JPH01281128A - Assembly for dehumidification - Google Patents

Assembly for dehumidification

Info

Publication number
JPH01281128A
JPH01281128A JP63109469A JP10946988A JPH01281128A JP H01281128 A JPH01281128 A JP H01281128A JP 63109469 A JP63109469 A JP 63109469A JP 10946988 A JP10946988 A JP 10946988A JP H01281128 A JPH01281128 A JP H01281128A
Authority
JP
Japan
Prior art keywords
heating element
moisture
absorbent body
moisture absorbent
hygroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109469A
Other languages
Japanese (ja)
Inventor
Akira Matsuoka
章 松岡
Masayuki Oshima
正之 大島
Kazuhiko Asano
浅野 和彦
Kiyoshi Mimura
三村 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP63109469A priority Critical patent/JPH01281128A/en
Publication of JPH01281128A publication Critical patent/JPH01281128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To obtain an assembly structure for dehumidification causing less trouble and superior in durability and safety by installing a heating element, which is made of a heating wire and control parts enclosed in a corrosion- and water-resisting pipe, attached to or buried in a moisture absorbent body, thereby contriving the simplification in structure and the enhancement in reproducibility. CONSTITUTION:A heating element 2 is fitted in a groove 11 at the back face of a moisture absorbent body 2 of 10mm or larger in thickness, which is prepared by impregnating a hygroscopic filler such as calcium chloride into a base material such as a rock wool board. The heating element 2 consists of a heating wire 21, a temperature sensor 22 as a control member, a temperature fuse 23, an insulation tube 21 for covering the formers and a connection terminal, all of which are enclosed in a pipe 26, which is made of a material such as a corrosion- and water-resisting metal and bent into the same shape as the groove 11. Water absorbed in the moisture absorbent body is emitted and the moisture absorbent body is regenerated by applying a current through the heating element 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸湿体にその一方側から取り込んだ空気中の
水分を、発熱体により他方側から放出させる除湿用構造
体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a dehumidifying structure in which moisture in the air taken into a moisture absorbing body from one side thereof is released from the other side by means of a heating element.

(従来の技術) 従来より、空気中の水分を取り込んだ吸湿体に熱風を吹
き付けて高湿空気を排出させ、これにより、吸湿体を再
生させ、また、回収した高湿空気から水分を除去するよ
うにした除湿用構造体が知られている。
(Conventional technology) Conventionally, hot air is blown onto a hygroscopic body that has absorbed moisture from the air to expel high-humidity air, thereby regenerating the hygroscopic body and removing moisture from the collected high-humidity air. A dehumidifying structure is known.

(発明が解決しようとする課題) しかるに、この除湿用構造体は、熱風の供給と回収のた
めの空気循環手段や、回収された高湿空気から水分を除
去する手段などの複雑な機構を必要とするのみならず、
熱風を媒介として水分を回収する方式であるから再生効
率が不十分であるという問題があった。
(Problem to be Solved by the Invention) However, this dehumidification structure requires complicated mechanisms such as air circulation means for supplying and collecting hot air and means for removing moisture from the collected high-humidity air. Not only that, but also
Since the method uses hot air to recover moisture, there is a problem in that the regeneration efficiency is insufficient.

(発明の目的) 本発明はかかる点に鑑みて上記の防湿用構造体を更に改
善すべくなされたものであり、基材の連続する微細空隙
内に吸湿性フィラーを内添保持してなる所定厚以上の吸
湿体に当接ないしは埋設して発熱体を配し、吸湿体を直
接加熱することにより機構の簡素化と再生効率の向上を
図ることを主目的とする。
(Object of the Invention) In view of the above points, the present invention has been made to further improve the above-mentioned moisture-proof structure, and it is a predetermined structure in which a hygroscopic filler is internally retained in continuous micro-pores of a base material. The main purpose is to simplify the mechanism and improve regeneration efficiency by placing a heating element in contact with or embedding the moisture absorbent body, which is thicker than the thickness, and directly heats the moisture absorbent body.

ところが、この除湿用構造体は、吸湿体を直接加熱して
取り込んだ水分を発熱体により蒸発させることによって
吸湿体を再生させる方式であるので、発熱体を吸湿体の
一面に当接ないしは埋設させる必要があり、そのために
、吸湿体内の水分や吸湿性フィラーが発熱体の発熱線や
制御部分に悪影響を及ぼすという新たな問題が生じる。
However, this dehumidification structure regenerates the moisture absorption body by directly heating the moisture absorption body and evaporating the absorbed moisture using the heating element, so the heating element is placed in contact with or buried in one surface of the moisture absorption body. Therefore, a new problem arises in that the moisture in the hygroscopic body and the hygroscopic filler adversely affect the heating wire and control part of the heating element.

そこで、発熱体の発熱線や制御部分を保護する層を設け
ることにより、発熱線や制御部分が吸着水や吸湿性フィ
ラーによって悪影響を受けることを防止し、故障が生じ
難く、耐久性が良いと共に安全性の高い防湿用構造体を
提供することをも目的とする。
Therefore, by providing a layer that protects the heating wires and control parts of the heating element, it is possible to prevent the heating wires and control parts from being adversely affected by adsorbed water and hygroscopic fillers, making it difficult to break down, having good durability, and Another object of the present invention is to provide a highly safe moisture-proof structure.

(課題を解決するための手段) これらの目的を達成するため、本発明の講じた解決手段
は、吸湿体の一面に当接ないしは埋設して発熱体を取り
付けると共に、発熱体の発熱線及び制御部品を管の内部
に封入することであり、具体的な解決手段は、基材の連
続する微細空隙内に吸湿性フィラーを内添保持してなる
101m以上の厚さを有する吸湿体と、該吸湿体に当接
ないしは埋設して取り付けられた発熱体とよりなり、発
熱体の発熱線及び制御部品を防蝕性と耐水性を有する管
の内部に封入した構成としたものである。
(Means for Solving the Problems) In order to achieve these objects, the solution taken by the present invention is to attach a heating element by contacting or burying it in one surface of the moisture absorbent body, and to connect the heating wire and control of the heating element to the surface of the moisture absorbent body. The specific solution is to encapsulate the parts inside the tube, and the specific solution is to use a hygroscopic body with a thickness of 101 m or more, which is made by holding a hygroscopic filler internally in continuous micro-pores of a base material, and It consists of a heating element attached in contact with or buried in a moisture absorbing body, and the heating wire of the heating element and control parts are enclosed inside a corrosion-resistant and water-resistant tube.

(作用) 上記の構成により、本発明で構成された除湿用構造体を
室内に配置すると次の現象が生じる。
(Function) With the above configuration, when the dehumidification structure constructed according to the present invention is placed indoors, the following phenomenon occurs.

■ 吸湿体に取り込まれた水分は、吸湿体内の含水率及
び蒸気圧勾配の低い方へ移動する。
■ Moisture taken into the hygroscopic body moves to the side where the moisture content and vapor pressure gradient within the hygroscopic body are lower.

■ この場合において、吸湿体は吸湿性フィラーを連続
する微細空隙内に内添保持しているので、吸湿性フィラ
ーを内添しない多孔質体と比較すると、数倍〜数十倍の
吸湿能力を発揮すると共に、僅かな含水率差や蒸気圧差
でも水分の移動が行われる。
■ In this case, the hygroscopic material retains the hygroscopic filler internally within the continuous microscopic voids, so compared to a porous material that does not contain the hygroscopic filler, it has several times to several tens of times the hygroscopic ability. At the same time, moisture transfer occurs even with a slight difference in moisture content or vapor pressure.

■ 従って、表面側(室内側)が高湿の場合には、表面
側から取り込まれた水分は裏面側へ移動し、吸湿体全体
に広がる。
■ Therefore, when the surface side (indoor side) is highly humid, the moisture taken in from the surface side moves to the back side and spreads over the entire moisture absorbent body.

■ その後、吸湿体の裏面に直接取り付けた発熱体を発
熱させると、発熱体付近の水分が水蒸気になって吸湿体
の裏面から放出されるので、発熱体付近の含水率が低下
すると共に、発熱体付近の吸湿性フィラーが再生される
■ After that, when the heating element attached directly to the back of the moisture absorber is made to generate heat, the moisture near the heating element turns into water vapor and is released from the back of the moisture absorber, so the moisture content near the heating element decreases and the heat is generated. Hygroscopic filler near the body is regenerated.

■ 吸湿体が所定厚み以上あると表面側の温度上昇が遅
れるので発熱体を一定時間発熱させると、吸湿体の裏面
からの水分の放出が進み、表面側の水分が裏面側へ移動
し、それにより吸湿体の表面側の吸湿性フィラーも再生
される。
■ If the moisture absorber is thicker than a certain level, the temperature rise on the front side will be delayed, so if the heating element is allowed to generate heat for a certain period of time, moisture will be released from the back side of the moisture absorber, and the moisture on the front side will move to the back side, causing As a result, the hygroscopic filler on the surface side of the hygroscopic body is also regenerated.

以上の現象が起こる過程において、発熱体の発熱線及び
制御部品は、防蝕性と耐水性を有する管の内部に封入さ
れているので、水分及び吸湿性フィラーと接触すること
がなく、腐蝕したり、絶縁性が悪化したりしない。
During the process of the above phenomenon, the heating wire of the heating element and the control parts are sealed inside the corrosion-resistant and water-resistant tube, so they do not come into contact with moisture or hygroscopic filler, so they do not corrode. , insulation properties will not deteriorate.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図及び第2図は本発明の第1の実施例に係る除湿用
構造体Aを示し、この除湿用構造体Aは、直方体状の吸
湿体1と、この吸湿体1の裏面(第1図における手前側
)に取り付けられた発熱体2とからなる。
1 and 2 show a dehumidifying structure A according to a first embodiment of the present invention. It consists of a heating element 2 attached to the front side in Figure 1).

吸湿体1は、連続する微細な空隙を有する基材における
上記空隙内に吸湿性フィラーを内添保持してなる。
The hygroscopic body 1 is formed by holding a hygroscopic filler internally added to the pores of a base material having continuous fine pores.

基材としては、吸湿により容易に破断したり、変形しな
いものであればよく、具体的には、■耐水化した不織布
や紙を適宜積層一体化したもの、■石膏、セメント、ケ
イ酸カルシウム、ロックウール或いはセラミック焼結体
等の無機質体、■ファイバーボード、パーティクルボー
ド、或いは板紙等の木質系板状体、又は、■発泡により
孔径を調整したポリ塩化ビニルシート、延伸により孔径
を調整したポリオレフィンシート或いは圧縮により孔径
を調整した繊維板等の多孔質体の単体又は複合体などが
挙げられる。
The base material may be any material as long as it does not easily break or deform due to moisture absorption.Specifically, it may include: ■Water-resistant non-woven fabric or paper laminated and integrated as appropriate, ■Gypsum, cement, calcium silicate, etc. Inorganic bodies such as rock wool or ceramic sintered bodies; ■Wood-based plates such as fiberboard, particle board, or paperboard; or ■Polyvinyl chloride sheet with pore size adjusted by foaming; polyolefin with pore size adjusted by stretching. Examples include a single body or a composite body of a porous body such as a sheet or a fiberboard whose pore diameter is adjusted by compression.

また、基材は、透湿率が1×10−3g/m・h−1■
Hg以上あり、表裏面の温度差を大きくし、裏面への水
分移動を活発化させるために熱伝導抵抗が2.0m−h
・”C/kca交以上のものが好ましく、毛細管流動を
活発化させ、吸湿性フィラーを効率良く保持するために
細孔径分布が0. 1〜100μの間に広く分散してい
るものが特に好ましい。
In addition, the base material has a moisture permeability of 1×10-3g/m・h-1■
Hg or more, and the heat conduction resistance is 2.0 m-h to increase the temperature difference between the front and back surfaces and activate moisture movement to the back surface.
・C/kca or higher is preferable, and in order to activate capillary flow and efficiently retain the hygroscopic filler, it is particularly preferable that the pore size distribution is widely dispersed between 0.1 and 100μ. .

さらに、基材の板厚については、101以上が必要であ
り、板厚が大きい程、保水量が大きくなると共に裏面を
加熱した際に表面側への熱伝導が遅くなって温度勾配と
含水率勾配を得易くなるので、20al!1以上が好ま
しい。
Furthermore, the board thickness of the base material needs to be 101 or more, and the larger the board thickness, the larger the water retention capacity, and the slower the heat conduction to the front side when the back side is heated, resulting in a temperature gradient and water content. It is easier to obtain the slope, so 20al! 1 or more is preferable.

上記基材に内添保持される吸湿フィラーとしては、■塩
化シカルシウム塩化リチウム等の潮解性物質、■ジエチ
レングリコール、トリエチレングリコール、グリセリン
、ポリアクリル酸ナトリウム、PVA等の水溶性高分子
、■ベントナイト、セビオライト、ゼオライト、活性ア
ルミナ、ゾノトライト、活性炭、モレキュラーシーブス
等の無機系吸湿材、■グラフト化されたデンプン、イソ
ブチレン無水マレイン酸等の水不溶性高分子吸湿材の単
体又はこれらの混合体が用いられる。
The moisture-absorbing filler internally added to the above base material includes: ■ deliquescent substances such as dicium chloride, lithium chloride, ■ water-soluble polymers such as diethylene glycol, triethylene glycol, glycerin, sodium polyacrylate, and PVA, and ■ bentonite. , Seviolite, zeolite, activated alumina, xonotlite, activated carbon, molecular sieves, and other inorganic moisture absorbents; Grafted starch, isobutylene maleic anhydride, and other water-insoluble polymer moisture absorbents alone or in combination. .

基材への吸湿フィラーの内添方法としては、溶解させた
吸湿性フィラーを成形後の基材に含浸させたり、吸湿性
フィラーを基材の原材料と共に混線、硬化させたりする
As a method for internally adding a hygroscopic filler to a base material, a dissolved hygroscopic filler is impregnated into the base material after molding, or the hygroscopic filler is mixed with the raw material of the base material and cured.

以上のようにして形成された吸湿体1はその側面が矩形
状のカバ一部材3により覆われていると共に、その裏面
に屈折した溝11が設けられている。
The moisture absorbent body 1 formed as described above has its side surfaces covered with rectangular cover members 3, and has bent grooves 11 provided on its back surface.

吸湿体1の溝11には発熱体2が嵌入されており、この
発熱体2を構成する発熱線21は、ケーブル状に多数集
合した発熱素線の周囲をガラスウール、シリコンゴム等
の絶縁体で被覆して、紐状又は細幅テープ状に形成した
ものである。
A heating element 2 is fitted into the groove 11 of the moisture absorbing body 1, and the heating wires 21 constituting the heating element 2 are surrounded by an insulating material such as glass wool or silicone rubber. It is formed into a string or narrow tape.

発熱線21の所要個所には温度センサ22が接続端子2
4を介して並列に接続されており、発熱線21が所定温
度、例えば、80℃、100℃(或いは140℃)にな
ると発熱線21への通電を遮断する。
Temperature sensors 22 are connected to connection terminals 2 at required locations on the heating wire 21.
When the heating wire 21 reaches a predetermined temperature, for example, 80° C., 100° C. (or 140° C.), the power to the heating wire 21 is cut off.

発熱線21の他の個所には温度ヒユーズ23が接続端子
24を介して直列に接続されており、発熱線21が所定
温度、例えば、上記温度センサ22の設定温度より20
℃高い温度に達すると発熱#s21に流れる電流を遮断
する。また、図示はしていないが、発熱線21には電流
ヒユーズ等の保安部分を適宜接続することが好ましい。
A temperature fuse 23 is connected in series to another part of the heating wire 21 via a connecting terminal 24, and the heating wire 21 is heated to a predetermined temperature, for example, 20° below the set temperature of the temperature sensor 22.
When the temperature reaches a temperature higher than 0.degree. C., the current flowing through the heat generation #s21 is cut off. Further, although not shown, it is preferable to connect a safety part such as a current fuse to the heating wire 21 as appropriate.

発熱体2の制御部分である温度センサ22、温度ヒユー
ズ23、電流ヒユーズは、絶縁チューブ25により覆わ
れており、絶縁チューブ25の外部との絶縁状態が維持
されている。
A temperature sensor 22, a temperature fuse 23, and a current fuse, which are control parts of the heating element 2, are covered by an insulating tube 25, and the insulating state of the insulating tube 25 from the outside is maintained.

発熱線21、上記の制御部品、接続端子24及び絶縁チ
ューブ25は、吸湿体1の溝11と同じ形状に屈折した
管26の内部に封入されている。
The heating wire 21, the above-mentioned control parts, the connecting terminal 24, and the insulating tube 25 are sealed inside a tube 26 bent in the same shape as the groove 11 of the moisture absorbent body 1.

管26は防蝕性と耐水性ををする素材、例えば、金属、
プラスチック等により形成されており、その内径は、直
径3mtsの発熱線21を封入する場合には51程度が
好ましい。管26の一端部26Aは、管26の他端部近
傍おいて管26に合流しており、管26の内部の発熱!
21は接続個所より他端部側において平行状態でカバ一
部材3の外部へ伸びている。カバ一部材3の外部へ伸び
た発熱線21はリード線27に接続されており、このリ
ード線27は発熱体2の使用時に電源に接続される。
The pipe 26 is made of a corrosion-resistant and water-resistant material, such as metal,
It is made of plastic or the like, and its inner diameter is preferably about 51 mm when enclosing the heating wire 21 with a diameter of 3 mts. One end 26A of the tube 26 joins the tube 26 near the other end of the tube 26, causing heat generation inside the tube 26!
21 extends to the outside of the cover member 3 in parallel from the connection point to the other end side. The heating wire 21 extending to the outside of the cover member 3 is connected to a lead wire 27, and this lead wire 27 is connected to a power source when the heating element 2 is used.

第3図は上記第1の実施例に係る除湿用構造体Aの使用
例を示しており、この使用例においては、吸湿体1を覆
うカバ一部材3の裏面側が後方へ伸び、カバ一部材3の
後端には開閉自在な扉4が取り付けられている。このよ
うな構造の除湿構造体Aを、その表面が室内に面し、扉
4が室外に位置するように壁に嵌め込み、発熱体2に通
電すると、表面側から吸湿体1に取込まれた室内の水分
は裏面側へ移動し、発熱体2によって蒸発させられ、開
放された扉4の側方から外部へと放出される。
FIG. 3 shows an example of use of the dehumidification structure A according to the first embodiment, and in this example of use, the back side of the cover member 3 that covers the moisture absorbent body 1 extends rearward, and the cover member 3 extends backward. A door 4 that can be opened and closed is attached to the rear end of 3. When the dehumidifying structure A having such a structure is fitted into a wall so that its surface faces indoors and the door 4 is located outdoors, and electricity is applied to the heating element 2, moisture is absorbed into the moisture absorbing element 1 from the surface side. Moisture in the room moves to the back side, is evaporated by the heating element 2, and is discharged to the outside from the side of the opened door 4.

第4図は本発明の第2の実施例に係る除湿用構造体Aを
示し、この除湿用構造体Aは、円筒状の吸湿体1の内周
面に発熱体2が螺旋状に嵌め込まれてなる。この除湿用
構造体Aを使用する場合には、吸湿体1の中空部5の一
端側に不図示の排出用バイブを接続し、中空部5の他端
側から送風する。このようにすると、吸湿体の外周面か
ら吸湿体1に取込まれた水分は内周面側へ移動し、排出
パイプを通って系外へ放出される。
FIG. 4 shows a dehumidifying structure A according to a second embodiment of the present invention, in which a heating element 2 is fitted into the inner peripheral surface of a cylindrical moisture absorbent body 1 in a spiral shape. It becomes. When using this dehumidification structure A, a discharge vibrator (not shown) is connected to one end of the hollow part 5 of the moisture absorbent body 1, and air is blown from the other end of the hollow part 5. In this way, moisture taken into the moisture absorbent body 1 from the outer peripheral surface of the moisture absorbent body moves toward the inner peripheral surface side and is discharged outside the system through the discharge pipe.

第5図は本発明の第3の実施例に係る除湿用構造体Aを
示し、この除湿用構造体Aは吸湿体1に発熱体2が着脱
自在に取り付けられてなる。
FIG. 5 shows a dehumidifying structure A according to a third embodiment of the present invention, and this dehumidifying structure A includes a moisture absorbing body 1 and a heat generating body 2 detachably attached thereto.

吸湿体1は偏平な直方体状であって、第5図における手
前側に倒U字状の溝11が設けられている。吸湿体1の
手前側を除く三方の側面及び上下面の手前側はカバ一部
材3によって覆われており、また、このカバ一部材3は
、手前側へ若干伸びた延伸部31を有している。
The moisture absorbent body 1 has a flat rectangular parallelepiped shape, and is provided with an inverted U-shaped groove 11 on the front side in FIG. The three side surfaces and the upper and lower surfaces of the moisture absorbent body 1 other than the front side are covered by a cover member 3, and the cover member 3 has an extending portion 31 that extends slightly toward the front side. There is.

発熱体2は吸湿体1の溝11と同形状の倒U字状であっ
て、横長の発熱体支持部材6により保持されている。発
熱体支持部材6は後方側が開放された枠であって、手前
側には開閉自在な扉61が取り付けられていると共に、
−側部にはスイッチやタイマーなどが組み込まれた制御
板62が取付けられている。発熱体支持部材6の外径寸
法はカバ一部材3の延伸部31の内径寸法よりも若干小
さく形成されており、発熱体支持部材6を延伸部3゛1
に嵌め込むことができる。この場合において、延伸部3
1の一側部には、発熱体2の両端部を嵌入し得る切欠部
32が設けられている。このように発熱体2を吸湿体1
に着脱自在にすると、防水シールの取付や除湿用構造体
Aの組立て、点検、補修が容易になる。なお、通常の室
内状態においては、タイマーを24時間のうち2時間程
度発熱体2に通電するようにセットすることが好ましい
The heating element 2 has an inverted U-shape similar to the groove 11 of the moisture absorbing element 1, and is supported by a horizontally elongated heating element support member 6. The heating element support member 6 is a frame with an open rear side, and a door 61 that can be opened and closed is attached to the front side.
- A control board 62 with built-in switches, timers, etc. is attached to the side. The outer diameter of the heating element support member 6 is formed to be slightly smaller than the inner diameter of the extending portion 31 of the cover member 3, and the heating element supporting member 6 is connected to the extending portion 31 of the cover member 3.
It can be inserted into. In this case, the stretching part 3
A notch 32 into which both ends of the heating element 2 can be fitted is provided on one side of the heating element 1 . In this way, the heating element 2 is connected to the moisture absorbing element 1.
By making it removable, it becomes easy to attach the waterproof seal and assemble, inspect, and repair the dehumidifying structure A. Note that under normal indoor conditions, it is preferable to set the timer so that the heating element 2 is energized for about 2 hours out of 24 hours.

(実験例) 次に、第1の実施例の除湿用構造体Aの実験例を示す。(Experiment example) Next, an experimental example of the dehumidifying structure A of the first embodiment will be shown.

吸湿性フィラーである塩化カルシウムを20重量%含浸
したロックウールボード(比重0゜25平均細孔径55
μ)を積層し、50mmX150smX 150mmの
大きさに形成した吸湿体1の裏面に、100V、22.
5Wのケーfルヒ−9,109℃で溶断する温度ヒユー
ズ及び80℃でオフする温度センサを内径51I11の
ステンレススチール製管の内部に封入してなる発熱体2
を取り付けた除湿構造体Aを用意した。そして、この除
湿構造体Aに上記のカバ一部材3を取り付け、25℃、
70%RHの雰囲気下で放置した後、発熱体2に通電し
た。その結果、吸湿体1の温度は50℃に上昇し、通電
5分後にカバ一部材3の内部に結露が現われ、その後、
5mN/時の割合で水が採取できた。市販されている使
い捨ての除湿剤を押入れ等に入れておく場合の採取量は
100mU/月程度であるから、本実施例に係る除湿構
造体Aの除湿効果の大きさが理解できる。
Rock wool board impregnated with 20% by weight of calcium chloride, a hygroscopic filler (specific gravity: 0°25, average pore diameter: 55%)
100 V, 22.
A heating element 2 which is made by enclosing a temperature fuse that melts at 9,109℃ and a temperature sensor that turns off at 80℃ inside a stainless steel tube with an inner diameter of 51I11.
A dehumidifying structure A was prepared. Then, the above-mentioned cover member 3 is attached to this dehumidifying structure A, and the temperature is set at 25°C.
After being left in an atmosphere of 70% RH, electricity was applied to the heating element 2. As a result, the temperature of the moisture absorbent body 1 rose to 50°C, and after 5 minutes of electricity, dew condensation appeared inside the cover member 3.
Water could be collected at a rate of 5 mN/hour. If a commercially available disposable dehumidifier is kept in a closet or the like, the amount of dehumidification collected is about 100 mU/month, so the magnitude of the dehumidifying effect of the dehumidifying structure A according to this example can be understood.

また、採取した水を回収し、蒸発させたところ、固形分
は存在しなかった。このことから、吸湿性フィラーが吸
湿体1から採取水に流出しなかったことになり、長期に
亘る使用においても吸湿体1の吸湿性能が低下しないこ
とが理解できる。
Also, when the sampled water was collected and evaporated, no solid content was present. From this, it can be understood that the hygroscopic filler did not flow out from the hygroscopic body 1 into the sampled water, and that the hygroscopic performance of the hygroscopic body 1 did not deteriorate even during long-term use.

尚、通常の室内用除湿機は上記条件下において100m
Q/時程度の採取量であるので、吸湿体1の吸湿面の大
きさを600m5X 600+8mlこすると上記室内
用除湿機と略同程度の採取量が得られる。
In addition, a normal indoor dehumidifier can reach up to 100 m under the above conditions.
Since the amount to be collected is approximately Q/hour, if the size of the moisture absorption surface of the moisture absorbing body 1 is 600 m5 x 600 + 8 ml, the amount to be collected is approximately the same as that of the above-mentioned indoor dehumidifier.

(発明の効果) 以上説明したように、本発明の除湿用構造体Aによると
、吸湿体が取り込んだ水分を発熱体により蒸発させるの
で、機構が簡単であると共に再生効率が高く、また、発
熱体の発熱線及び制御部品が、防蝕性と耐水性を存する
管の内部に封入されている為に、水分や吸湿性フィラー
と接触することがなく、水や吸湿性フィラーによって腐
蝕させられたり、絶縁性を悪化させられないので、故障
が生じ難く、耐久性が良いと共に安全が高い。
(Effects of the Invention) As explained above, according to the dehumidifying structure A of the present invention, the moisture taken in by the moisture absorption body is evaporated by the heating element, so the mechanism is simple and the regeneration efficiency is high. Because the body's heating wires and control parts are enclosed inside a corrosion- and water-resistant tube, they do not come into contact with moisture or hygroscopic fillers, and are protected from corrosion by water or hygroscopic fillers. Since insulation properties cannot be deteriorated, breakdowns are less likely to occur, and durability is good and safety is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例である除湿用構造体を示
す斜視図、第2図は第1図の■−■線における断面図、
第3図は第1図の除湿用構造体の使用例を示す斜視図、
第4図は本発明の第2の実施例である除湿用構造体を示
す斜視図、第5図は本発明の第3の実施例である除湿用
構造体における吸湿体と発熱体の分離状態を示す斜視図
、第6図は第5図の吸湿体と発熱体の結合状態を示す部
分断面図である。 A・・・除湿用構造体、1・・・吸湿体、2・・・発熱
体、3・・・カバ一部材、6・・・発熱体支持部材、2
1・・・発熱線、22・・・温度センサ、23・・・温
度ヒユーズ、26・・・管。 特 許 出 願 人 大建工業株式会社代  理  人
  弁理士 前 1) 仏式  理  人  弁理士 
沼 波  知 明1図 (発火”<m        RZWl益度ロンワつち
4図
FIG. 1 is a perspective view showing a dehumidification structure according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1,
FIG. 3 is a perspective view showing an example of use of the dehumidification structure shown in FIG. 1;
FIG. 4 is a perspective view showing a dehumidifying structure according to a second embodiment of the present invention, and FIG. 5 is a state in which a moisture absorbing body and a heating element are separated in a dehumidifying structure according to a third embodiment of the present invention. FIG. 6 is a partial sectional view showing a state in which the moisture absorbing body and heat generating body of FIG. 5 are combined. A...Dehumidification structure, 1...Moisture absorber, 2...Heating element, 3...Cover member, 6...Heating element support member, 2
DESCRIPTION OF SYMBOLS 1... Heat generating wire, 22... Temperature sensor, 23... Temperature fuse, 26... Tube. Patent applicant Daiken Kogyo Co., Ltd. Agent Patent attorney 1) Buddhist attorney Patent attorney
Numa Nami Tomoaki Figure 1 (Ignition"<m

Claims (1)

【特許請求の範囲】[Claims] (1)基材の連続する微細空隙内に吸湿性フィラーを内
添保持してなる10mm以上の厚さを有する吸湿体と、
該吸湿体に当接ないしは埋設して取り付けられた発熱体
とよりなり、発熱体は発熱線及び制御部品を防蝕性と耐
水性を有する管の内部に封入したものであることを特徴
とする除湿用構造体。
(1) A hygroscopic body having a thickness of 10 mm or more and having a hygroscopic filler internally added and retained in continuous microscopic voids of a base material;
A dehumidifier comprising a heating element attached in contact with or buried in the moisture absorbing body, the heating element having a heating wire and control parts sealed inside a pipe having corrosion resistance and water resistance. structure for.
JP63109469A 1988-05-02 1988-05-02 Assembly for dehumidification Pending JPH01281128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109469A JPH01281128A (en) 1988-05-02 1988-05-02 Assembly for dehumidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109469A JPH01281128A (en) 1988-05-02 1988-05-02 Assembly for dehumidification

Publications (1)

Publication Number Publication Date
JPH01281128A true JPH01281128A (en) 1989-11-13

Family

ID=14511021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109469A Pending JPH01281128A (en) 1988-05-02 1988-05-02 Assembly for dehumidification

Country Status (1)

Country Link
JP (1) JPH01281128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001047A (en) * 2001-06-21 2003-01-07 Matsushita Electric Ind Co Ltd Dehumidification device and cold air generator using this dehumidification device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370740A (en) * 1986-09-12 1988-03-30 大建工業株式会社 Moisture absorbing composite material
JPS6355089B2 (en) * 1983-08-25 1988-11-01 Fujitsu Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355089B2 (en) * 1983-08-25 1988-11-01 Fujitsu Ltd
JPS6370740A (en) * 1986-09-12 1988-03-30 大建工業株式会社 Moisture absorbing composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001047A (en) * 2001-06-21 2003-01-07 Matsushita Electric Ind Co Ltd Dehumidification device and cold air generator using this dehumidification device
JP4529318B2 (en) * 2001-06-21 2010-08-25 パナソニック株式会社 Dehumidifying device and cold air generator using the dehumidifying device

Similar Documents

Publication Publication Date Title
Ji et al. New composite adsorbent for solar-driven fresh water production from the atmosphere
JPH0628173Y2 (en) Moisture exchange element
CA2988600C (en) Moisture pump for enclosure
JP2950453B2 (en) Sheet-shaped sorbent body having a heating element, sorption laminate having a heating element, and dehumidifier using sorption laminate having a heating element
AU761328B2 (en) Method for separating condensable substances from gases or gas mixtures
WO2004080497A1 (en) Heat regenerative deodorizing filter
JP5026345B2 (en) Adsorbent system and method for regenerating the system
JP3902003B2 (en) Water collector
JPH01281128A (en) Assembly for dehumidification
JPH05340910A (en) Gas sensor
JP2005279390A (en) Adsorption/desorption filter, adsorption/desorption tube and adsorption-regenerating device
US20080083336A1 (en) Electrically conductive adsorptive honeycombs for drying of air
JPH02197739A (en) Humidity controller
JPH01297125A (en) Dehumidification device
JPH01281129A (en) Apparatus for dehumidification
JP3974874B2 (en) Residential ventilation system
JP2002195604A5 (en)
JPH03154614A (en) Dehumidifying device
JPH0796182A (en) Self-regenerating dehumidifier
JP7377348B2 (en) Humidity control device and method
JPH0487617A (en) Dehumidification structure
JPH0857305A (en) Regenerative hygroscopic agent
JPH0667450B2 (en) Permeable structure for dehumidification
JP3594486B2 (en) Moisture exchange element
US20230332033A1 (en) Composite material for thermochemical energy storage and method of making same