JPH03154614A - Dehumidifying device - Google Patents

Dehumidifying device

Info

Publication number
JPH03154614A
JPH03154614A JP1294305A JP29430589A JPH03154614A JP H03154614 A JPH03154614 A JP H03154614A JP 1294305 A JP1294305 A JP 1294305A JP 29430589 A JP29430589 A JP 29430589A JP H03154614 A JPH03154614 A JP H03154614A
Authority
JP
Japan
Prior art keywords
moisture
water
heating element
space
liquid collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1294305A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
広志 岡本
Akira Matsuoka
章 松岡
Masayuki Oshima
正之 大島
Kiyoshi Mimura
三村 清
Rie Senda
仙田 理恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP1294305A priority Critical patent/JPH03154614A/en
Publication of JPH03154614A publication Critical patent/JPH03154614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To prevent fillers from being carried off with the water being discharged by a method wherein a spacing part provided in a moisture absorbing body having the tiny opening in its inorg. porous structure filled with moisture absorbing fillers is evacuated to reduce the pressure thereof and, when a predetermined amt. of water is collected in a liq. collecting part for discharging, the water is heated so as to be evaporated. CONSTITUTION:A moisture-absorbing body 1 is formed by filling moisture-absorbing fillers such as calcium chloride and lithium chloride into the openings of an inorg. porous structure having tiny openings with an average size of at least 10mu in diameter such as gypsum, cement and calcium silicate. A spacing part 4 is provided on one side or in the interior of the moisture-absorbing body 1 (the figure shows the spacing in the case of one side) and evacuated by a vacuum pump 5 to reduce the pressure thereof. When a predetermined amt. of the water is collected for discharging in a liq. collecting part 7 below the spacing 4, it is sensed by a detector 2 and a detection control circuit part 6 is then activated to energize a heating element 3 so as to heat the water for evaporation. When the aforesaid water is decreased to or below a predetermined amt., the heating element is deenergized to stop the heating and the pressure reduction, whereby the conc. water is recovered by the porous structure 1. This prevents the fillers from being carried off with the water and permits the moisture- absorbing body 1 to be used a long period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸引手段を用いた減圧除湿装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vacuum dehumidification device using suction means.

(従来技術とその問題点) 特願昭61〜220375号に開示されているように、
連続する微小空隙を有する多孔質体に吸湿性フィラーを
含有させて吸湿パネルを形成し、該吸湿パネルの裏面に
除湿用空間を設けたものがあるが、該空間部を減圧させ
てなる除湿用透過体は、吸湿スピードに比べて放湿スピ
ードが数倍から数10倍速い。そのため、該空間部に除
湿した水分が減圧空間部内で蓄積してしまい、吸湿性フ
ィラーの流失が生じると除湿能力が低下するという欠点
があった。
(Prior art and its problems) As disclosed in Japanese Patent Application Nos. 61-220375,
There is a device in which a moisture absorbing panel is formed by containing a hygroscopic filler in a porous body having continuous micro voids, and a dehumidifying space is provided on the back side of the moisture absorbing panel. The moisture release speed of the transparent material is several to several ten times faster than the moisture absorption speed. Therefore, there is a drawback that the water dehumidified in the space accumulates in the reduced pressure space, and when the hygroscopic filler is washed away, the dehumidification ability decreases.

一方、その後の研究により本多孔質体を用いると一旦液
化しても液体と多孔質体を接して放置すると吸湿性フィ
ラーの溶液は多孔質体に再吸収され、吸湿性フィラーが
偏在することなく元の吸湿性分布状態に戻る事が分かっ
た。
On the other hand, subsequent research has shown that when this porous material is used, even if the liquid is once liquefied, if the liquid and the porous material are left in contact, the solution of the hygroscopic filler is reabsorbed by the porous material, and the hygroscopic filler is not unevenly distributed. It was found that the original hygroscopic distribution state returned.

本発明はその特性を利用して吸湿体で収集した水分のみ
を系外へ放湿する事が出来、吸湿性フィラーの流失を防
止出来て長期間にわたり吸湿性能の劣化のない除湿装置
を提供する事を目的とするものである。
The present invention utilizes this characteristic to provide a dehumidifying device that can release only the moisture collected by the moisture absorption body to the outside of the system, can prevent the hygroscopic filler from being washed away, and does not cause deterioration in moisture absorption performance over a long period of time. The purpose is to

(問題点を解決するための手段) 上記目的を達成するために本発明の除湿装置は、■平均
孔径が10ミクロン以下の微細空隙を有する無機質多孔
質体内に吸湿性フィラーを内添保持してなる吸湿体(1
)の片面又は内部に空間部(4)を設け、該空間部(4
)を減圧・吸引する吸引手段(5)を設け、 ■該減圧空間(4)側に多孔質体と接する液体収集部(
7)を設け、 ■液体収集部(7)内に溜まったtll出水量を検出す
る検出手段(2)を液体収集部(7)に設け、■液体収
集部(7)に溜まった排出水量が設定値以上になったと
ころで前記検出手段(2)が作動し、液体収集部(7)
の排出水を加熱する発熱体(3)を液体収集部(7)に
設ける。
(Means for Solving the Problems) In order to achieve the above object, the dehumidifying device of the present invention includes: (1) retaining a hygroscopic filler internally in an inorganic porous body having fine voids with an average pore diameter of 10 microns or less; Hygroscopic body (1
) is provided with a space (4) on one side or inside the space (4).
) is provided with a suction means (5) for depressurizing and suctioning the liquid, and ■ a liquid collection part (
7) is provided, ■ a detection means (2) for detecting the amount of discharged water accumulated in the liquid collecting section (7) is provided in the liquid collecting section (7), and ■ the amount of discharged water accumulated in the liquid collecting section (7) is When the value exceeds the set value, the detection means (2) is activated, and the liquid collection section (7)
A heating element (3) for heating the discharged water is provided in the liquid collection section (7).

という技術的手段を採用している。This technical method is adopted.

(作  用) 而して、本発明の特徴による作用は次の通りである。(for production) The effects of the features of the present invention are as follows.

■平均孔径が10ミクロン以下の微細空隙を有する無機
質多孔質体内に吸湿性フィラーを内添保持してなる吸湿
体(1)が室内側の空気中からの湿度を取り込む。
(2) The hygroscopic body (1), which is made of an inorganic porous body having microscopic voids with an average pore diameter of 10 microns or less and retaining a hygroscopic filler therein, absorbs humidity from the indoor air.

■吸湿体(1)を−刃側(減圧空間側)から減圧すると
、吸湿体(1)の微細空隙内を通って湿度が減圧側に移
動し放湿される。
(2) When the moisture absorber (1) is depressurized from the − blade side (decompression space side), the humidity moves to the decompression side through the microscopic voids of the moisture absorber (1) and is released.

■その際、減圧空間(4)を介して系外への放湿が行わ
れるが、吸湿体(1)の減圧空間(4)側及び減圧空間
(4)内が高湿状態となり、液化し液体収集部(7)に
溜まる。
■ At that time, moisture is released to the outside of the system via the decompression space (4), but the decompression space (4) side of the moisture absorber (1) and the inside of the decompression space (4) become highly humid, causing liquefaction. It collects in the liquid collection part (7).

■そこで、液体収集部(7)内に設けた発熱体(1)を
加熱する事により、その液体に熱エネルギを加えて蒸発
させ、系外に放出する。
(2) Therefore, by heating the heating element (1) provided in the liquid collecting section (7), thermal energy is applied to the liquid to evaporate it and discharge it outside the system.

■運転終了後、液体収集部(7)に残存する高濃度吸湿
性フィラー含有水溶液は、無機質多孔質体内に再吸収さ
れ、多孔質(1)内で分散される。
(2) After the operation is completed, the highly concentrated hygroscopic filler-containing aqueous solution remaining in the liquid collecting section (7) is reabsorbed into the inorganic porous body and dispersed within the porous body (1).

■即ち、減圧空間(4)内に放出された水分量から多孔
質体に再吸収される水分量を引いた水分量が系外へ除湿
される事・になる。
(2) That is, the amount of water released into the depressurized space (4) minus the amount of water reabsorbed by the porous body is dehumidified to the outside of the system.

(実 施 例) 以下、本発明の一実施例を添付図面に基づいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図(a)は本発明にかかる除湿装置の第1実施例を
示す原理図、第1図(b)は検知・制御回路のフローチ
ャート図、第2図は本発明にかかる除湿装置の第2実施
例を示す原理図、第3図は本発明ににかかる除湿装置の
第3実施例を示す原理図である。
FIG. 1(a) is a principle diagram showing a first embodiment of a dehumidifying device according to the present invention, FIG. 1(b) is a flowchart diagram of a detection/control circuit, and FIG. FIG. 3 is a principle diagram showing a third embodiment of the dehumidification device according to the present invention.

まず、第1図に示す第1実施例は壁面等に設置して縦使
いするもので、吸湿体(1)の片面(減圧空間(4)側
の面)側の吸湿体(1)と接する液体収集部(7)に発
熱体(3)を取り付けである。
First, the first embodiment shown in Fig. 1 is installed on a wall or the like and used vertically, and the moisture absorbent body (1) is in contact with one side (the surface facing the decompressed space (4)) of the moisture absorbent body (1). The heating element (3) is attached to the liquid collection part (7).

この減圧空間(4)は吸引手段(5)である真空ポンプ
(以下、真空ポンプを吸引手段の代表例として説明する
。)に連絡され、この真空ポンプ(5)の吸引によって
減圧空間(4)内側へ放湿された湿気が系外(室外)側
へ放出されるようになっている。又、検出手段(2)で
あるフロートスイッチ(以下、フロートスイッチを検出
手段の代表例として説明するが、液体収集部(7)内に
溜まった水分量を検出出来るものであればフロートスイ
ッチに限らない事は言うまでもない。)と前記発熱体(
3)と前記真空ポンプ(5)とはいずれも検知・制御回
路(6)によって自動コントロールできるようになって
いる。吸湿体(1)の一方を水平方向より下部に位置さ
せ、ケーシングAとの区画された減圧空間(4)内に液
体収集部(7)を形成する。その内部に発熱体(3)、
フロートスイッチ(2)を配装したものである。上記減
圧空間(4)は外部に設けた真空ポンプ(5)によって
減圧できるようになっている。そして、これらのフロー
トスイッチ(2)と発熱体(3)と減圧空間(4)とは
ずれも検知・制御回路(6)によって自動制御されるよ
うになっている。
This reduced pressure space (4) is connected to a vacuum pump (hereinafter, a vacuum pump will be explained as a typical example of suction means) which is a suction means (5), and the reduced pressure space (4) is The moisture released inside is now released outside the system (outdoors). In addition, a float switch as the detection means (2) (hereinafter, a float switch will be explained as a representative example of the detection means, but it is limited to a float switch as long as it can detect the amount of water accumulated in the liquid collection part (7)). Needless to say, there is no such thing.) and the heating element (
3) and the vacuum pump (5) can both be automatically controlled by a detection/control circuit (6). One of the moisture absorbers (1) is positioned lower than the horizontal direction, and a liquid collection part (7) is formed in a depressurized space (4) separated from the casing A. Inside it is a heating element (3),
A float switch (2) is installed. The depressurized space (4) can be depressurized by an externally provided vacuum pump (5). The disconnection of these float switches (2), heating elements (3), and decompression spaces (4) is automatically controlled by a detection/control circuit (6).

第2図では除湿装置を天井面等に設置して横使いするも
ので、排出面を傾斜させ、減圧空間(4)での排出水分
を一方に溜めるようにしである。
In FIG. 2, the dehumidifier is installed on the ceiling or the like and used horizontally, and the discharge surface is inclined so that the water discharged from the decompression space (4) is collected on one side.

更に、第3図に示す第3実施例では、キューブ状の吸湿
体(1)内に減圧空間(4)を形成し、この減圧空間(
4)内に発熱体(3)を配装するさ共にフロートスイッ
チ(2)を配装する。そして、前記減圧空間(4)内の
圧力を外部に設けた真空ポンプ(5)によって減圧でき
るようになついる。これらの発熱体(3)とフロートス
イッチ(2)と真空ポンプ(5)はいずれも検知・制御
回路(6)によって自動制御できるようになっている。
Furthermore, in the third embodiment shown in FIG. 3, a reduced pressure space (4) is formed within the cube-shaped moisture absorber (1),
4) A heat generating element (3) is disposed inside, and a float switch (2) is disposed at the same time. Then, the pressure in the decompression space (4) can be reduced by a vacuum pump (5) provided outside. These heating element (3), float switch (2), and vacuum pump (5) can all be automatically controlled by a detection/control circuit (6).

上記の第1実施例〜第3実施例では吸湿体(1)の減圧
空間(4)側の液体収集部(7)にフロートスイッチ(
2)が設けられているが、減圧吸引後、このフロートス
イッチ(2)によって、吸湿体(1)の減圧側の減圧側
表面に液化が生じたある水位でこれを検知し、発熱体(
3)をオンにし、蒸発エネルギを補い、系外へ水分を放
出し、水位低下により水分検出が行われなくなった時点
でオフとなるよう検知・制御回路(6)によって自動制
御できるようになっている。これにより、吸湿性フィラ
ーが濃縮された水分が液体収集部(7)の底部に溜まり
、これが無機質多孔質体に再吸収され、続いて均一に分
布して吸湿性能を回復する事になる。
In the first to third embodiments described above, a float switch (
2) is provided, but after vacuum suction, this float switch (2) detects this at a certain water level where liquefaction has occurred on the pressure reducing side surface of the moisture absorbing body (1), and the heating element (
3) is turned on, supplements the evaporation energy, releases moisture outside the system, and is automatically controlled by the detection and control circuit (6) to turn off when moisture detection is no longer performed due to a drop in the water level. There is. As a result, the water concentrated in the hygroscopic filler accumulates at the bottom of the liquid collection part (7), is reabsorbed by the inorganic porous body, and is subsequently uniformly distributed to restore the hygroscopic performance.

ここで、吸湿体(1)として用いられるものには、例え
ば、石膏、セメント、ケイ酸カルシウム板、セラミック
焼結体等の無機質多孔質体があり、特に、その平均孔径
が10ミクロン以下のものが望ましい。
Here, examples of materials used as the moisture absorbent (1) include inorganic porous materials such as gypsum, cement, calcium silicate plates, and ceramic sintered bodies, especially those with an average pore diameter of 10 microns or less. is desirable.

又、吸湿性フィラーとして用いられるものには、例えば
、■塩化カルシウム、塩化リチウム等の潮解性物質を必
須成分とし、これに適宜、■エチレングリコール、トリ
エチレングリコール、グリセリン、ポリアクリル酸ナト
リウム、PVA等の水溶性高分子や、■ベントナイト、
セビオライト、ワラストナイト、ゼオライト、活性炭、
モレキュラーシーブス等の無機系吸湿体や、■グラフト
化されたデンプン、イソブチレン無水マレイン酸等の水
不溶性高分子吸湿体の単体又はこれらの混合体がある。
In addition, the hygroscopic filler used includes, for example, (1) a deliquescent substance such as calcium chloride, lithium chloride, etc. as an essential component, and (2) ethylene glycol, triethylene glycol, glycerin, sodium polyacrylate, PVA as appropriate. Water-soluble polymers such as bentonite,
Seviolite, wollastonite, zeolite, activated carbon,
Examples include inorganic hygroscopic materials such as molecular sieves, water-insoluble polymeric hygroscopic materials such as grafted starch and isobutylene maleic anhydride, or mixtures thereof.

更に、無機質多孔質の微細空隙内への吸湿性フィラーの
内添保持方法としては、例えば、吸湿性フィラーを多孔
質体の原料と共に混練し、硬化させる。
Furthermore, as a method for internally adding and retaining a hygroscopic filler into the micropores of the inorganic porous material, for example, the hygroscopic filler is kneaded together with the raw material of the porous body and cured.

特に、ベントナーrト等の無機系吸湿体と塩化カルシウ
ムやジエチレングリコール等を水で混合し、セメントや
石膏と混練成形したものは吸湿表面倒への吸湿性フィラ
ーの滲出が少ないので、より望ましい。
In particular, it is more desirable to mix an inorganic hygroscopic material such as bentonate with water, such as calcium chloride or diethylene glycol, and knead and mold the mixture with cement or gypsum, since the hygroscopic filler is less likely to ooze out into the surface of the hygroscopic surface.

又、本発明において用いられる発熱体(2)としては、
例えば、ケーブルヒータやシーズヒータ、フィンヒータ
等があり、このような発熱体(3)は第2図の場合には
吸湿体(1)の片面(減圧空間(4)部側)に第1実施
例、第2実施例のように空間を介して独立して設けられ
るか、添設して取付一体化されている。そして、この発
熱体(2)には適宜防湿、防錆、漏電防止処理あるいは
加熱を均一化するために金網等の均熱シートを液体収集
部(7)ケーシングAに一体的に積層したものでもよい
In addition, the heating element (2) used in the present invention includes:
For example, there are cable heaters, sheathed heaters, fin heaters, etc. In the case of Fig. 2, such a heating element (3) is installed on one side (decompression space (4) side) of the moisture absorbing body (1). For example, as in the second embodiment, they may be provided independently via a space, or they may be attached and integrated. The heating element (2) may be treated with moisture-proofing, rust-proofing, or leakage prevention treatment as appropriate, or a heat-uniforming sheet such as a wire mesh may be laminated integrally with the casing A of the liquid collecting portion (7) in order to uniformize heating. good.

減圧吸引手段としては第1実施例に示すように、例えば
、真空ポンプ(5)を用いて減圧空間(4)内を到達絶
対圧20〜200o+mHg減圧する。
As shown in the first embodiment, the vacuum pump (5), for example, is used as the vacuum suction means to reduce the absolute pressure in the vacuum space (4) to an absolute pressure of 20 to 200 degrees + mHg.

尚、減圧吸引手段は、連続的に運転するほか、断続運転
でもよい。その際、吸湿側である室内に湿度センサーを
設け、自動的にコントロールできるようにする事が望ま
しい。
Note that the reduced pressure suction means may be operated continuously or may be operated intermittently. In this case, it is desirable to install a humidity sensor in the room that absorbs moisture so that it can be automatically controlled.

又、吸湿体(1)を構成する無機質多孔質体の表面(吸
湿側)に紙、布、多孔性樹脂膜あるいは半透膜、透湿性
撥水膜等を設ける事によって無機質多孔質体の表面から
の吸湿性フィラーの滲出を防止し、化粧性、耐久性、防
汚性の向上を図る事が望ましい。
Furthermore, the surface of the inorganic porous material constituting the moisture absorbing body (1) can be improved by providing paper, cloth, a porous resin membrane, a semipermeable membrane, a moisture permeable water repellent membrane, etc. on the surface (moisture absorption side) of the inorganic porous body constituting the moisture absorbing body (1). It is desirable to prevent oozing of the hygroscopic filler from the surface of the paint and improve cosmetic properties, durability, and stain resistance.

尚、吸引と発熱体(2)のコントロールはフロートスイ
ッチがコンパクトで確実に行えるが、タイマーや温度セ
ンサ、湿度センサなどと減圧吸引手段及び発熱体(3)
とを連結して制御してもよい。
The suction and heating element (2) can be controlled using a compact and reliable float switch, but a timer, temperature sensor, humidity sensor, etc., vacuum suction means, and heating element (3) are also required.
It may also be possible to control by connecting them.

発熱体(3)は、第1実施例(第1図(a)を参照)の
ように吸湿体(1)から離間して減圧空間(4)部を加
熱する方法、あるいは第3実施例(第3図を参照)のよ
うに吸湿体(1)内の減圧空間(4)内に配設する方法
のいずれでも良いが吸湿体(1)を加熱し過ぎると表面
側からの放湿があるので、適宜コントロールするか、或
は吸湿体(1)から離しておくことが望ましいの。
The heating element (3) can be separated from the moisture absorbing body (1) to heat the decompressed space (4) as in the first embodiment (see FIG. 1(a)), or the third embodiment (see FIG. 1(a)). (See Figure 3), it may be placed in the depressurized space (4) inside the moisture absorber (1), but if the moisture absorber (1) is heated too much, moisture will radiate from the surface side. Therefore, it is desirable to control it appropriately or keep it away from the moisture absorber (1).

(実 験 例) 実験例1 石膏と水と塩化カルシウムを100・100二35の割
合で混線硬化し、乾燥させて厚さ20mmの石膏反応体
を製造し、これを吸湿体として用いた。この吸湿体の裏
面を樹脂製のケーシングで覆い、下部にフロートスイッ
チと発熱体を備えた奥行き20mm、幅1.00抛mの
液体収集部用空間を設けた。大きさ1.000mmX1
.000+amX50m+aの本体(第1図(a))と
真空ポンプ及び検知・制御回路から構成される装置製作
した。減圧空間内の底部から10mmの所に設けた発熱
体は、200Wのバイブヒータを用いて液体収集部を加
熱できるようにし、かつ、フロートスイッチは液体収集
部の発熱体より10mm上方に配置した。
(Experimental Example) Experimental Example 1 Gypsum, water, and calcium chloride were cross-cured in a ratio of 100 x 100 x 35, and dried to produce a 20 mm thick gypsum reactant, which was used as a moisture absorbent. The back surface of this moisture absorbent body was covered with a resin casing, and a space for a liquid collection part having a depth of 20 mm and a width of 1.00 mm was provided at the bottom, which was equipped with a float switch and a heating element. Size 1.000mmX1
.. A device consisting of a main body (Fig. 1(a)) of 000+am x 50m+a, a vacuum pump, and a detection/control circuit was fabricated. A heating element was provided 10 mm from the bottom of the reduced pressure space so that the liquid collection section could be heated using a 200 W vibrator heater, and the float switch was placed 10 mm above the heating element of the liquid collection section.

尚、減圧の際、吸湿体がたわまないように吸湿体に補強
用として幅10mmの樹脂製のリブを7抛m間隔で設け
た。
In order to prevent the moisture absorbent from bending during depressurization, resin ribs with a width of 10 mm were provided at 7-meter intervals on the moisture absorbent body for reinforcement.

上記のような構成にかかる除湿装置を8℃90RHの環
境条件下(7) 2. OOOa+@X1. 500m
mX1. 80抛ts(D密閉室内において使用し、吸
湿体の裏面空間を到達絶対圧5hmflg排気速度15
Uwinの真空ポンプを用いて減圧した。尚、真空ポン
プからの排気は室外とした。
The dehumidification device having the above configuration was operated under an environmental condition of 8°C and 90RH (7) 2. OOOa+@X1. 500m
mX1. 80 ts (Used in a closed room, the absolute pressure reached in the back space of the moisture absorber is 5hmflg, the exhaust speed is 15
The pressure was reduced using a Uwin vacuum pump. Note that the exhaust from the vacuum pump was outside the room.

運転開始後、2分にて絶対圧50mmHg迄減圧され、
裏面空間内の吸湿体面に排出水の発生が認められ、この
排出水が液体収集部に溜まり、フロートスイッチのフロ
ートを上昇させてスイッチをオンし、発熱体に通電した
。50mmllg減圧下では水の沸点が約50℃に下が
り、蒸発エネルギが足りず吸湿体より排出した水が溜っ
ていたが、50cc以上溜まった時にフロートスイッチ
がオンになり、その後700ccに増えた頃から排出水
分の蒸発が促進され、通電後20分後に溜まった水分が
減少した。溜まった水分が減少した事によりフロートス
イッチはオフし、発熱体への通電がストップされた。吸
湿体から継続的に湿気を排湿しているため、再び除湿さ
れた水分の滞流があるが、液体収集部へ溜まると、フロ
ートスイッチが検知するので、前述のように発熱体の通
電による滞留水温の上昇によって再び水蒸気化され、系
外へ排出された。
After the start of operation, the pressure is reduced to an absolute pressure of 50 mmHg in 2 minutes,
The generation of discharged water was observed on the surface of the moisture absorber in the back space, and this discharged water collected in the liquid collection section, and the float of the float switch was raised to turn on the switch and energize the heating element. Under reduced pressure of 50mmllg, the boiling point of water dropped to about 50℃, and the water discharged from the moisture absorber was pooled due to insufficient evaporation energy, but when 50cc or more accumulated, the float switch was turned on, and after that the volume increased to 700cc. Evaporation of discharged moisture was promoted, and the accumulated moisture decreased 20 minutes after electricity was applied. As the accumulated moisture decreased, the float switch was turned off and the electricity to the heating element was stopped. Since moisture is continuously drained from the moisture absorbing body, there is a stagnant flow of dehumidified moisture again, but when it accumulates in the liquid collection part, the float switch detects it, so as mentioned above, it is not caused by the energization of the heating element. As the temperature of the retained water increased, it was turned into steam again and discharged from the system.

このようにして、除湿機能が効果的に繰り返して回復し
、1時間で該室内は同一温度のまま60%Rll迄相対
湿度が低下した。
In this way, the dehumidification function was effectively and repeatedly restored, and in one hour the relative humidity in the room was reduced to 60% Rll while remaining at the same temperature.

実験例2 石膏と水と塩化カルシウムを100・100・35の割
合で混線硬化し、乾燥させて5001角厚さ30mm+
の板状体を製造し、これを吸湿体として用いた。この吸
湿体の片面側に第1実施例と同様に減圧空間を設け、該
減圧空間部の液体収集部に配置された200Wのバイブ
ヒータからなる発熱体及びフロートスイッチを吸湿体の
表面側に添装してなる除湿装置を製作した。そして、外
気温30℃(吸湿体の減圧側空間温度27〜28℃)の
環境下で前期減圧空間を真空ポンプを用いて6抛mll
gに減圧したところ、運転開始後2分にて吸湿体の減圧
空間の温度が22〜24℃に下がり、結露水が液体収集
部に溜まり始めた。この結露水はフロートスイッチによ
って検知され、発熱体の通電がなされた。この発熱体の
加熱によって、結露水は通電後10分にて液温が50℃
迄上昇し、盛んに蒸発が行われた。そして、毎分5gの
水分量を排湿出来た。
Experimental Example 2 Cross-cure gypsum, water, and calcium chloride in a ratio of 100, 100, and 35, and dry to form a 5001 square with a thickness of 30 mm +
A plate-like body was manufactured and used as a moisture absorbent. A vacuum space is provided on one side of the moisture absorbent body in the same way as in the first embodiment, and a heating element consisting of a 200W vibrator heater and a float switch are placed on the surface side of the moisture absorption body and are placed in the liquid collection section of the vacuum space. We have manufactured a dehumidifier equipped with Then, in an environment with an outside temperature of 30°C (temperature in the vacuum side space of the moisture absorber: 27 to 28°C), the first vacuum space was pumped to 6 mL using a vacuum pump.
When the pressure was reduced to 1.5 g, the temperature in the reduced pressure space of the moisture absorber dropped to 22 to 24° C. 2 minutes after the start of operation, and dew condensation water began to accumulate in the liquid collection section. This condensed water was detected by a float switch, and the heating element was energized. Due to the heating of this heating element, the temperature of the condensed water reaches 50℃ within 10 minutes after electricity is turned on.
evaporation took place actively. It was also possible to remove 5g of moisture per minute.

実施例3 次に、吸湿性フィラーが運転休止時に無機質多孔質体内
に再吸収され、ほぼ均一に分散される事を実証するため
のテストを行った。
Example 3 Next, a test was conducted to demonstrate that the hygroscopic filler is reabsorbed into the inorganic porous body during outage and is almost uniformly dispersed.

繰り返し減圧を行った後の縦置き型装置において、(厚
さ15 m m s高さ1.00抛11幅500mm)
繰り返し除湿後、液体収集部に約100ccの結露水を
残し、真空ポンプの作動を停止し、その後、一晩室内に
放置したところ、塩化カルシウムを含んだ水溶液は吸湿
体に再吸収されており、液体収集部には結露水は残存し
ていなかった。
In a vertical device after repeated depressurization (thickness: 15 mm, height: 1.00 mm, width: 500 mm)
After repeated dehumidification, approximately 100 cc of condensed water was left in the liquid collection part, the vacuum pump was stopped, and the vacuum pump was left indoors overnight.The aqueous solution containing calcium chloride was reabsorbed by the moisture absorber. No condensed water remained in the liquid collection section.

そこで、吸湿体の含水率分布を測定したところ上下(鉛
直)方向における含水率差に有意差は認められなかった
。又、隣接した位置で採取した試片について塩素イオン
濃度分析を行ったところ次のような結果が得られ、吸湿
性フィラーが均一分散されていることが分かった。(第
4図)第4図中、吸湿体の最上段の■、中央の■、最下
段の■における含水率、塩素イオン濃度を測定した結果
を以下の表に示す。(以下余白)第1表 尚、比較のために同組成で同時に製造した吸湿体ボード
を水平に1!l置していたものについても塩素イオン濃
度分析を行ったが8.68%、8.60%と上述の■〜
■と有意差は認められなかった。以上から減圧除湿後も
吸湿体の塩化カルシウム分布は均一で何ら除湿効果の低
下はない。
Therefore, when the water content distribution of the moisture absorbent body was measured, no significant difference was observed in the water content difference in the vertical (vertical) direction. In addition, when a chloride ion concentration analysis was performed on a specimen taken at an adjacent position, the following results were obtained, indicating that the hygroscopic filler was uniformly dispersed. (FIG. 4) In FIG. 4, the water content and chloride ion concentration were measured at the top (■), the center (■), and the bottom (■) of the moisture absorbent body. The results are shown in the table below. (Margins below) Table 1 For comparison, a moisture absorbent board manufactured at the same time with the same composition was placed horizontally. I also analyzed the chloride ion concentration of the samples that had been left in the room for 1 hour, and the results were 8.68% and 8.60%, respectively.
■No significant difference was observed. From the above, even after dehumidification under reduced pressure, the calcium chloride distribution in the moisture absorbent body is uniform, and there is no deterioration in the dehumidification effect.

(効  果) 本発明の除湿装置は、平均孔径が10ミクロン以下の微
細空隙を有する無機質多孔質体内に吸湿性フィラーを内
添保持してなる吸湿体の一部を除湿吸引すると共に該減
圧空間側に多孔質体と接する液体収集部を設け、液体収
集部内に溜まった排出水量を検出する検出手段を液体収
集部に設けて液体収集部に溜まった排出水量が設定値以
上になったところで前記検出手段を作動させて液体収集
部の排出水を加熱する発熱体を設けであるので、検出手
段により排出水量が一定以上になった事を判別して発熱
体に通電を停止して効果的に水分だけの放湿を行い、排
出水量が一定以下になったところで前記検出手段により
、発熱体への通電を停止する。又、減圧を停止して放置
すれば吸湿性フィラーの濃縮された排出水を多孔質体に
再吸収させる事が出来、それ故、吸湿性フィラーの系外
への流出を防止出来、吸湿体の長期にわたる性能維持が
可能となる。
(Effects) The dehumidifying device of the present invention dehumidifies and suctions a part of a hygroscopic body formed by internally retaining a hygroscopic filler in an inorganic porous body having fine voids with an average pore size of 10 microns or less, and also dehumidifies and suctions a part of the hygroscopic body into the decompressed space. A liquid collecting section that contacts the porous body is provided on the side, and a detection means for detecting the amount of discharged water accumulated in the liquid collecting section is provided in the liquid collecting section, and when the amount of discharged water accumulated in the liquid collecting section exceeds a set value, the Since a heating element is provided that activates the detection means to heat the discharged water of the liquid collection section, the detection means determines that the amount of discharged water has exceeded a certain level and stops energizing the heating element to effectively Only moisture is released, and when the amount of discharged water becomes below a certain level, the detection means stops energizing the heating element. In addition, if the decompression is stopped and left as it is, the concentrated waste water of the hygroscopic filler can be reabsorbed into the porous body, and therefore the hygroscopic filler can be prevented from flowing out of the system, and the hygroscopic filler can be left undisturbed. It is possible to maintain performance over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)・・・本発明にかかる除湿装置の第1実施
例の概略断面図 第1図(b)・・・本発明に使用される電気回路のブロ
ク回路図 第2図・・・本発明にかかる除湿装置の第2実施例の概
略断面図 第3図・・・本発明にかかる除湿装置の第3実施例の概
略斜視図 第4図・・・本発明における吸湿性フィラーの再吸収分
布状態を測定するための実験状態を 示す断面図 A・・・ケーシング (1)・・・吸湿体(2)・・・検出手段(フロートス
イッチ)(3)・・・発熱体    (4)・・・減圧
空間(5)・・・吸引手段(真空ポンプ) (6)・・・検知・制御回路(7)・・・液体収集部第
4肥 第 1 凪(八) 第 山(b)
Fig. 1(a)...A schematic sectional view of the first embodiment of the dehumidification device according to the present invention Fig. 1(b)...Block circuit diagram of the electric circuit used in the present invention Fig. 2...・Schematic cross-sectional view of the second embodiment of the dehumidifying device according to the present invention. FIG. 3. Schematic perspective view of the third embodiment of the dehumidifying device according to the present invention. FIG. 4. Cross-sectional view A showing experimental conditions for measuring reabsorption distribution state...Casing (1)...Moisture absorbing body (2)...Detecting means (float switch) (3)...Heating element (4) )...Decompression space (5)...Suction means (vacuum pump) (6)...Detection/control circuit (7)...Liquid collection section No. 4 Hi No. 1 Nagi (8) No. Yama (b )

Claims (1)

【特許請求の範囲】[Claims] (1)平均孔径が10ミクロン以下の微細空隙を有する
無機質多孔質体内に吸湿性フィラーを内添保持してなる
吸湿体の片面又は内部に空間部を設け、該空間部を減圧
・吸引する吸引手段を設けると共に該減圧空間側に多孔
質体と接する液体収集部を設け、液体収集部内に溜まっ
た排出水量を検出する検出手段を液体収集部に設けて液
体収集部に溜まった排出水量が設定値以上になったとこ
ろで前記検出手段が作動し、液体収集部の排出水を加熱
する発熱体を液体収集部内に設けて成る事を特徴とする
除湿装置。
(1) A space is provided on one side or inside of a hygroscopic body made of an inorganic porous body having fine voids with an average pore size of 10 microns or less and a hygroscopic filler internally added thereto, and suction is performed to reduce pressure and suck the space. In addition to providing means, a liquid collecting section in contact with the porous body is provided on the side of the depressurized space, and a detecting means for detecting the amount of discharged water accumulated in the liquid collecting section is provided in the liquid collecting section, and the amount of discharged water accumulated in the liquid collecting section is set. A dehumidifying device characterized in that the detection means is activated when the temperature exceeds a certain value, and a heating element is provided in the liquid collecting section to heat the discharged water from the liquid collecting section.
JP1294305A 1989-11-13 1989-11-13 Dehumidifying device Pending JPH03154614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294305A JPH03154614A (en) 1989-11-13 1989-11-13 Dehumidifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294305A JPH03154614A (en) 1989-11-13 1989-11-13 Dehumidifying device

Publications (1)

Publication Number Publication Date
JPH03154614A true JPH03154614A (en) 1991-07-02

Family

ID=17805975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294305A Pending JPH03154614A (en) 1989-11-13 1989-11-13 Dehumidifying device

Country Status (1)

Country Link
JP (1) JPH03154614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device
JP2019136657A (en) * 2018-02-09 2019-08-22 清水建設株式会社 Water production method and water production apparatus

Similar Documents

Publication Publication Date Title
US10252213B2 (en) Dehumidification device
US4826516A (en) Moisture-remover and moisture-removing apparatus
冨田由美子 et al. Humidity control ability of silica with bimodal pore structures prepared from water glass
JP2006061758A (en) Carbon dioxide remover
EP0335670B1 (en) Humidity conditioner
JPH03154614A (en) Dehumidifying device
JP6433752B2 (en) Dehumidifier
WO2016163159A1 (en) Water collection device and water collection method
JPH02253822A (en) Dehumidifying device
JPS63218234A (en) Permeable structure having hygroscopic property
JPH02197739A (en) Humidity controller
JP2011169500A (en) Air conditioner
US4818602A (en) Hygroscopic composite material
JP3981022B2 (en) Humidity control material
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JPH01297125A (en) Dehumidification device
JPH0633629B2 (en) Hygroscopic composite material
KR20130076909A (en) Dehumidifying apparatus for recycle silica-gel using fan heating
JPS63143925A (en) Dehumidifier
JPH01310716A (en) Dehumidifier
JPH01281128A (en) Assembly for dehumidification
JPH0231815A (en) Receiving box having humidity adjusting function
JP3345596B2 (en) Adsorbent for moisture exchange
JP3106112B2 (en) Manufacturing method of drying and deodorizing agent.
Stawczyk et al. Chitosan stuffs atmospheric freeze‐drying kinetics