to eliminate the layer of the insert material remaining on the bonding surface by treating under a pressure of 0.1 to 100 MPa and to prevent agglomeration of the particles dispersed in the composite member at the bonding surface. In addition, the above problem has been solved by providing a material manufactured by the method. Thereby, in the solid phase joining of the PRM using the insert material, a good joining method and joining material can be obtained in which a particle aggregation layer is not formed at the joining interface and the insert material does not remain in a layer.

【0006】[0006]

【実施例】本発明が対象とする接合部材は、粒子を所定
割合で均一に分散した複合材料を用い、この複合材料の
マトリックスは、JIS AC8A,AC8B,AC4
C,AC9BなどのAl合金を対象とする。また、この
マトリックスに分散せしめる粒子は、主として粒径0.
1〜30μm のSiC粒子を0.1〜30mass%添
加したものとする。また、其他の分散粒子として、Al
23,BeO,Cr23,HgO,SiO2,TiO2
ZrO2,TiC,BC,WC,C,BN,Si34
またはこれらを組合せたものとする。またインサート材
としては、主として厚さ5〜500μm の純Cu箔,純
Zn箔とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The joining member of the present invention uses a composite material in which particles are uniformly dispersed at a predetermined ratio, and the matrix of the composite material is JIS AC8A, AC8B, AC4.
Al alloys such as C and AC9B are targeted. The particles dispersed in this matrix mainly have a particle size of 0.1.
It is assumed that SiC particles of 1 to 30 μm are added in an amount of 0.1 to 30 mass%. Further, as other dispersed particles, Al
2 O 3 , BeO, Cr 2 O 3 , HgO, SiO 2 , TiO 2 ,
ZrO 2 , TiC, B 4 C, WC, C, BN, Si 3 N 4
Alternatively, these are combined. The insert material is mainly a pure Cu foil or a pure Zn foil having a thickness of 5 to 500 μm.

【0007】接合要領としては、前記図6に示す装置を
用い、同じ要領で処理する。即ち、Cuインサート材を
用いて、AC8A Al合金をマトリックスとしたPR
Mを、固相拡散接合する場合、その処理すべき温度域は
786〜790Kとし、加熱時間は0.6〜10.8k
s とする。786K以下、たとえば783Kの温度で処
理した場合、Cuインサート材は、図4に示すように接
合部材の接合界面に層状に残留する。また、790K以
上、たとえば798〜823Kの温度範囲で処理した場
合、Cuインサート材の残留はなくなるが、図3に示す
ように接合界面に粒子凝集層が形成されて好ましくな
い。このように前記786〜790Kの温度範囲では、
Cuインサート材の残留や粒子凝集層はほとんどみられ
ず、図1に示すように一様な組織となる。なお、加熱時
間が0.6ks 以下では所期の効果はえられず、また1
0.8ks 以上の加熱は必要がない。さらに付加する圧
力は0.1〜100MPa とし、好ましくは1〜10M
Paとする。0.1MPa 以下では効果はえられず、1
00MPa 以上の加圧は必要がなく、変形のおそれがあ
る。
[0007] As for the joining procedure, processing is performed in the same manner using the apparatus shown in FIG. That is, PR using AC8A Al alloy as a matrix using Cu insert material
When solid phase diffusion bonding is performed on M, the temperature range to be treated is 786 to 790K, and the heating time is 0.6 to 10.8k.
s When the treatment is performed at a temperature of 786K or lower, for example, at a temperature of 783K, the Cu insert material remains in a layer at the joint interface of the joint member as shown in FIG. Further, when the treatment is performed at a temperature of 790 K or more, for example, 798 to 823 K, the Cu insert material does not remain, but a particle aggregation layer is formed at the joint interface as shown in FIG. 3, which is not preferable. Thus, in the temperature range of 786 to 790K,
Almost no residual Cu insert material or particle aggregation layer is observed, and a uniform structure is obtained as shown in FIG. If the heating time is 0.6 ks or less, the desired effect cannot be obtained.
There is no need for heating for more than 0.8 ks. Further, the applied pressure is 0.1 to 100 MPa, preferably 1 to 10 M
Pa. No effect is obtained below 0.1MPa.
There is no need to apply a pressure of 00 MPa or more, which may cause deformation.

【0008】具体例1 JIS AC8A合金に、径が5μm のSiC粒子を5
mass%添加した複合材料(PRM)を、それぞれφ
20×30mmのピースに加工し、接合面を280番の
エメリー紙で研いて仕上げた。これらをヘキサンで脱脂
後、インサート材料として厚さ50μm の純Cu箔を挟
み、約1×10-2Pa の真空雰囲気中で約788Kの温
度と約1MPa の圧力を7.2ks 間加えた。これによ
り両者は接合でき、Cuインサートは全て複合材料のマ
トリックス中へ拡散吸収された。またSiC粒子凝集層
もほとんど形成されていない。接合部断面の金属組織を
図1に示す。 具体例2 JIS AC8A合金に、径が5μm のSiC粒子を5
mass%添加した複合材料(PRM)を、それぞれφ
20×30mmのピースに加工し、接合面を280番の
エメリー紙で研いて仕上げた。これらをヘキサンで脱脂
後、インサート材料として厚さ100μm の純Zn箔を
挟み、約1×10-2Pa の真空雰囲気中で約788Kの
温度と約1MPa の圧力を3.6ks 間加えた。これに
より両者は接合でき、Znインサートは全て複合材料の
マトリックス中へ拡散吸収された。またSiC粒子凝集
層もほとんど形成されていない。
Concrete Example 1 SiC particles having a diameter of 5 μm were added to a JIS AC8A alloy.
Mass% added composite material (PRM) is φ
The piece was processed into a piece of 20 × 30 mm, and the joint surface was polished and finished with No. 280 emery paper. After degreased with hexane, a pure Cu foil having a thickness of 50 μm was sandwiched as an insert material, and a temperature of about 788 K and a pressure of about 1 MPa were applied for 7.2 ks in a vacuum atmosphere of about 1 × 10 −2 Pa. This allowed the two to join, and all the Cu inserts were diffused and absorbed into the composite matrix. Also, almost no SiC particle aggregation layer was formed. FIG. 1 shows the metal structure of the cross section of the joint. Example 2 A 5 μm-diameter SiC particle was added to a JIS AC8A alloy.
Mass% added composite material (PRM) is φ
The piece was processed into a piece of 20 × 30 mm, and the joint surface was polished and finished with No. 280 emery paper. After these were degreased with hexane, a pure Zn foil having a thickness of 100 μm was sandwiched as an insert material, and a temperature of about 788 K and a pressure of about 1 MPa were applied for 3.6 ks in a vacuum atmosphere of about 1 × 10 −2 Pa. This allowed the two to be joined and all the Zn inserts were diffused and absorbed into the composite matrix. Also, almost no SiC particle aggregation layer was formed.

【0009】図1及び図3に示す接合部界面をもつ接合
部材(S1,S3とする)について、その接合界面を挾
んでの硬さ分布を図2に示す。これによればS3の接合
部材は、硬さの分布と変化が大きいのに対し、S1のも
のでは、この分布と変化が小さく硬さの均一性がかなり
改善されていることが判る。また靭性,伸び,熱膨張率
など他の物性についての均一性も改善され、応力や熱応
力の集中も緩和されているものと推定できる。
FIG. 2 shows the hardness distribution of the joining members (S1 and S3) having the joining interface shown in FIGS. 1 and 3 across the joining interface. According to this, it can be seen that the hardness and distribution of the hardness of the joining member of S3 are large, whereas the distribution and change of the hardness of S1 are small and the uniformity of hardness is considerably improved. It is also assumed that the uniformity of other physical properties such as toughness, elongation, and coefficient of thermal expansion has been improved, and that the concentration of stress and thermal stress has been reduced.

【0010】[0010]

【発明の効果】本発明によれば、Al合金をマトリック
スとする粒子分散複合部材をインサート材を介設して固
相の状態で接合する場合に、その接合部境界にインサー
ト材を残留させず、また粒子凝集を生ずることなく、そ
の接合部境界を不明瞭にできる。したがって、硬さ,靭
性,伸び,熱膨張率等々の物性が連続した粒子分散複合
部材を固相の状態で接合ができる。
According to the present invention, when a particle-dispersed composite member having an Al alloy as a matrix is joined in a solid state with an insert material interposed, the insert material does not remain at the joint boundary. In addition, the boundary of the joint can be unclear without causing particle aggregation. Therefore, a particle-dispersed composite member having continuous properties such as hardness, toughness, elongation, and thermal expansion coefficient can be joined in a solid phase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法によって接合した粒子分散複合部
材の接合断面の金属組織を示す図面に代わる写真であ
る。
FIG. 1 is a photograph replacing a drawing showing a metal structure of a bonded cross section of a particle-dispersed composite member bonded by a method of the present invention.

【図2】本発明によって接合した接合部材と、従来の方
法によって接合した接合部材の硬さ分布を比較して示す
説明図である。
FIG. 2 is an explanatory view showing a comparison between hardness distributions of a joint member joined by the present invention and a joint member joined by a conventional method.

【図3】従来の方法によって接合した粒子分散複合部材
の接合断面の金属組織を示す図面に代わる写真である。
FIG. 3 is a photograph instead of a drawing showing a metal structure of a bonded cross section of a particle-dispersed composite member bonded by a conventional method.

【図4】従来の方法によって接合した粒子分散複合部材
の他の接合断面の金属組織を示す図面に代わる写真であ
る。
FIG. 4 is a photograph instead of a drawing showing a metal structure of another bonded cross section of a particle-dispersed composite member bonded by a conventional method.

【図5】固相接合法の要領を説明する図である。FIG. 5 is a diagram for explaining the outline of the solid-state joining method.

【図6】他の固相接合法の要領を説明する図である。FIG. 6 is a diagram for explaining the outline of another solid-state joining method.

【符号の説明】[Explanation of symbols]

1 治具 2 治具 3 真空容器 10 インサート材 A 接合部材 B 接合部材 DESCRIPTION OF SYMBOLS 1 Jig 2 Jig 3 Vacuum container 10 Insert material A Joining member B Joining member

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al合金をマトリックスとした粒子分散
複合部材同志をインサート材を介設して固相の状態で接
合する場合に、前記インサート材にCu箔又はZn箔を
用い、温度域786〜790K、加圧時間0.6〜1
0.8ks 、加圧圧力0.1〜100MPa の条件で処
理することによって接合面に残るインサート材の層を消
失せしめるとともに、複合部材に分散している粒子の接
合面における凝集を防止することを特徴とする固相拡散
接合法。
When a particle-dispersed composite member using an Al alloy as a matrix is joined in a solid state with an insert material interposed, a Cu foil or a Zn foil is used for the insert material, and a temperature range of 786 to 790K, pressurization time 0.6-1
By treating under the conditions of 0.8 ks and a pressure of 0.1 to 100 MPa, it is possible to eliminate the layer of the insert material remaining on the joint surface and to prevent the particles dispersed in the composite member from agglomerating on the joint surface. Characterized by solid phase diffusion bonding.
【請求項2】 粒子分散複合部材のマトリックスにJI
S AC8A,AC8B,AC4C及びAC9Bの各合
金を用いることを特徴とする請求項1に記載の固相拡散
接合法。
2. The matrix of a particle-dispersed composite member has JI
The solid-state diffusion bonding method according to claim 1, wherein alloys of SAC8A, AC8B, AC4C, and AC9B are used.
【請求項3】 接合面にインサート材の残留層がなく、
かつ粒子の凝集層のない請求項1に記載の方法で製造し
た粒子分散複合材料。
3. There is no residual layer of the insert material on the joining surface,
A particle-dispersed composite material produced by the method according to claim 1, wherein the composite material has no aggregated layer of particles.
JP16965493A 1993-06-16 1993-06-16 Solid phase diffusion bonding method and material of particle dispersed composite member Expired - Fee Related JP3154361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16965493A JP3154361B2 (en) 1993-06-16 1993-06-16 Solid phase diffusion bonding method and material of particle dispersed composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16965493A JP3154361B2 (en) 1993-06-16 1993-06-16 Solid phase diffusion bonding method and material of particle dispersed composite member

Publications (2)

Publication Number Publication Date
JPH071158A JPH071158A (en) 1995-01-06
JP3154361B2 true JP3154361B2 (en) 2001-04-09

Family

ID=15890476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16965493A Expired - Fee Related JP3154361B2 (en) 1993-06-16 1993-06-16 Solid phase diffusion bonding method and material of particle dispersed composite member

Country Status (1)

Country Link
JP (1) JP3154361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349683C (en) * 2005-09-06 2007-11-21 山东大学 Diffusion soldering method capable of making copper-aluminium joint binding strength high

Also Published As

Publication number Publication date
JPH071158A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
US5234152A (en) Transient liquid phase ceramic bonding
EP1684933B1 (en) Method for controlling pressure through a compliant element in reactive multilayer joining
US5372298A (en) Transient liquid phase ceramic bonding
US8186566B2 (en) Method for cohesively bonding metal to a non-metallic substrate
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
JPS6071579A (en) Method of bonding alumina and metal
JPS60131874A (en) Method of bonding ceramic and metal
US4978054A (en) Diffusion bonding process for aluminum and aluminum alloys
JP4531591B2 (en) Method for joining aluminum-based members
JP4061170B2 (en) Method for producing sandwich structure made of aluminum foam
JP3154361B2 (en) Solid phase diffusion bonding method and material of particle dispersed composite member
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
US5263640A (en) Method of brazing beryllium-aluminum alloys
JP3100022B2 (en) Solid phase diffusion bonding using insert material
JPS6349382A (en) Insert material for diffused joining
JP3218873B2 (en) Solid phase diffusion bonding
JPH067925A (en) Method for joining aluminum material
JPH06218558A (en) Method for joining composite material
JPS62199276A (en) Joining method for inorganic fiber reinforced composite aluminum material
JPH0337165A (en) Adhesion between ceramics and metal
JP2001262331A (en) Method for producing solid phase diffusion-joined sputtering target assembly
JP3062278B2 (en) Bonding method of copper with low linear expansion coefficient material
JPH09300104A (en) Complex tool material of super-hard alloy system
JP2750824B2 (en) Method of joining whisker reinforced metal base material
JP2007319896A (en) Method for joining aluminum-based members

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees