JPH0315539Y2 - - Google Patents

Info

Publication number
JPH0315539Y2
JPH0315539Y2 JP10151784U JP10151784U JPH0315539Y2 JP H0315539 Y2 JPH0315539 Y2 JP H0315539Y2 JP 10151784 U JP10151784 U JP 10151784U JP 10151784 U JP10151784 U JP 10151784U JP H0315539 Y2 JPH0315539 Y2 JP H0315539Y2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
cracked gas
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10151784U
Other languages
Japanese (ja)
Other versions
JPS6116352U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10151784U priority Critical patent/JPS6116352U/en
Publication of JPS6116352U publication Critical patent/JPS6116352U/en
Application granted granted Critical
Publication of JPH0315539Y2 publication Critical patent/JPH0315539Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は炭化水素の熱分解装置に係り、特にナ
フサ等の炭化水素を熱分解してエチレン、プロピ
レン等のオレフインを製造するための熱分解装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a hydrocarbon pyrolysis device, and particularly to a pyrolysis device for producing olefins such as ethylene and propylene by pyrolyzing hydrocarbons such as naphtha. Regarding.

〔考案の背景〕[Background of the idea]

ナフサ等の炭化水素を熱分解してエチレン、プ
ロピレン等のオレフインを製造するに際しては、
エチレンの収率をできるだけ高くし、かつプロピ
レンの収率の減少はできるだけ小さくすることが
要望されている。このため、特にエチレンの収率
を向上させるために、熱分解炉での反応温度を高
くしたり反応管内での炭化水素分圧を低くし、ま
た分解ガスの滞留時間を短かく等の反応コイルの
開発が進められている。
When producing olefins such as ethylene and propylene by thermally decomposing hydrocarbons such as naphtha,
It is desired to increase the yield of ethylene as high as possible and to minimize the decrease in the yield of propylene. For this reason, in order to particularly improve the yield of ethylene, the reaction temperature in the pyrolysis furnace should be raised, the hydrocarbon partial pressure in the reaction tube should be lowered, and the residence time of the cracked gas should be shortened. development is underway.

炭化水素の熱分解炉においては、反応コイルで
所定の温度まで加熱され熱分解した分解ガスは、
分解ガスの過分解・2次反応を凍結するために、
後続の急冷熱交換器に導き、できるだけ早く急冷
する必要がある。第7図は、この過程を示したも
のである。第7図に示すように分解炉反応コイル
と急冷熱交換器とはその機能が全く逆であるた
め、分解炉反応コイルの改良はなされてもその構
造的制約によつて分解炉反応コイルと急冷熱交換
器とを接続するための断熱された高温配管部が必
要となる。
In a hydrocarbon pyrolysis furnace, the cracked gas is heated to a predetermined temperature in a reaction coil and pyrolyzed.
In order to freeze over-decomposition and secondary reactions of cracked gas,
It must be led to a subsequent quench heat exchanger and quenched as quickly as possible. FIG. 7 shows this process. As shown in Figure 7, the functions of the cracking furnace reaction coil and the quenching heat exchanger are completely opposite, so even if the cracking furnace reaction coil is improved, its structural limitations will make it difficult to match the cracking furnace reaction coil. An insulated high-temperature piping section is required to connect to the cold heat exchanger.

第5図および第6図は上記のような断熱された
高温配管部を有する従来の熱分解炉の例を示して
いる。第5図においてバーナ2が備えられた分解
炉燃焼室1に設置された複数の反応管3を集合さ
せ、外周面に断熱保温層4が設けられた高温配管
5を介して分解ガスを多管式の急冷熱交換器6に
導くようになつている。第6図においては、複数
の反応管3の出口部をそのまま延長し、外周面に
断熱保温層4が設けられた複数の高温配管5を介
して分解ガスを複数の2重管式の急冷熱交換器7
に導き、次いで熱交換器8に導くようになつてい
る。
FIGS. 5 and 6 show an example of a conventional pyrolysis furnace having an insulated high-temperature piping section as described above. In FIG. 5, a plurality of reaction tubes 3 installed in a combustion chamber 1 of a cracking furnace equipped with a burner 2 are assembled, and cracked gas is fed into multiple tubes through a high-temperature pipe 5 provided with a heat insulating layer 4 on the outer circumferential surface. It is designed to lead to a quenching heat exchanger 6 of the formula. In FIG. 6, the outlet portions of a plurality of reaction tubes 3 are extended as they are, and the decomposed gas is passed through a plurality of high-temperature pipes 5 provided with a heat insulating layer 4 on the outer circumferential surface to a plurality of double-pipe quenching tubes. Exchanger 7
and then to a heat exchanger 8.

しかしながら、このような従来の熱分解炉で
は、断熱保温層4が設けられた高温配管5の部
分、すなわち断熱領域で分解ガスの過分解、2次
反応が進行する。この結果、反応コイルおよび原
料ガスの分解条件にもよるが、反応コイルをでた
分解ガスが、前記した断熱領域および急冷熱交換
器を通過し、過分解が停止する温度に冷却される
までに第7図に示すようにエチレンの収率は1〜
2%増加するが、プロピレンの収率は3〜5%と
大巾に低下し、付加価値の低いメタンや水素ガス
の収率が上がることになる。
However, in such a conventional pyrolysis furnace, over-decomposition and secondary reactions of the decomposed gas proceed in the portion of the high-temperature pipe 5 where the heat-insulating layer 4 is provided, that is, in the heat-insulating region. As a result, depending on the decomposition conditions of the reaction coil and raw material gas, the cracked gas leaving the reaction coil passes through the above-mentioned adiabatic region and the quenching heat exchanger and is cooled to a temperature at which over-decomposition stops. As shown in Figure 7, the yield of ethylene is 1~
Although the amount increases by 2%, the yield of propylene drops significantly to 3 to 5%, and the yield of methane and hydrogen gas, which have low added value, increases.

一方、分解ガスの過分解、2次反応を凍結する
ために断熱領域を設ける代りに高温配管に相当す
る部分を一般的なバーナを有する燃焼室内に収納
すると、次のような問題が生ずる。すなわち、第
5図に示す高温配管は直径が8〜12インチ程度で
あり、第6図に示す高温配管では直径4〜6イン
チ程度が一般的であり、熱分解炉内の反応管寸法
に比べて大口径となる。このような大口径で、か
つ高い分解反応温度(約860℃)に維持するため
の高温配管部を一般的なバーナを有する燃焼室内
に収納すると、伝熱効果が悪く、局部的な過熱を
誘発し、コーキングを促進したり、材料の劣化、
寿命短縮を招くことになり、一方このような点を
避けるために大型の燃焼室とすると反応管と急冷
熱交換器の接続が困難となるため、高温配管部分
を炉外に取り出し、前記した断熱保温層を有する
高温配管部としているのが現状である。
On the other hand, if instead of providing a heat insulating area to freeze over-decomposition and secondary reactions of cracked gas, the portion corresponding to the high-temperature piping is housed in a combustion chamber equipped with a general burner, the following problems arise. That is, the high-temperature piping shown in Figure 5 has a diameter of about 8 to 12 inches, and the high-temperature piping shown in Figure 6 generally has a diameter of about 4 to 6 inches, which is smaller than the reaction tube size in the pyrolysis furnace. This results in a large diameter. If such a large-diameter, high-temperature piping section that maintains a high decomposition reaction temperature (approximately 860°C) is housed in a combustion chamber with a general burner, the heat transfer effect will be poor and local overheating will occur. This may cause caulking, material deterioration,
On the other hand, if a large combustion chamber is used to avoid this problem, it will be difficult to connect the reaction tubes and the quenching heat exchanger. Currently, the high temperature piping section has a heat insulating layer.

〔考案の目的〕[Purpose of invention]

本考案の目的は、上記した従来技術の欠点をな
くし、エチレンの収率を高く維持しながら、プロ
ピレンの収率の減少を小さくすることができる炭
化水素の熱分解装置を提供することにある。
An object of the present invention is to provide a hydrocarbon pyrolysis apparatus that eliminates the drawbacks of the prior art described above and can reduce the decrease in propylene yield while maintaining a high ethylene yield.

〔考案の概要〕[Summary of the idea]

本考案は、熱分解炉内の反応管と急冷熱交換器
とを接続する配管部分に触媒による燃焼装置を設
け、この配管部分を必要な反応温度に制御できる
反応管として使用し、かつ急冷熱交換器に直接接
続すことによつて上記した目的を一挙に解決した
ものである。
In this invention, a catalytic combustion device is installed in the piping connecting the reaction tube and the quenching heat exchanger in the pyrolysis furnace, and this piping is used as a reaction tube that can control the required reaction temperature. By connecting directly to the exchange, the above objectives are solved at once.

〔考案の実施例〕[Example of idea]

以下、添付図面に基づいて本考案の実施例を説
明する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第1図および第2図はそれぞれ本考案の実施例
を示し、第1図において分解炉燃焼室1内の反応
管3は高温配管9を介して急冷熱交換器6と接続
され、高温配管9の外周囲には煙管10が取り付
けられている。煙管10と分解炉燃焼室1との接
続部には耐熱性の伸縮継手11が配設され、煙管
10の急冷熱交換器6に近接する位置に燃料ガス
ノズル12と空気ノズル13が取り付けられてい
る。図中、14は燃焼触媒充填層であつて、煙管
10に円環状に設けられ、煙管10の外周囲には
断熱保温層15が設けられている。
1 and 2 respectively show an embodiment of the present invention. In FIG. 1, a reaction tube 3 in a cracking furnace combustion chamber 1 is connected to a quenching heat exchanger 6 via a high temperature pipe 9. A smoke pipe 10 is attached to the outer periphery of the pipe. A heat-resistant expansion joint 11 is provided at the connection between the smoke pipe 10 and the cracking furnace combustion chamber 1, and a fuel gas nozzle 12 and an air nozzle 13 are attached to the smoke pipe 10 at a position close to the quenching heat exchanger 6. . In the figure, reference numeral 14 denotes a combustion catalyst packed bed, which is provided in an annular shape in the smoke pipe 10, and a heat insulating layer 15 is provided around the outside of the smoke pipe 10.

このような炭化水素の熱分解炉において、反応
管3からの分解ガスは、高温配管9を介して急冷
熱交換器6に導入される。このとき分解炉燃焼室
1に設置されたバーナ2に供給される燃料ガスの
一部が燃料ガスノズル12から導入され、空気ノ
ズル13から燃焼用空気が導入される。燃焼用空
気と燃料ガスとの比が制御され、これらの混合ガ
スが燃焼触媒充填層14に導入され、燃料ガスが
燃焼する。この燃焼ガスは煙管10内を流動して
高温配管部9内の分解ガスと熱交換し、伸縮継手
11を介して分解炉燃焼室1に導かれ、原料ガス
の予熱用として熱回収される。
In such a hydrocarbon pyrolysis furnace, cracked gas from the reaction tube 3 is introduced into the quenching heat exchanger 6 via the high temperature pipe 9. At this time, part of the fuel gas supplied to the burner 2 installed in the combustion chamber 1 of the cracking furnace is introduced from the fuel gas nozzle 12, and combustion air is introduced from the air nozzle 13. The ratio of combustion air and fuel gas is controlled, and the mixed gas is introduced into the combustion catalyst packed bed 14, where the fuel gas is combusted. This combustion gas flows through the smoke pipe 10 and exchanges heat with the cracked gas in the high-temperature piping section 9, and is led to the cracking furnace combustion chamber 1 via the expansion joint 11, where the heat is recovered for preheating the raw material gas.

第2図において第1図に示す装置と異なる点
は、第1図に示す装置は高温配管9が分解炉燃焼
室1内の各反応管3を集合したものであるのに対
し、第2図に示す装置では分解炉燃焼室1内の各
反応管3をそれぞれ延長して各高温配管9とし、
それぞれの高温配管9に対し、第1図と同様の燃
焼触媒による加熱領域としていることである。し
たがつて第2図において、第1図に示す部材に相
当する部材は同一符号で示している。
The difference between the apparatus shown in FIG. 2 and the apparatus shown in FIG. 1 is that in the apparatus shown in FIG. In the apparatus shown in the figure, each reaction tube 3 in the cracking furnace combustion chamber 1 is extended to form each high-temperature pipe 9,
Each high-temperature pipe 9 is provided with a heating area by a combustion catalyst similar to that shown in FIG. Therefore, in FIG. 2, members corresponding to those shown in FIG. 1 are designated by the same reference numerals.

第2図に示す装置では、各々の高温配管9毎に
第1図に示す操作が行なわれる。
In the apparatus shown in FIG. 2, the operation shown in FIG. 1 is performed for each high-temperature pipe 9.

第1図および第2図に示す装置では、高温配管
部を反応管としての機能を有するように使用する
ことができ、直接急冷熱交換器と接続できるとと
もに燃焼触媒による加熱方式を採用しているため
加熱用燃焼ガスは短時間で燃焼反応し、しかも空
気−燃焼比制御によつて燃焼温度を所定の反応温
度レベルにコントロールすることができる。この
ため、高温配管9の出口付近の分解ガス温度を反
応に必要な温度に容易にかつ正確に制御できるの
で第4図に示すようにエチレン収率を高く維持し
つつプロピレン収率の低下を小さくすることがで
き、また分解ガスのコーキングを避けることがで
きるとともに従来の断熱配管部を省き、高温配管
部を反応管として利用できるので装置をコンパク
トにでき、しかも分解炉燃焼室内の反応管を短か
くすることができる。
In the equipment shown in Figures 1 and 2, the high-temperature piping section can be used to function as a reaction tube, can be directly connected to a quenching heat exchanger, and uses a heating method using a combustion catalyst. Therefore, the heating combustion gas undergoes a combustion reaction in a short time, and the combustion temperature can be controlled to a predetermined reaction temperature level by controlling the air-combustion ratio. Therefore, the temperature of the cracked gas near the outlet of the high-temperature pipe 9 can be easily and accurately controlled to the temperature required for the reaction, so as shown in Figure 4, the ethylene yield can be maintained high and the decrease in the propylene yield can be minimized. In addition, coking of cracked gas can be avoided, and the conventional insulated piping can be omitted and the high-temperature piping can be used as a reaction tube, making the equipment more compact.Moreover, the reaction tube in the combustion chamber of the cracking furnace can be shortened. It is possible to do this.

因みに高温配管部分を分解炉燃焼室からの発ガ
スによつて加熱する場合、分解反応温度を約860
℃と高く維持し、かつ伝熱効果の悪い大口径管の
局部加熱を防ぐためには極めて限られた廃ガス温
度レベルが要求されるため導入する廃ガス温度を
制御するための大規模の設備が必要となる。
Incidentally, when heating the high-temperature piping section by gas generated from the combustion chamber of the decomposition furnace, the decomposition reaction temperature is approximately 860°C.
In order to maintain the exhaust gas temperature at a high temperature of °C and prevent local heating of large-diameter pipes with poor heat transfer effects, an extremely limited exhaust gas temperature level is required. It becomes necessary.

〔考案の効果〕[Effect of idea]

以上のように本考案の炭化水素の熱分解装置に
よれば、コンパクトな装置で分解ガスのコーキン
グ等を発生させることなく、エチレン収率を高く
維持したままでプロピレンの収率の低下を小さく
することができる。
As described above, according to the hydrocarbon pyrolysis apparatus of the present invention, the decrease in propylene yield can be minimized while maintaining a high ethylene yield without causing coking of cracked gas with a compact apparatus. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる炭化水素の熱分解装置
の一実施例を示す概略的構成図、第2図は本考案
にかかる炭化水素の熱分解装置の他の実施例を示
す概略的構成図、第3図は第1図のA−A線に沿
う断面図、第4図は第1図および第2図に示す装
置における分解ガスの流れ方向(滞留時間)に従
つた、分解ガスの温度、エチレンおよびプロピレ
ンの収率の変化過程を示すグラフ、第5図および
第6図はそれぞれ従来の炭化水素の熱分解装置を
示す概略的構成図、第7図は第5図および第6図
における分解ガスの流れ方向(滞留時間)に従つ
た、分解ガスの温度、エチレンおよびプロピレン
の収率の変化過程を示すグラフである。 1……分解炉燃焼室、2……バーナ、3……反
応管、4,15……断熱保温層、5,9……高温
配管、6,7……急冷熱交換器、8……熱交換
器、10……煙管、11……伸縮継手、12……
燃料ガスノズル、13……空気ノズル、14……
燃焼触媒充填層。
FIG. 1 is a schematic block diagram showing one embodiment of the hydrocarbon pyrolysis apparatus according to the present invention, and FIG. 2 is a schematic block diagram showing another embodiment of the hydrocarbon pyrolysis apparatus according to the present invention. , Fig. 3 is a cross-sectional view taken along line A-A in Fig. 1, and Fig. 4 shows the temperature of the cracked gas according to the flow direction (residence time) of the cracked gas in the apparatus shown in Figs. 1 and 2. , a graph showing the change process of the yield of ethylene and propylene, Figures 5 and 6 are schematic diagrams showing the conventional hydrocarbon thermal decomposition equipment, respectively, and Figure 7 is a graph showing the change process of the yield of ethylene and propylene. 1 is a graph showing the change process of the temperature of cracked gas and the yield of ethylene and propylene according to the flow direction (residence time) of cracked gas. 1... Cracking furnace combustion chamber, 2... Burner, 3... Reaction tube, 4, 15... Heat insulation layer, 5, 9... High temperature piping, 6, 7... Rapid cooling heat exchanger, 8... Heat Exchanger, 10... Smoke pipe, 11... Expansion joint, 12...
Fuel gas nozzle, 13... Air nozzle, 14...
Combustion catalyst packed bed.

Claims (1)

【実用新案登録請求の範囲】 (1) 炭化水素の熱分解炉内の反応管と、該反応管
内の分解ガスを急冷するための熱交換器とを連
結する高温配管部に触媒による燃焼装置を設置
したことを特徴とする炭化水素の熱分解装置。 (2) 前記触媒による燃焼装置が、前記高温配管部
の外周囲に設けられた煙管内であつて、前記熱
交換器に近接した位置に充填された燃焼触媒層
と、該燃焼触媒層と前記熱交換器の分解ガス導
入口との間に設けられた燃料ガスノズルおよび
空気ノズルとからなることを特徴とする実用新
案登録請求の範囲第1項記載の炭化水素の熱分
解装置。
[Claims for Utility Model Registration] (1) A catalytic combustion device is installed in a high-temperature piping section that connects a reaction tube in a hydrocarbon pyrolysis furnace and a heat exchanger for rapidly cooling the cracked gas in the reaction tube. A hydrocarbon pyrolysis device characterized by having been installed. (2) The catalytic combustion device includes a combustion catalyst layer filled in a smoke pipe provided around the outer periphery of the high-temperature piping section and close to the heat exchanger; The hydrocarbon pyrolysis apparatus according to claim 1, which comprises a fuel gas nozzle and an air nozzle, which are provided between a cracked gas inlet of a heat exchanger and a cracked gas inlet of a heat exchanger.
JP10151784U 1984-07-05 1984-07-05 Hydrocarbon pyrolysis equipment Granted JPS6116352U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10151784U JPS6116352U (en) 1984-07-05 1984-07-05 Hydrocarbon pyrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10151784U JPS6116352U (en) 1984-07-05 1984-07-05 Hydrocarbon pyrolysis equipment

Publications (2)

Publication Number Publication Date
JPS6116352U JPS6116352U (en) 1986-01-30
JPH0315539Y2 true JPH0315539Y2 (en) 1991-04-04

Family

ID=30660948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10151784U Granted JPS6116352U (en) 1984-07-05 1984-07-05 Hydrocarbon pyrolysis equipment

Country Status (1)

Country Link
JP (1) JPS6116352U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616631Y2 (en) * 1989-03-27 1994-05-02 新日軽株式会社 Clothes line
US8747765B2 (en) * 2010-04-19 2014-06-10 Exxonmobil Chemical Patents Inc. Apparatus and methods for utilizing heat exchanger tubes

Also Published As

Publication number Publication date
JPS6116352U (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US4361478A (en) Method of preheating hydrocarbons for thermal cracking
US4457364A (en) Close-coupled transfer line heat exchanger unit
US2343866A (en) Process for the pyrolysis of hydrocarbons
TWI464253B (en) Adiabatic reactor to produce olefins
US5554347A (en) Apparatus for carrying out chemical reactions requiring addition of heat at least during start up
CA2290540C (en) Pyrolysis furnace with an internally finned u-shaped radiant coil
EP1021682B1 (en) Flameless combustor process heater
SU1613481A1 (en) Oven for thermal decomposition of gaseous of liquid hydrocarbons
AU726569B2 (en) A process and apparatus for thermal conversion of hydrocarbons to aliphatic hydrocarbons which are more unsaturated than the starting products, combining a steam cracking step and a pyrolysis step
US4908121A (en) Flexible feed pyrolysis process
JPH0315539Y2 (en)
US8430556B2 (en) Internal heat exchanger/mixer for process heaters
CN113652508A (en) Electromagnetic induction heating reforming furnace and using method thereof
CN110607181A (en) Equipment and method for preparing light hydrocarbons by pressurizing and directly heating cracking
US2866836A (en) Process and apparatus for conversion of hydrocarbons
CN217600663U (en) Reactor for preparing low-carbon olefin by cracking hydrocarbons by directly heating heat carrier
CN213623982U (en) Reaction device and production system for preparing low-carbon olefins
RU1790597C (en) Method of producing low-molecular olefines
JPS6230602A (en) Steam modifying furnace
WO2003095590A1 (en) Improved cracking of hydrocarbons
JPH0359091A (en) Apparatus for pyrolysis of hydrocarbon
JPS6281330A (en) Thermal cracking of hydrocarbon
CN116023975A (en) Cracking furnace, method for preparing olefin by cracking and application
WO1991002195A1 (en) Natural draft air preheater
JPH04257692A (en) Heat exchanger for thermal decomposition furnace