JPH04257692A - Heat exchanger for thermal decomposition furnace - Google Patents

Heat exchanger for thermal decomposition furnace

Info

Publication number
JPH04257692A
JPH04257692A JP1615391A JP1615391A JPH04257692A JP H04257692 A JPH04257692 A JP H04257692A JP 1615391 A JP1615391 A JP 1615391A JP 1615391 A JP1615391 A JP 1615391A JP H04257692 A JPH04257692 A JP H04257692A
Authority
JP
Japan
Prior art keywords
cooling
pipe
pipes
primary
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1615391A
Other languages
Japanese (ja)
Other versions
JP2881034B2 (en
Inventor
Tamio Maruta
丸田 民雄
Takashi Harada
孝 原田
Yasuyuki Owa
泰行 応和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3016153A priority Critical patent/JP2881034B2/en
Publication of JPH04257692A publication Critical patent/JPH04257692A/en
Application granted granted Critical
Publication of JP2881034B2 publication Critical patent/JP2881034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To enable sensitive heat held by generated gas to be recovered under a high efficiency by a method wherein a plurality of cooling pipes are branched and connected in parallel with a single cooling pipe and two cooling portions having generated gas outlets of the plurality of cooling pipes are disposed within the same shell having heat exchanging medium flowed therein. CONSTITUTION:Generated gas of high temperature produced from a thermal cracking furnace for hydro-carbon keeps its high speed flow at a part of a primary cooling pipe 31 and is cooled to a temperature less than a freezing temperature of secondary reaction. The gas is changed into a low speed flow at a part of a branched secondary cooling pipe 32 and at the same time a cooling area is increased. Due to this fact, an entire length of the cooling device is shortened more than that of the double-piped structure in which the prior art primary cooling device and the secondary cooling device are integrally formed together and so an intermediate communication pipe between the high temperature cooling pipe connected to a reaction pipe of the thermal cracking furnace and the prior art primary and secondary cooling devices can be eliminated. Accordingly, a pressure loss caused by a pipe resistance of the produced gas can be substantially reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭化水素の熱分解炉に用
いられる急速冷却用の熱交換装置に係り,特にオレフィ
ン系炭化水素などの高温の熱分解ガスを急冷して2次反
応を凍結し,かつ顕熱の回収を行うのに好適な構造の熱
交換装置に関する。
[Industrial Application Field] The present invention relates to a heat exchange device for rapid cooling used in a hydrocarbon pyrolysis furnace, and in particular rapidly cools high-temperature pyrolysis gas such as olefinic hydrocarbons to freeze secondary reactions. The present invention relates to a heat exchange device having a structure suitable for recovering sensible heat.

【0002】0002

【従来の技術】従来,ナフサ(粗製ガソリン),灯油や
軽油などの液体の炭化水素を原料として用い,これを熱
分解してエチレン,プロピレン等のオレフィン炭化水素
類を製造する熱分解炉においては,高温の熱分解生成ガ
スの2次反応の凍結と顕熱の回収を目的とした2段式の
冷却器(クエンチャー)が採用されている。この2段式
の冷却器を用いた炭化水素の熱分解システムの従来の系
統を図3に示す。なお,図3に示す炭化水素の熱分解シ
ステムに用いられている1次冷却器の構造を図4に,2
次冷却器の構造を図5に示す。
[Prior Art] Conventionally, pyrolysis furnaces use liquid hydrocarbons such as naphtha (crude gasoline), kerosene, and light oil as raw materials and thermally decompose them to produce olefin hydrocarbons such as ethylene and propylene. A two-stage cooler (quencher) is used to freeze the secondary reaction of high-temperature pyrolysis gas and recover sensible heat. FIG. 3 shows a conventional hydrocarbon pyrolysis system using this two-stage cooler. The structure of the primary cooler used in the hydrocarbon pyrolysis system shown in Figure 3 is shown in Figure 4.
The structure of the secondary cooler is shown in Figure 5.

【0003】図3において,熱分解炉1には,バーナ2
が設けられていて,このバーナ2により反応管3の中を
流れる原料炭化水素を加熱し分解させるものである。分
解された生成ガスは,高温連絡管4を介して,1次冷却
器5に導入される。1次冷却器5は,高温の生成ガスの
2次反応の凍結を主目的とし,高温の生成ガスを高速度
で反応凍結温度にまで1次冷却器の降水管11から供給
される冷却水によって冷却される。1次冷却器5で,所
定温度にまで冷却つれた生成ガスは,1次冷却器5の出
口ヘッダ6に集められ,中間連絡管7を介して,2次冷
却器8に送られ,2次冷却器8で生成ガスは2次冷却器
の降水管12から供給される冷却水と熱交換して顕熱が
回収され冷却される。1次冷却器5,2次冷却器8とも
各々に設けられている上昇管9,10,降水管11,1
2中に供給される高圧水で熱交換され,スチームドラム
13から高圧蒸気として熱回収されるものである。
In FIG. 3, the pyrolysis furnace 1 includes a burner 2.
The burner 2 heats and decomposes the raw material hydrocarbon flowing through the reaction tube 3. The decomposed product gas is introduced into the primary cooler 5 via the high temperature communication pipe 4. The primary cooler 5 has the main purpose of freezing the secondary reaction of the high-temperature product gas, and cools the high-temperature product gas at high speed to the reaction freezing temperature using cooling water supplied from the downcomer pipe 11 of the primary cooler. cooled down. The generated gas cooled to a predetermined temperature in the primary cooler 5 is collected at the outlet header 6 of the primary cooler 5, and sent to the secondary cooler 8 via an intermediate connecting pipe 7, where it is cooled to a predetermined temperature. In the cooler 8, the generated gas exchanges heat with the cooling water supplied from the downcomer pipe 12 of the secondary cooler, recovers sensible heat, and is cooled. Rising pipes 9, 10 and downcomer pipes 11, 1 are provided for both the primary cooler 5 and the secondary cooler 8, respectively.
The heat is exchanged with high-pressure water supplied into the steam drum 13, and the heat is recovered as high-pressure steam from the steam drum 13.

【0004】1次冷却器5は図4に示すごとく,外管1
4と内管15との2重管構造になっており,1次冷却器
5の生成ガス入口部16,1次冷却器5の生成ガス出口
部17と,降水管接続ノズル18,上昇管接続ノズル1
9を備えたものである。図5は2次冷却器8の構造を示
したもので,多管式のシェルアンドチューブ型の熱交換
器で,2次冷却器8の生成ガス入口部21,2次冷却器
8の生成ガス出口部22と,降水管接続ノズル18,上
昇管接続ノズル19を備えたものである。2次冷却器8
の生成ガス入口部21および2次冷却器8の生成ガス出
口部22には,断熱材23が充填されている。一般的に
は,600〜700℃の2次反応凍結温度まで,1次冷
却器5によって生成ガスを高速度で冷却するために,1
次冷却器5内の生成ガスの質量速度を60〜120kg
/m2・sの高質量速度となし,2次冷却器8では,高
沸点分の凝縮を押さえるために30〜60kg/m2・
sの低質量速度とするものである。そのため,図4およ
び図5に示すごとく,1次冷却器5の内管15と2次冷
却器8の冷却管25は,それぞれ口径の異なる冷却管を
用い,また1次,2次冷却器5,8の構造も全く異なる
ものであり,かつ個別に設置していることから熱交換装
置の構造が極めて複雑になるという問題があった。
As shown in FIG. 4, the primary cooler 5 has an outer tube 1.
4 and an inner pipe 15, the produced gas inlet part 16 of the primary cooler 5, the produced gas outlet part 17 of the primary cooler 5, the downcomer pipe connection nozzle 18, and the riser pipe connection. Nozzle 1
9. FIG. 5 shows the structure of the secondary cooler 8, which is a shell-and-tube type heat exchanger. It is equipped with an outlet section 22, a downcomer pipe connection nozzle 18, and a riser pipe connection nozzle 19. Secondary cooler 8
The produced gas inlet section 21 and the produced gas outlet section 22 of the secondary cooler 8 are filled with a heat insulating material 23 . Generally, in order to cool the produced gas at high speed by the primary cooler 5 to the secondary reaction freezing temperature of 600 to 700°C,
The mass velocity of the generated gas in the secondary cooler 5 is set to 60 to 120 kg.
/m2・s, and the secondary cooler 8 has a high mass velocity of 30 to 60 kg/m2・s in order to suppress the condensation of high boiling point components.
A low mass velocity of s is assumed. Therefore, as shown in FIGS. 4 and 5, the inner pipes 15 of the primary cooler 5 and the cooling pipes 25 of the secondary cooler 8 have different diameters, and .

【0005】なお,この種の熱交換器として,例えば特
公昭53−44251号公報に,2重管式の分解ガス冷
却用熱交換器の提案がなされている。
As an example of this type of heat exchanger, a double tube type heat exchanger for cooling cracked gas has been proposed, for example, in Japanese Patent Publication No. 53-44251.

【0006】[0006]

【発明が解決しようとする課題】上述したごとく,従来
の2段式熱交換装置は,熱分解された高温の生成ガスの
副反応を凍結してコークスの発生を抑制する機能は優れ
ており,熱分解炉の操業時間を長くすることができる利
点はあるが,1次,2次冷却器を分離して別々に設置し
ているため,熱交換装置が複雑な構造になるという欠点
があった。
[Problems to be Solved by the Invention] As mentioned above, the conventional two-stage heat exchange device has an excellent function of freezing the side reactions of the high-temperature gas produced by thermal decomposition and suppressing the generation of coke. Although it has the advantage of increasing the operating time of the pyrolysis furnace, it has the disadvantage that the heat exchange device has a complicated structure because the primary and secondary coolers are separated and installed separately. .

【0007】さらに,熱分解炉の反応管と1次冷却器と
の間の高温連絡管や,1次と2次冷却器の中間連絡管な
ど,曲折の多い配管系となるため,熱分解生成ガス系の
圧力損失が大きくなるという問題があった。この圧力損
失の増大は,図6および図7に示すごとく,オレフィン
炭化水素の収率を低下させるのみならず,熱交換装置の
高温部でのコークスの生成を助長し,熱分解炉の操業時
間が短くなるという問題があった。
Furthermore, since the piping system has many bends, such as the high-temperature connecting pipe between the reaction tube and the primary cooler of the pyrolysis furnace and the intermediate connecting pipe between the primary and secondary coolers, the pyrolysis products are There was a problem in that the pressure loss in the gas system increased. As shown in Figures 6 and 7, this increase in pressure drop not only reduces the yield of olefin hydrocarbons, but also promotes the formation of coke in the high temperature section of the heat exchanger, increasing the operating time of the pyrolysis furnace. The problem was that it became shorter.

【0008】本発明の目的は,上記従来技術における問
題点を解消するものであって,熱分解生成ガスの高温部
における質量速度を大きくし急速冷却して2次反応を凍
結するという従来の2段式熱交換装置の機能を損なうこ
となく,生成ガスの保有する顕熱を高効率で回収するこ
とができ,かつ圧力損失が小さくて簡単な構造で設備費
の安価な熱分解炉用熱交換装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to solve the above-mentioned problems in the prior art, and to solve the conventional two-dimensional problem, which involves increasing the mass velocity of the pyrolysis product gas in the high-temperature part and rapidly cooling it to freeze the secondary reaction. A heat exchanger for pyrolysis furnaces that can recover the sensible heat possessed by the produced gas with high efficiency without impairing the function of the stage heat exchanger, has a simple structure with low pressure loss, and has low equipment costs. The goal is to provide equipment.

【0009】[0009]

【課題を解決するための手段】上記本発明の目的を達成
するために,炭化水素の熱分解炉における高温の熱分解
生成ガスを急冷するための熱交換装置において,生成ガ
スの2次反応凍結を主目的とした1次冷却管1本に対し
,生成ガスの顕熱の回収を行うための2次冷却管を2本
または3本あるいはそれ以上を並列に接続して,1次お
よび2次冷却管内を流れる生成ガスの質量速度を,上記
のそれぞれの目的に合わせた最適値に制御できるように
するものである。
[Means for Solving the Problems] In order to achieve the above object of the present invention, in a heat exchange device for rapidly cooling high temperature pyrolysis product gas in a hydrocarbon pyrolysis furnace, a secondary reaction freezing of the product gas is provided. For one primary cooling pipe whose main purpose is to recover the sensible heat of the produced gas, two or three or more secondary cooling pipes are connected in parallel to This makes it possible to control the mass velocity of the generated gas flowing in the cooling pipe to an optimal value that meets each of the above objectives.

【0010】本発明の熱交換装置は,具体的には1本の
冷却管からなる1次冷却部に,2本以上の複数の冷却管
を,Y型ベンド管または三つ又ベンド管などを用いて並
列に分岐して接続し,かつ分岐した複数の冷却管の生成
ガス出口部を,上記ベンド管などを用いて1箇所に集合
させて複数の冷却管を楕円状のループ構造に接続して2
次冷却部を構成し,上記1次冷却部と2次冷却部を,ボ
イラ水などの熱交換媒体が流通する同一のシェル(外管
)内に一体に配設した構造とするものである。
Specifically, the heat exchange device of the present invention includes a primary cooling section consisting of one cooling pipe, and a plurality of cooling pipes of two or more using Y-shaped bend pipes or three-pronged bend pipes. The generated gas outlet portions of the plurality of branched cooling pipes are connected in parallel and gathered at one place using the above-mentioned bend pipe, etc., and the plurality of cooling pipes are connected in an elliptical loop structure.
The structure constitutes a secondary cooling section, and the primary cooling section and the secondary cooling section are integrally disposed within the same shell (outer tube) through which a heat exchange medium such as boiler water flows.

【0011】そして,上記シェルの両端部には,降水管
ヘッダおよび上昇管ヘッダ等を設け,上記1次冷却部に
は高温の熱分解生成ガスの入口接続部を設け,上記2次
冷却部には生成ガスの出口接続部を設けることにより達
成される。
[0011] A downcomer header, a riser header, etc. are provided at both ends of the shell, an inlet connection section for high temperature pyrolysis product gas is provided in the primary cooling section, and an inlet connection section for the high temperature pyrolysis gas is provided in the secondary cooling section. is achieved by providing an outlet connection for the product gas.

【0012】本発明は,オレフィン系炭化水素を製造す
る熱分解炉から発生する高温の生成ガスを,冷却管の内
部で急速に冷却して2次反応の凍結を行う1次冷却部と
,生成ガスが保有する顕熱の回収を行う2次冷却部とを
備えた熱交換装置において,上記熱交換装置は,単数の
冷却管からなる1次冷却部と,上記単数の冷却管に,2
本以上の複数の冷却管を並列に分岐して接続し,かつ分
岐した複数の冷却管の生成ガス出口部を1箇所に集合し
て接続した構造の2次冷却部を,熱交換媒体が流通する
同一のシェル内に一体に配設してなるものである。
[0012] The present invention provides a primary cooling section that rapidly cools high-temperature product gas generated from a pyrolysis furnace for producing olefinic hydrocarbons inside a cooling pipe to freeze the secondary reaction, and a primary cooling section that freezes the secondary reaction. In a heat exchange device equipped with a secondary cooling section that recovers sensible heat held by gas, the heat exchange device includes a primary cooling section consisting of a single cooling pipe, and a secondary cooling section consisting of a single cooling pipe.
The heat exchange medium flows through the secondary cooling section, which has a structure in which a plurality of cooling pipes are branched and connected in parallel, and the generated gas outlet parts of the plurality of branched cooling pipes are gathered and connected in one place. They are arranged integrally within the same shell.

【0013】また,本発明の熱交換装置において,1次
冷却部と2次冷却部との間を,U字型のベンド管で接続
し,U字型のシェル内に一体に配設することも可能であ
る。
[0013] Furthermore, in the heat exchange device of the present invention, the primary cooling section and the secondary cooling section may be connected by a U-shaped bent pipe and disposed integrally within the U-shaped shell. is also possible.

【0014】[0014]

【作用】本発明の熱交換装置によれば,炭化水素の熱分
解炉から発生した高温の生成ガスは,1次冷却管の部分
では高流速(高質量速度)を保ちつつ,2次反応の凍結
温度以下に冷却され,そして分岐された2次冷却管の部
分では低流速(低質量速度)に変わると同時に,冷却(
熱交換)面積を増大させることができるので,従来の1
次,2次冷却器が一体化された二重管構造のものよりも
,全体的に冷却器の長さが短くなり,かつ熱分解炉の反
応管と接続される高温連絡管および,従来の1次と2次
冷却器との間の中間連絡管を省略することができるので
,生成ガスの管路抵抗による圧力損失を大幅に低減させ
ることができる。また,2次冷却管を複数本並列に接続
してループ構造としているので,熱交換器全体としての
長さを短くすることができると同時に,シェル(外管)
と冷却管(内管)との熱膨張差を吸収することができ,
熱交換器の熱応力による破損を著しく低減することが可
能となる。
[Operation] According to the heat exchange device of the present invention, the high-temperature product gas generated from the hydrocarbon pyrolysis furnace maintains a high flow rate (high mass velocity) in the primary cooling pipe section, while undergoing the secondary reaction. In the section of the secondary cooling pipe that is cooled below the freezing temperature and branched off, the flow rate changes to a low flow rate (low mass velocity), and at the same time the cooling (
Heat exchange) area can be increased, so compared to the conventional 1
The overall length of the cooler is shorter than that of a double-tube structure in which the primary and secondary coolers are integrated, and the high-temperature communication pipe connected to the reaction tube of the pyrolysis furnace and the conventional Since the intermediate communication pipe between the primary and secondary coolers can be omitted, pressure loss due to pipe resistance of the generated gas can be significantly reduced. In addition, since multiple secondary cooling pipes are connected in parallel to form a loop structure, the length of the heat exchanger as a whole can be shortened, and at the same time, the shell (outer pipe)
It can absorb the difference in thermal expansion between the inner pipe and the cooling pipe (inner pipe),
It becomes possible to significantly reduce damage to the heat exchanger due to thermal stress.

【0015】[0015]

【実施例】以下に本発明の一実施例を挙げ,図面を用い
てさらに詳細に説明する。図1に,本発明の熱分解炉用
熱交換装置の構成の一例を示す。図において,熱交換器
の全体の構造は,シェルまたはパイプかなる外管(シェ
ル)30と1次冷却管31と2次冷却管32の内装管か
らなる,いわゆる2重構造の熱交換装置であるが,1本
の外管30の中に,1本の1次冷却管31と2本または
3本あるいはそれ以上の2次冷却管32を設け,2次冷
却管32の両端には,Y型ベンドまたは三つ又ベンド3
3,34などの2次冷却管32の分岐管を設けたところ
に特徴がある。また,1次冷却管31の一端には降水管
ヘッダ35と突合せ溶接され,他端は三つ又ベンド33
などと突合せ溶接してある。
[Embodiment] An embodiment of the present invention will be described below in more detail with reference to the drawings. FIG. 1 shows an example of the configuration of a heat exchange device for a pyrolysis furnace according to the present invention. In the figure, the overall structure of the heat exchanger is a so-called double-structured heat exchange device consisting of an outer pipe (shell) 30, which is a shell or pipe, and inner pipes, which are a primary cooling pipe 31 and a secondary cooling pipe 32. However, one primary cooling pipe 31 and two, three, or more secondary cooling pipes 32 are provided in one outer pipe 30, and Y is provided at both ends of the secondary cooling pipe 32. Type bend or three-pronged bend 3
The feature is that branch pipes such as 3 and 34 are provided for the secondary cooling pipe 32. Further, one end of the primary cooling pipe 31 is butt welded to a downcomer pipe header 35, and the other end is welded to a three-pronged bend 33.
Butt welded with etc.

【0016】2次冷却管32の両端は,三つ又ベンド3
3,34と突合せ溶接し,三つ又ベンド34の他端は上
昇管ヘッダ36と突合せ溶接してある。降水管ヘッダ3
5には,降水管接続ノズル37が,上昇管ヘッダ36に
は,上昇管接続ノズル38が設けられており,これらの
各々接続ノズル37,38には,ボイラシステムの上昇
管,降水管が接続される。また,1次冷却管31の一端
には,生成ガス入口ノズル39が設けられていて,断熱
材40を内張りしてある。2次冷却管32の一端には,
生成ガス出口ノズル41が設けられている。また,上昇
管ヘッダ36と外管30および外管30と降水管ヘッダ
35とは,やはり突合せ溶接構造とすることが好ましい
。すなわち,高圧ボイラ水を内蔵する容器の主要部品は
,すべて突合せ溶接構造となし,その溶接構造の強度を
改善していることが構造的特徴の一つでもある。
Both ends of the secondary cooling pipe 32 are connected to a three-pronged bend 3.
3 and 34, and the other end of the three-pronged bend 34 is butt welded to a riser header 36. Downpipe header 3
5 is provided with a downcomer pipe connection nozzle 37, and the riser pipe header 36 is provided with a riser pipe connection nozzle 38, and the riser pipe and downcomer pipe of the boiler system are connected to these connection nozzles 37 and 38, respectively. be done. Further, a generated gas inlet nozzle 39 is provided at one end of the primary cooling pipe 31, and is lined with a heat insulating material 40. At one end of the secondary cooling pipe 32,
A product gas outlet nozzle 41 is provided. Further, it is preferable that the riser pipe header 36 and the outer pipe 30 and the outer pipe 30 and the downcomer pipe header 35 have a butt welded structure. In other words, all of the main parts of the container containing the high-pressure boiler water are butt-welded, and one of the structural features is that the strength of the welded structure is improved.

【0017】次に,本実施例において例示した熱交換装
置の作用について説明する。図3に示す熱分解炉1で分
解生成した高温の生成ガスは,反応管3から,図1に示
す生成ガス入口ノズル39に導入され,まず1次冷却管
31内に導入される。1次冷却管31に導入された生成
ガスは,降水管接続ノズル37から供給されるボイラ水
と熱交換して急速に冷却され,2次反応の凍結温度以下
にまで急冷され,三つ又ベンド(分岐管)33を介して
,2次冷却管32に導かれる。2次冷却管32に導かれ
た生成ガスは,2または3あるいはそれ以上の系路に分
割され,上記1次冷却管31で熱交換したボイラ水とさ
らに熱交換して生成ガスは冷却され,生成ガス出口ノズ
ル41から次工程へ送られる。熱を受けたボイラ水は,
一部高圧蒸気となり上昇管ヘッダ36,上昇管接続ノズ
ル38を介して,図3に示すスチームドラム13へ導か
れる。本実施例においては,高温の生成ガスの2次反応
凍結のために要求される生成ガスの高速冷却を1本(1
系路)の1次冷却管31で行い,高流速による生成ガス
の圧力損失の増大を防ぐために,2次冷却管32では2
または3本(2または3系路)とし,2次冷却管32で
の生成ガスの流速,すなわち質量速度を原料性状に合せ
て自由に選択できるところにある。これに加えて,反応
管3と生成ガス入口ノズル39とが直結でき,従来の1
次,2次冷却器5,8へ接続する高温連絡管4および中
間連絡管7を省略することができるので,熱交換装置に
おける圧力損失を最小とすることが可能となり,かつ従
来の2段冷却システムの利点も備えているものである。 また,生成ガスは高温で熱交換装置に導かれるため,内
装されている1次冷却管31および2次冷却管32と,
外管30との間に熱膨張差が生じるが,この熱膨張差を
吸収するために2次冷却管32をY型ベンドまたは三つ
又ベンド33,34等によりループ構造とし,さらに高
圧を受ける主要部品はすべて突合せ溶接が可能な構造と
なし,溶接強度を一段と向上させた構造とするものであ
る。
Next, the operation of the heat exchange device exemplified in this embodiment will be explained. High-temperature product gas decomposed in the pyrolysis furnace 1 shown in FIG. 3 is introduced from the reaction tube 3 to the product gas inlet nozzle 39 shown in FIG. 1, and first introduced into the primary cooling pipe 31. The produced gas introduced into the primary cooling pipe 31 is rapidly cooled by exchanging heat with the boiler water supplied from the downcomer connection nozzle 37, and is rapidly cooled to below the freezing temperature of the secondary reaction, and is then formed into a three-pronged bend (branched It is led to the secondary cooling pipe 32 via the pipe 33. The produced gas guided to the secondary cooling pipe 32 is divided into two or three or more systems, and the produced gas is cooled by further heat exchange with the boiler water that was heat exchanged in the primary cooling pipe 31. The produced gas is sent to the next process from the outlet nozzle 41. Boiler water that has received heat is
Part of the steam becomes high-pressure steam and is guided to the steam drum 13 shown in FIG. 3 via the riser header 36 and the riser connection nozzle 38. In this example, one tube (1
In order to prevent an increase in the pressure loss of the generated gas due to high flow rate, the secondary cooling pipe 32 is
Alternatively, there may be three (two or three lines), and the flow rate of the generated gas in the secondary cooling pipe 32, that is, the mass velocity, can be freely selected according to the raw material properties. In addition, the reaction tube 3 and the generated gas inlet nozzle 39 can be directly connected, which is different from the conventional one.
Since the high-temperature communication pipe 4 and the intermediate communication pipe 7 that connect to the secondary coolers 5 and 8 can be omitted, it is possible to minimize the pressure loss in the heat exchange device, and the conventional two-stage cooling The system also has advantages. In addition, since the generated gas is guided to the heat exchange device at high temperature, the internally installed primary cooling pipe 31 and secondary cooling pipe 32,
A difference in thermal expansion occurs between the outer tube 30 and the secondary cooling tube 32, which has a loop structure with Y-shaped bends or three-pronged bends 33, 34, etc., in order to absorb this difference in thermal expansion. All of these have a structure that allows for butt welding, and has a structure that further improves welding strength.

【0018】図2は,本発明の他の実施例を示すもので
あって,1次冷却管31と三つ又ベンド(分岐管)33
の間に,180度ベンド42を設置したものである。1
次冷却管31と降水管ヘッダ35との溶接部および,2
次冷却管32の生成ガス出口部の三つ又ベンド(分岐管
)34と,降水ヘッダ35との溶接部を基点として,図
2に示すごとく,図の上方部に自由に熱膨張することが
できるので,重質原料炭化水素の熱分解生成ガスのよう
に,生成ガスの冷却温度レベルが高いもの,または高く
なる可能性がある場合には,1次冷却管31および2次
冷却管32と,外管30との間の温度差およびそれに伴
う熱膨張差が大きくなるので,特に有効である。
FIG. 2 shows another embodiment of the present invention, in which a primary cooling pipe 31 and a three-pronged bend (branch pipe) 33 are shown.
A 180 degree bend 42 is installed in between. 1
The welded part between the secondary cooling pipe 31 and the downcomer pipe header 35, and
As shown in FIG. 2, thermal expansion can freely occur in the upper part of the figure, starting from the weld between the three-pronged bend (branch pipe) 34 at the outlet of the generated gas of the secondary cooling pipe 32 and the precipitation header 35, as shown in FIG. , When the cooling temperature level of the generated gas is high or is likely to rise, such as the gas produced by thermal decomposition of heavy feedstock hydrocarbons, the primary cooling pipe 31 and the secondary cooling pipe 32 and the external This is particularly effective because the temperature difference between the pipe 30 and the resulting difference in thermal expansion becomes large.

【0019】[0019]

【発明の効果】以上詳細に説明したごとく,本発明の熱
分解炉用熱交換装置によれば,単数の1次冷却管と,2
〜3本以上の複数の2次冷却管の組み合わせにより,そ
れぞれの冷却管内における生成ガスの流速(質量速度)
を設定の任意の値に変えることができ,高温の生成ガス
の2次反応の凍結を目的とした高速冷却と,主に顕熱の
回収と低圧力損失を目的とした低速冷却の,相反する両
目的を一つの熱交換ユニットで達成可能とする高性能な
熱交換装置である。また,1次冷却管と2次冷却管との
間の連絡配管の省略および2次冷却管の並列配置(ルー
プの構成)により生成ガスの圧力損失の低減および内外
の伝熱管の熱膨張差による応力の吸収が可能な構造であ
り,オレフィン炭化水素の収率の向上と2段冷却システ
ムの利点を備えたデコーキング周期の長い高性能の熱交
換装置である。さらに,熱交換部は簡単なパイプ要素の
組み合わせ構造であるため設備費を一段と低減すること
ができる。
[Effects of the Invention] As explained in detail above, according to the heat exchange device for a pyrolysis furnace of the present invention, a single primary cooling pipe and two
~ By combining three or more secondary cooling pipes, the flow velocity (mass velocity) of the generated gas in each cooling pipe can be increased.
can be changed to any set value, allowing for the contradictory effects of fast cooling aimed at freezing the secondary reaction of high-temperature product gas and slow cooling mainly aimed at recovering sensible heat and low pressure loss. This is a high-performance heat exchange device that can achieve both purposes with a single heat exchange unit. In addition, by omitting the connecting piping between the primary cooling pipe and the secondary cooling pipe and arranging the secondary cooling pipes in parallel (loop configuration), the pressure loss of the generated gas can be reduced and the thermal expansion difference between the inner and outer heat transfer pipes can be reduced. It has a structure that can absorb stress, and is a high-performance heat exchange device with a long decoking cycle and the advantages of an improved olefin hydrocarbon yield and a two-stage cooling system. Furthermore, since the heat exchange section is a simple combination of pipe elements, equipment costs can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例において例示した熱分解炉用熱
交換装置の構造の一例を示す断面図。
FIG. 1 is a sectional view showing an example of the structure of a heat exchange device for a pyrolysis furnace exemplified in an embodiment of the present invention.

【図2】本発明の実施例において例示した熱分解炉用熱
交換装置の構造の一例を示す断面図。
FIG. 2 is a sectional view showing an example of the structure of a heat exchange device for a pyrolysis furnace illustrated in an example of the present invention.

【図3】従来の熱分解炉と熱交換装置の構成を示すフロ
ーダイヤグラム。
FIG. 3 is a flow diagram showing the configuration of a conventional pyrolysis furnace and heat exchange device.

【図4】従来の1次冷却器の構造を示す断面図。FIG. 4 is a sectional view showing the structure of a conventional primary cooler.

【図5】従来の2次冷却器の構造を示す断面図。FIG. 5 is a sectional view showing the structure of a conventional secondary cooler.

【図6】本発明の実施例において例示した熱交換装置に
おける圧力損失を従来型と比較して示したグラフ。
FIG. 6 is a graph showing the pressure loss in the heat exchange device exemplified in the example of the present invention in comparison with a conventional type.

【図7】本発明の実施例において例示した熱交換装置に
おけるオレフィン炭化水素の収率を従来型と比較して示
したグラフである。
FIG. 7 is a graph showing the yield of olefin hydrocarbons in the heat exchange device exemplified in the examples of the present invention in comparison with a conventional type.

【符号の説明】[Explanation of symbols]

1…熱分解炉 2…バーナ 3…反応管 4…高温連絡管 5…1次冷却器 6…出口ヘッダ 7…中間連絡管 8…2次冷却器 9,10…上昇管 11,12…降水管 13…スチームドラム 14…外管 15…内管 16,21…生成ガス入口部 17,22…生成ガス出口部 18,37…降水管接続ノズル 19,38…上昇管接続ノズル 20…サーマルスリーブ 23,40…断熱材 24…シェル 25…冷却管 26…ボイラ水入口 27…ボイラ水出口 28…生成ガス入口 29…生成ガス出口 30…外管(シェル) 31…1次冷却管 32…2次冷却管 33,34…三つ又ベンド(分岐管) 35…降水管ヘッダ 36…上昇管ヘッダ 39…生成ガス入口ノズル 41…生成ガス出口ノズル 42…180度ベンド 1...Pyrolysis furnace 2...Burner 3...Reaction tube 4...High temperature connecting pipe 5...Primary cooler 6...Exit header 7...Intermediate connecting pipe 8...Secondary cooler 9,10...Rising pipe 11, 12... Downpipe 13...Steam drum 14...Outer tube 15...Inner tube 16, 21...Produced gas inlet part 17, 22...Produced gas outlet section 18, 37... Downpipe connection nozzle 19, 38...Rising pipe connection nozzle 20...Thermal sleeve 23,40...insulation material 24...Shell 25...Cooling pipe 26...Boiler water inlet 27...Boiler water outlet 28...Produced gas inlet 29...Produced gas outlet 30...Outer tube (shell) 31...Primary cooling pipe 32...Secondary cooling pipe 33, 34...Three-pronged bend (branch pipe) 35... Downpipe header 36...Rising pipe header 39...Produced gas inlet nozzle 41...Produced gas outlet nozzle 42...180 degree bend

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】オレフィン系炭化水素を製造する熱分解炉
から発生する高温の生成ガスを,冷却管の内部で急速に
冷却して2次反応の凍結を行う1次冷却部と,生成ガス
が保有する顕熱の回収を行う2次冷却部とを備えた熱交
換装置において,上記熱交換装置は,単数の冷却管から
なる1次冷却部と,上記単数の冷却管に,2本以上の複
数の冷却管を並列に分岐して接続し,かつ分岐した複数
の冷却管の生成ガス出口部を1箇所に集合して接続した
構造の2次冷却部を,熱交換媒体が流通する同一のシェ
ル内に一体に配設してなることを特徴とする熱分解炉用
熱交換装置。
Claim 1: A primary cooling section that rapidly cools high-temperature product gas generated from a pyrolysis furnace for producing olefinic hydrocarbons inside a cooling pipe to freeze a secondary reaction; In a heat exchange device equipped with a secondary cooling section that recovers retained sensible heat, the heat exchange device has a primary cooling section consisting of a single cooling pipe, and two or more cooling pipes in the single cooling pipe. The secondary cooling section has a structure in which multiple cooling pipes are branched and connected in parallel, and the generated gas outlet parts of the branched cooling pipes are collected and connected in one place. A heat exchange device for a pyrolysis furnace, characterized by being integrally arranged within a shell.
【請求項2】請求項1において,1次冷却部と2次冷却
部との間を,U字型のベンド管で接続し,U字型のシェ
ル内に一体に配設してなることを特徴とする熱分解炉用
熱交換装置。
[Claim 2] In claim 1, the primary cooling section and the secondary cooling section are connected by a U-shaped bent pipe and are integrally arranged within a U-shaped shell. Features of heat exchange equipment for pyrolysis furnaces.
【請求項3】請求項1または請求項2において,1次冷
却部と複数の冷却管からなる2次冷却部との接続部およ
び複数の冷却管からなる2次冷却部の生成ガス出口部を
,Y型ベンド管もしくは三つ又ベンド管を用いて接続し
,2次冷却部を構成する複数の2次冷却管群をループ構
造に接続してなることを特徴とする熱分解炉用熱交換装
置。
3. Claim 1 or claim 2, wherein the connection part between the primary cooling part and the secondary cooling part made up of a plurality of cooling pipes and the generated gas outlet part of the secondary cooling part made up of a plurality of cooling pipes are provided. A heat exchange device for a pyrolysis furnace, characterized in that a plurality of secondary cooling tube groups constituting a secondary cooling section are connected in a loop structure using Y-shaped bend pipes or three-pronged bend pipes.
JP3016153A 1991-02-07 1991-02-07 Heat exchanger for pyrolysis furnace Expired - Fee Related JP2881034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016153A JP2881034B2 (en) 1991-02-07 1991-02-07 Heat exchanger for pyrolysis furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016153A JP2881034B2 (en) 1991-02-07 1991-02-07 Heat exchanger for pyrolysis furnace

Publications (2)

Publication Number Publication Date
JPH04257692A true JPH04257692A (en) 1992-09-11
JP2881034B2 JP2881034B2 (en) 1999-04-12

Family

ID=11908563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016153A Expired - Fee Related JP2881034B2 (en) 1991-02-07 1991-02-07 Heat exchanger for pyrolysis furnace

Country Status (1)

Country Link
JP (1) JP2881034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158332A (en) * 2018-03-09 2019-09-19 ボルジヒ ゲーエムベーハー Quenching system and process for quenching system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457342B (en) * 2014-11-12 2016-05-18 新奥科技发展有限公司 The control method of heat exchanger and heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158332A (en) * 2018-03-09 2019-09-19 ボルジヒ ゲーエムベーハー Quenching system and process for quenching system

Also Published As

Publication number Publication date
JP2881034B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
TWI464253B (en) Adiabatic reactor to produce olefins
JP4819205B2 (en) Pyrolysis furnace with U-shaped heat dissipation coil with internal fins
EP0089742B1 (en) Close-coupled transfer line heat exchanger unit
RU2374587C2 (en) Method for performing heat exchange and heat exchanger for realisation thereof
US7871449B2 (en) Process and apparatus for synthesis gas heat exchange system
JPS6410036B2 (en)
JPS6212206B2 (en)
JP3751593B2 (en) Thermal decomposition reaction tube and thermal decomposition method using the same
JP2000507690A (en) Improved heat exchanger
US5139650A (en) Method and installation for steam cracking hydrocarbons
EP0205205A1 (en) Transfer-line cooler
US8828107B2 (en) Process and apparatus for synthesis gas heat exchange system
CN101218322A (en) Method for processing hydrocarbon pyrolysis effluent
JPH04257692A (en) Heat exchanger for thermal decomposition furnace
JPS63162787A (en) Method and apparatus for cooling cracking gas
CN209706601U (en) A kind of oxidative coupling ethylene quenching structure
US3357485A (en) Cooler inlet device
JPS6247232B2 (en)
US10272406B2 (en) Reactor and heater configuration synergies in paraffin dehydrogenation process
CN115823913A (en) Gas-gas heat exchange two-stage quencher and heat exchange system in light hydrocarbon cracking device
WO2023226390A1 (en) Thermal cracking apparatus and thermal cracking gas energy recovery method
JPH0315539Y2 (en)
CA2591173C (en) Process and apparatus for synthesis gas heat exchange system
JPH0613711B2 (en) Pyrolysis gas cooling device
JP2024525615A (en) Heat integration of processes involving fluid catalytic cracking reactors and regenerators.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees