JPH01310716A - Dehumidifier - Google Patents

Dehumidifier

Info

Publication number
JPH01310716A
JPH01310716A JP63139899A JP13989988A JPH01310716A JP H01310716 A JPH01310716 A JP H01310716A JP 63139899 A JP63139899 A JP 63139899A JP 13989988 A JP13989988 A JP 13989988A JP H01310716 A JPH01310716 A JP H01310716A
Authority
JP
Japan
Prior art keywords
humidity
moisture
temperature
heat
absorbing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139899A
Other languages
Japanese (ja)
Inventor
Akira Matsuoka
章 松岡
Masayuki Oshima
正之 大島
Kiyoshi Mimura
三村 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP63139899A priority Critical patent/JPH01310716A/en
Publication of JPH01310716A publication Critical patent/JPH01310716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To detect humidity with high precision by a simple and economical structure by stopping electric conduction to a heat generating body on one side of a humidity absorbing body when a temperature sensor attached to the humidity absorbing body detects a prescribed temperature, and setting a timer to start electric conduction again after a prescribed period since the electric conduction is stopped. CONSTITUTION:A humidity absorbing body 1 formed by impregnation of humidity absorptive filler such as calcium chloride in a porous body such as a rock wool and a heat-generating body 2 are integrally combined and a temperature sensor 3 is installed on the porous body. Power is conducted to the heat-generating body 2 so as to dissipate humidity which is absorbed in the humidity absorbing body 1, and when the water retaining rate of humidity absorbing body 1 becomes low, the temperature of the humidity absorbing body 1 rises to high value. When the temperature reaches a prescribed temperature, the temperature sensor 3 works and stops the power conduction to the heat-generating body 2. The humidity absorbing body 1 in a condition of low water absorbing rate gradually absorbs humidity in a room so as to dehumidify the room. A period during which, with power conduction being stopped, the humidity absorbing body 1 continuously absorbing humidity until the water retaining rate reaches a prescribed value is set previously by a timer 4, and when the prescribed period is passed, power is conducted again to the heat-generating body 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は室内を自動運転で除湿する事が出来る新規な除
湿装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel dehumidification device that can automatically dehumidify a room.

〔従来技術とその問題点〕[Prior art and its problems]

本願発明の先行技術である特願昭61−185026号
には吸湿体に発熱体を一体化したものが記載されている
。このものは吸湿スピードに比べ、放’tRスピードが
数倍〜数10倍であった。そのため、発熱体を短時間断
続的に加熱することが求められ、電気抵抗式の含水率セ
ンサーを接続することが試みられた。
Japanese Patent Application No. Sho 61-185026, which is a prior art to the present invention, describes a device in which a heat generating body is integrated with a moisture absorbing body. This material had a release speed several to several ten times faster than the moisture absorption speed. Therefore, it was required to heat the heating element intermittently for a short period of time, and an attempt was made to connect an electrical resistance type moisture content sensor.

即ち、吸湿体の含水率が上がると抵抗が小さくなって、
発熱体がオンになり、所定以下の含水率になるとオフに
なるという制御方式を試みたが、交流電場において、電
気分解による吸湿性フィラーのイオン化等で周波数が不
安定となり、設定値と検知結果にバラツキがあった。そ
のため、周波数変換装置を用いて高周波にすると検知精
度は向上するが、装置が高価で大掛かりとなるという欠
点があった。
In other words, as the moisture content of the moisture absorber increases, the resistance decreases,
We tried a control method in which the heating element is turned on and turned off when the moisture content reaches a predetermined level, but in the AC electric field, the frequency became unstable due to ionization of the hygroscopic filler due to electrolysis, and the set value and detection results were There was some variation. Therefore, if the frequency is converted to a high frequency using a frequency converter, the detection accuracy improves, but there is a drawback that the device is expensive and large-scale.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来例の欠点に鑑みてなされたもので、
その目的とする処は、簡便且つ安価な機構であるにも拘
わらず、極めて高精度な検知が可能な検知装置を具備し
た除湿装置を提供するにある。
The present invention was made in view of the drawbacks of the conventional example, and
The objective is to provide a dehumidifier equipped with a detection device that is simple and inexpensive, yet capable of extremely high-precision detection.

〔問題点を解決するための技術的手段〕本発明は、前記
問題点を解決するために、■ 連続する微小空隙を有す
る多孔質体の該空隙に吸湿性フィラーを内添保持させた
吸湿体(1)の片面に、放湿を妨げない発熱体が取付け
られ、■ 該多孔質体に温度センサー(3)が設けてあ
り、■ 所定温度に達した事を前記温度センサー(3)
にて検出して発熱体(2)への通電を停止し、通電停止
後所定時間経過した後に再び通電させるタイマ(4)を
上記発熱体(2)に接続する。
[Technical Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides: (1) a hygroscopic material in which a hygroscopic filler is internally retained in the voids of a porous body having continuous micro voids; A heating element that does not hinder moisture release is attached to one side of (1), and a temperature sensor (3) is provided on the porous body, and the temperature sensor (3) detects when a predetermined temperature has been reached.
A timer (4) is connected to the heat generating element (2), which detects the current at the timer, stops the power supply to the heat generating element (2), and restarts the power supply after a predetermined period of time has elapsed after the power supply is stopped.

;という技術的手段を採用している。; is adopted as a technical means.

〔作  用〕[For production]

■ 吸湿体(1)に発熱体(2)を一体化し、吸湿体(
1)の一方の面から加熱放湿するので、吸湿体(1)が
高含水率時には蒸発が盛んにおこなわれる。その結果、
気化熱が奪われ、吸湿体(1)の温度が一定以上になら
ない。従って、発熱体(2)の通電が連続的に行われる
■ Integrate the heating element (2) with the moisture absorber (1), and
Since heating and moisture is released from one side of the hygroscopic body (1), when the moisture content of the hygroscopic body (1) is high, evaporation occurs actively. the result,
The heat of vaporization is taken away and the temperature of the moisture absorbent (1) does not rise above a certain level. Therefore, the heating element (2) is continuously energized.

■ ところが、連続放湿で吸湿体(1)が、低含水率に
なり、水分の蒸発が少なくなると気化熱となって奪われ
る熱量が減り、熱の放出が少なくなって吸湿体(1)が
昇温しで高温になる。
■ However, due to continuous moisture release, the hygroscopic body (1) has a low moisture content, and when the evaporation of water decreases, the amount of heat taken away as heat of vaporization decreases, and the amount of heat released decreases, causing the hygroscopic body (1) to When the temperature rises, it becomes high temperature.

■ 吸湿体(1)が所定の温度に達すると温度センサが
感知して発熱体(2)への通電を止める。
■ When the moisture absorbing body (1) reaches a predetermined temperature, the temperature sensor detects this and stops the power supply to the heating element (2).

■ この状態において吸湿体は低含水率であるので室内
の湿気を徐々に取込み、室内を除湿する。
■ In this state, the moisture absorber has a low moisture content, so it gradually absorbs moisture from the room and dehumidifies the room.

■ 吸湿体(1)はその大きさと室内の湿度状態により
吸湿能力が衰える時間は異なるが95%RHの高湿度下
でも数時間から1日程度を要する。
(2) The time it takes for the moisture absorbing ability of the moisture absorbing body (1) to decline varies depending on its size and indoor humidity conditions, but it takes several hours to a day even under high humidity conditions of 95% RH.

一方、加熱により吸湿体(1)が低含水率になり、賦活
するのは数分〜1時間あれば充分である。
On the other hand, several minutes to an hour is sufficient for the moisture absorbent (1) to have a low moisture content and be activated by heating.

所定の含水率以下になればそれ以上加熱する必要はない
Once the moisture content is below a predetermined value, there is no need to heat it any further.

上記性質を利用して、吸湿体(1)が吸湿する時間をタ
イマー(4)により設定する。
Using the above properties, the timer (4) is used to set the time for the moisture absorbent (1) to absorb moisture.

■ 設定時間が経過すると発熱体(2)に通電する。■ When the set time has elapsed, the heating element (2) is energized.

発熱体(2)の通電は、吸湿体(1)が所定温度に達し
た時に切れるようにし、通電が切れた後にタイマー(4
)が作動し出すようにする。
The power to the heating element (2) is turned off when the moisture absorbing body (1) reaches a predetermined temperature, and after the power is turned off, the timer (4) is turned off.
) starts operating.

[実 施 例] 本発明を以下、図示実施例に従って詳述する。[Example] The invention will now be described in detail with reference to illustrated embodiments.

本発明の吸放湿材料は微小空隙を有する実質的に空気流
通がなく気流を遮断する多孔質体で、例えば、■石膏、
セメント、ケイ酸カルシウムやセラミック焼結体等の無
機質体や、■ロックウール。
The moisture-absorbing and desorbing material of the present invention is a porous body having minute voids that substantially prevents air flow and blocks air flow, such as:
Inorganic materials such as cement, calcium silicate, ceramic sintered bodies, and rock wool.

グラスウール等無機繊維を層状に堆積し、一体化したも
の、■発泡により孔径を調製したポリ塩化ビニルシート
、延伸により孔径を調製したポリオレフィンシート合成
樹脂等のコーティングにより孔径を調製した紙、圧縮に
より孔径を調製した繊維板等を適宜積層一体化した多孔
質体の単体又は複合体で、吸湿より容易に破断したり、
変形しないものである。更に、多孔質体は透湿率が、I
 Xl0−’ g 7m  −h  −mmtlg  
以上あり、その表面で結露しない様に且つ、断熱性を考
慮して熱伝導抵抗が、 2.0m −h  ・”C/kcal  以上のものが
良く、特に毛細管流動を活発化させるために、又、後述
する吸湿性フィラーを保持するために細孔径分布が0.
1〜100μの間で分散しているものが好ましい。又、
材質は厚い程、多孔質材の保水量が太き=4− いとともに裏面加熱時の表面側への熱伝導が遅くなり、
温度勾配、含水率勾配を大きくしやすい。
Materials made by depositing and integrating inorganic fibers such as glass wool into layers; ■Polyvinyl chloride sheets with pore size adjusted by foaming; Polyolefin sheets with pore size adjusted by stretching; Paper with pore size adjusted by coating synthetic resin; pore size adjusted by compression. A single or composite porous body made by laminating and integrating fiberboard etc. prepared with
It does not deform. Furthermore, the porous material has a moisture permeability of I
Xl0-' g 7m -h -mmtlg
In order to prevent dew condensation on the surface and in consideration of heat insulation properties, it is preferable that the heat conduction resistance is 2.0 m -h ・"C/kcal or more. In particular, in order to activate capillary flow, , the pore size distribution is 0.0 to retain the hygroscopic filler described later.
Preferably, the particles are dispersed between 1 and 100μ. or,
The thicker the material, the greater the water retention capacity of the porous material = 4-, and the slower the heat conduction to the front side when heating the back side.
Easy to increase temperature gradient and moisture content gradient.

従って5顛以上、好ましくは20111以上の材厚が必
要であり、薄い多孔質体なら複数枚を積層して用いる。
Therefore, it is necessary to have a material thickness of 5 or more, preferably 20111 or more, and a plurality of thin porous materials are used in a stacked manner.

本発明においては、吸湿性フィラーとしては■塩化カル
シウム、塩化リチウム等の潮解性物質や■ジエチレング
リコール、トリエチレングリコール、グリセリン、ポリ
アクリル酸ナトリウム、PVA等の水溶性高分子や、■
ベントナンドセピオライト、ゼオライト、活性アルミナ
、ゾノトライト、活性炭、モレキュラーシーブス等の無
機系吸?W ’74や■グラフト化されたデンプン、イ
ソブチレン無水マレイン酸等の水不溶性高分子吸湿材の
単体又はこれらの混合体が用いられる。
In the present invention, the hygroscopic fillers include (1) deliquescent substances such as calcium chloride and lithium chloride, (2) water-soluble polymers such as diethylene glycol, triethylene glycol, glycerin, sodium polyacrylate, and PVA;
Inorganic absorbers such as bentonandosepiolite, zeolite, activated alumina, xonotlite, activated carbon, molecular sieves, etc. Water-insoluble polymeric moisture absorbing materials such as W'74, (2) grafted starch, and isobutylene maleic anhydride may be used alone or in mixtures thereof.

多孔質体への吸湿フィラーの内添方法として上記吸湿性
フィラーを熔解して多孔質体に含浸させるか、成形時に
吸湿フィラーを多孔質体の原材料と共に混練し、硬化さ
せる。特にベントナイト等の無機系吸湿材と塩化カルシ
ウムやジエチレングリコール等を水で混合し、セメント
や石膏と混練る成形したものは吸湿性フィラーの滲出が
少なく、適度な透湿性を有し好ましい。
As a method for internally adding a hygroscopic filler to a porous body, the hygroscopic filler is melted and impregnated into the porous body, or the hygroscopic filler is kneaded with the raw material of the porous body during molding and then hardened. In particular, a molded product made by mixing an inorganic moisture absorbing material such as bentonite with water, such as calcium chloride or diethylene glycol, and kneading it with cement or gypsum is preferable, as it has little exudation of the hygroscopic filler and has appropriate moisture permeability.

本発明の発熱体(2)は、例えば湿気の通過可能な通気
性シートに金属エツチングや導電塗料を付着させた面状
発熱体乃至ケーブルヒータで、吸湿体(」)の片面(空
間部側)に埋設又は当接して取付けられて一体化してい
る。そして適宜防湿、漏電防止処理し又、加熱を均一化
するために金網等の均熱シートを一体的に積層してもよ
い。又、発熱体(2)に赤外線ヒータ等を吸湿体(1)
の背面に若干の空間をおいて配し吸湿体(1)の背面を
加熱する様にしてもよい。第1図は本発明を具体化した
場合の一例で、ケース(5)の前面開口部(6)に吸湿
体(1)が配設されており、吸湿体(1)の背面に前記
発熱体(2)が配置されており、タイマー(4)にて制
御されている。
The heating element (2) of the present invention is, for example, a planar heating element or cable heater in which metal etching or conductive paint is attached to a breathable sheet through which moisture can pass, and one side (space side) of the moisture absorbing element ('') is used. It is embedded in or attached to and integrated with the Then, moisture-proofing and electric leakage prevention treatment may be applied as appropriate, and a heat-uniforming sheet such as a wire mesh may be integrally laminated to uniformize heating. In addition, an infrared heater, etc. is used as the heating element (2), and a moisture absorbing element (1) is used.
It is also possible to heat the back surface of the moisture absorbent body (1) by leaving some space on the back surface of the moisture absorbent body (1). FIG. 1 shows an example of the embodiment of the present invention, in which a moisture absorbing body (1) is disposed in the front opening (6) of a case (5), and the heating element is placed on the back side of the moisture absorbing body (1). (2) is arranged and controlled by a timer (4).

吸湿体(1)の背面とケース(5)の背面との間には放
湿用の空間部(8)が設けられている。更に、ケース(
5)の底部には水受は皿(7)が設置されており、吸湿
体(1)の背面から放湿された水分がケース(5)内面
に結露して溜まるようになっている。吸湿体(1)には
温度センサ(3)が埋設されており、吸湿体(1)の温
度を正確に測定する。
A moisture release space (8) is provided between the back surface of the moisture absorbent body (1) and the back surface of the case (5). Furthermore, the case (
A water receptacle (7) is installed at the bottom of the case (5), so that moisture released from the back of the moisture absorber (1) condenses and accumulates on the inner surface of the case (5). A temperature sensor (3) is embedded in the moisture absorbent body (1) and accurately measures the temperature of the moisture absorbent body (1).

第2回は本発明に使用する制御回路の一例で、ACl、
OOV電源ライン間にサーモコントローラ(SC)デイ
レ−タイマー(DT)、リレー(R)、タイマー(4)
、トランスフォーマ(TF)及びソリッドステートリレ
ー (SSR)がそれぞれ並列接続されてあり、ソリッ
ドステートリレー(SSR)には出力コネクター((J
)が直列接続されていて発熱体がこの出力コネクター 
(CN)に接続されるようになっている。又、前記サー
モコントローラ <SC> には温度センサ(3)が接
続されており、吸湿体(11の温度検出を行っている。
The second part is an example of a control circuit used in the present invention, including ACl,
Thermo controller (SC), delay timer (DT), relay (R), timer (4) between OOV power lines
, a transformer (TF), and a solid state relay (SSR) are connected in parallel, and the solid state relay (SSR) has an output connector ((J
) are connected in series and the heating element is connected to this output connector.
(CN). Further, a temperature sensor (3) is connected to the thermocontroller <SC> and detects the temperature of the moisture absorbent body (11).

尚、サーモコントローラ (SC)にはスナップスイッ
チ(SS)が直列接続されており、サーモコントローラ
 (SC)のオン、オフを行うようになっている。又、
サーモコントローラ (SC)にパイロットランプ(F
LY)が並列接続され、サーモコントローラ (SC)
のオン、オフを表示するようになっている。同様にタイ
マー(4)にもパイロットランプ(PI、2)が並列接
続されており、タイマー(4)のオン、オフを表示する
ようになっている。
A snap switch (SS) is connected in series to the thermocontroller (SC) to turn the thermocontroller (SC) on and off. or,
Pilot lamp (F) on thermo controller (SC)
LY) are connected in parallel, and the thermo controller (SC)
It is designed to display whether it is on or off. Similarly, a pilot lamp (PI, 2) is connected in parallel to the timer (4) to display whether the timer (4) is on or off.

しかして、発熱体(2)に通電し、放湿体(11の背面
を加熱してここから放湿するのであるが、吸湿体(1)
が高含水率時には蒸発が盛んにおこなわれるので気化熱
が奪われ、吸湿体(1)の温度が設定値以上にならない
。ところが、連続放湿の結果、吸湿体(1)が低含水率
になり、水分の蒸発が少なくなると水分蒸発による気化
熱の放出が少なくなり、吸湿体(1)は昇温しで高温に
なる。
Then, the heating element (2) is energized to heat the back surface of the moisture radiator (11) and radiate moisture from there, but the moisture absorber (1)
When the water content is high, evaporation occurs actively, so the heat of vaporization is taken away, and the temperature of the moisture absorbing body (1) does not rise above the set value. However, as a result of continuous moisture release, the hygroscopic body (1) has a low moisture content, and as moisture evaporates less, the heat of vaporization due to moisture evaporation is released less, and the hygroscopic body (1) becomes hot. .

吸湿体(11が所定の温度に達すると温度センサ(3)
が働いてソリッドステートリレー(SSR)がオフとな
って発熱体(11への通電を止める。この状態において
吸湿体(1)は低含水率であるので室内の湿気を徐々に
取込み、室内を除湿する。
When the moisture absorber (11) reaches a predetermined temperature, the temperature sensor (3)
is activated, the solid state relay (SSR) is turned off, and the power to the heating element (11) is stopped. In this state, the moisture absorber (1) has a low moisture content, so it gradually takes in moisture from the room and dehumidifies the room. do.

吸湿体(1)はその大きさと室内の湿度状態により吸湿
能力が衰える時間は異なるが95%R11の高湿度環境
下でも数時間から1日程度である。
The time for the moisture absorbing ability of the moisture absorbing body (1) to decline varies depending on its size and indoor humidity condition, but it takes from several hours to about one day even in a high humidity environment of 95% R11.

一方、吸湿体fl)が発熱体(2)の通電による放湿で
低含水率になり、賦活するのは数分〜1時間あれば充分
であり、所定の含水率以下になればそれ以上加熱する必
要はないので前記のように通電を停止する。
On the other hand, a few minutes to an hour is sufficient for the moisture absorbing body (fl) to become low in moisture content due to moisture dissipation due to the energization of the heating element (2) and to be activated, and if the moisture content falls below a predetermined moisture content, heating is continued. Since there is no need to do so, the power supply is stopped as described above.

続いて上記のような通電停止の状態で吸湿を続けると室
内の湿気は低下するものの吸湿体(1)の含水率は徐々
に上昇して行く。そこで吸湿体(1)の含水率が所定の
値に達するまでの時間をあらかじめタイマー(4)にて
設定しておき、設定時間が経過した処で再度発熱体(2
)への通電を開始する。
Subsequently, if moisture absorption continues in the above-described state in which the electricity is not supplied, the moisture content in the moisture absorbing body (1) gradually increases, although the indoor humidity decreases. Therefore, the time required for the moisture content of the moisture absorbing body (1) to reach a predetermined value is set in advance using a timer (4), and when the set time has elapsed, the heating element (2) is reused.
) starts energizing.

以下、これを繰り返し、効果的な連続放湿を行う。Thereafter, repeat this to achieve effective continuous moisture release.

(実施例1) 吸湿フィラーとして塩化カルシウムを40%含浸したロ
ンフラールボード比重0,25、平均細孔径55μ、空
隙率90.6%を用い、50x150 X150 **
の吸湿体(11を作り、吸湿体(11の片面に長さ50
cm 100V30−のケーブルヒータ(2)を一体化
し、第1図に示す除湿装置を組み立てた。温度センサ(
3)はザーミスタ、熱電対、測温抵抗体などがあるが、
ここでは熱電対をヒータ(2)に取り付け、ヒータ温度
を検出できるようにした。発熱温度は50〜160°C
で、温度センサ(3)が検知するように設定した。
(Example 1) Ronfural board impregnated with 40% calcium chloride as a moisture absorption filler, specific gravity 0.25, average pore diameter 55 μ, porosity 90.6%, 50 x 150 x 150 **
Make a hygroscopic body (11), and attach a length of 50 mm on one side of the hygroscopic body (11).
The dehumidifier shown in FIG. 1 was assembled by integrating a cable heater (2) of 100 V/cm. Temperature sensor (
3) includes thermisters, thermocouples, resistance temperature detectors, etc.
Here, a thermocouple was attached to the heater (2) so that the heater temperature could be detected. Exothermic temperature is 50-160°C
The temperature sensor (3) was set to detect the temperature.

タイマー(4)は2〜24時間の間で設定できるように
しておけばよく、ここでは5〜10時間で固定した。
It is sufficient that the timer (4) can be set between 2 and 24 hours, and here it is fixed at 5 to 10 hours.

本実験におけるコントロール方式としては、ヒータ温度
が140°Cとなると温度センサ(3)が感知し発熱体
(2)がオフし、タイマー(4)が6時間作動する。
As a control method in this experiment, when the heater temperature reaches 140°C, the temperature sensor (3) senses it, the heating element (2) turns off, and the timer (4) operates for 6 hours.

タイマー(4)が停止すると再び発熱体(2)に通電す
るようにした。
When the timer (4) stops, the heating element (2) is energized again.

この装置を30°C90%の雰囲気内に入れ、運転した
ところ1日に33gの水が採取出来た。
When this device was placed in an atmosphere of 30°C and 90% temperature and operated, 33g of water could be collected per day.

第3図は室内が高湿の場合の運転状況を示す図面で、発
熱体(2)の通電時間が長い。
FIG. 3 is a diagram showing an operating situation when the indoor humidity is high, and the heating element (2) is energized for a long time.

第4図は第3図よりも低湿度の場合である。FIG. 4 shows a case where the humidity is lower than that in FIG. 3.

〔効   果〕〔effect〕

本発明は叙上のように、連続する微小空隙を有する多孔
質体に吸湿性フィラーを内添保持させた吸湿体の片面に
、放湿を妨げない発熱体が取付けられ、該多孔質体に温
度センサが設けてあり、所定温度に達した事を前記温度
センサにて検出して発熱体への通電を停止し、通電停止
後所定時間経過した後に再度通電させるタイマを上記発
熱体に接続したので、吸湿体の温度を温度センサで検知
する事になり、従来方式と違って吸湿性フィラーの電気
分解によるイオン等に影響されることがなく、検知のバ
ラツキが少ないという利点があり、更に検知装置が温度
センサであるから構造が簡易で安価であり、コンパクト
であって故障しにくいという利点がある。更にタイマー
が作動している間は電力を消費せず、室内が比較的低湿
であれば発熱体がオンしてもすくに所定温度に達し、通
電が切れる事になるので、電力も少なくてすむという利
点もある。
As described above, the present invention is characterized in that a heating element that does not hinder moisture release is attached to one side of a hygroscopic body in which a hygroscopic filler is internally retained in a porous body having continuous micro-voids, and a heating element that does not hinder moisture release is attached to the porous body. A temperature sensor is provided, and a timer is connected to the heating element, which stops energizing the heating element when the temperature sensor detects that a predetermined temperature has been reached, and causes the heating element to be energized again after a predetermined period of time has elapsed after the energization was stopped. Therefore, the temperature of the hygroscopic body is detected by a temperature sensor, and unlike conventional methods, it is not affected by ions caused by electrolysis of the hygroscopic filler, and has the advantage of less variation in detection. Since the device is a temperature sensor, it has the advantage of being simple and inexpensive, compact, and less likely to break down. Furthermore, no electricity is consumed while the timer is operating, and if the humidity in the room is relatively low, even if the heating element is turned on, it quickly reaches the specified temperature and turns off, so less electricity is required. There is also an advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・本発明の一実施例の背方からの斜視図、第
2図・・・本発明の一実施例の制御回路図、第3図・・
・本発明の高湿度下における稼動状態を示すグラフ、 第4図・・・本発明の中湿度下における稼動状態を示=
 11− すグラフ。 (1)・・・吸湿体、    (2)・・・発熱体、(
3)・・・温度センサ、  (4)・・・タイマー、(
5)・・・ケース、    (6)・・・前面開口部、
(7)・・・水受は皿、   (8)・・・空間部。 特許出願人   大建工業株式会社
Fig. 1: A perspective view from the back of an embodiment of the present invention, Fig. 2: A control circuit diagram of an embodiment of the present invention, Fig. 3:
・Graph showing the operating state of the present invention under high humidity, Figure 4... Showing the operating state of the present invention under medium humidity=
11- Graph. (1)...Moisture absorber, (2)...Heating element, (
3)...Temperature sensor, (4)...Timer, (
5)...Case, (6)...Front opening,
(7)...The water receptacle is a plate, (8)...The space. Patent applicant: Daiken Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)連続する微小空隙を有する多孔質体の該空隙に吸
湿性フィラーを内添保持させた吸湿体の片面に、放湿を
妨げない発熱体が取付けられ、該多孔質体に温度センサ
ーが設けてあり、所定温度に達した事を前記温度センサ
ーにて検出して発熱体への通電を停止し、通電停止後所
定時間経過した後に再度通電させるタイマを上記発熱体
に接続したことを特徴とする除湿装置。
(1) A heating element that does not impede moisture release is attached to one side of a porous body with continuous micro-voids, in which a hygroscopic filler is internally retained in the voids, and a temperature sensor is attached to the porous body. A timer is connected to the heating element, which stops energizing the heating element when the temperature sensor detects that a predetermined temperature has been reached, and causes the heating element to be energized again after a predetermined time elapses after the energization is stopped. Dehumidification equipment.
JP63139899A 1988-06-07 1988-06-07 Dehumidifier Pending JPH01310716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139899A JPH01310716A (en) 1988-06-07 1988-06-07 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139899A JPH01310716A (en) 1988-06-07 1988-06-07 Dehumidifier

Publications (1)

Publication Number Publication Date
JPH01310716A true JPH01310716A (en) 1989-12-14

Family

ID=15256213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139899A Pending JPH01310716A (en) 1988-06-07 1988-06-07 Dehumidifier

Country Status (1)

Country Link
JP (1) JPH01310716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935304A (en) * 1996-09-19 1999-08-10 United Catalysts Inc. Desiccant composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047251A (en) * 1973-08-09 1975-04-26
JPS5726812A (en) * 1980-07-23 1982-02-13 Konan Camera Kenkyusho:Kk Focus control device
JPS6370740A (en) * 1986-09-12 1988-03-30 大建工業株式会社 Moisture absorbing composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047251A (en) * 1973-08-09 1975-04-26
JPS5726812A (en) * 1980-07-23 1982-02-13 Konan Camera Kenkyusho:Kk Focus control device
JPS6370740A (en) * 1986-09-12 1988-03-30 大建工業株式会社 Moisture absorbing composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935304A (en) * 1996-09-19 1999-08-10 United Catalysts Inc. Desiccant composition
US6217701B1 (en) 1996-09-19 2001-04-17 United Catalysts Inc. Desiccant composition

Similar Documents

Publication Publication Date Title
JP6439157B2 (en) Hygroscopic material, dehumidifying device and dehumidifying method
JPH01310716A (en) Dehumidifier
JP2003001047A (en) Dehumidification device and cold air generator using this dehumidification device
JPH02197739A (en) Humidity controller
JPH0688632A (en) Panel for radiation cooling and radiation coloing structure
JPH01297125A (en) Dehumidification device
JPS63218234A (en) Permeable structure having hygroscopic property
JPH07275642A (en) Dehumidifier
JP2683304B2 (en) Electric hot air heater
JPH08278046A (en) Humidity control device
JPH0115780B2 (en)
JPH02253822A (en) Dehumidifying device
JPH0231815A (en) Receiving box having humidity adjusting function
JPH03154614A (en) Dehumidifying device
JPH02233926A (en) Base material for humidity control
JPH0796182A (en) Self-regenerating dehumidifier
JPH01281129A (en) Apparatus for dehumidification
KR20130076909A (en) Dehumidifying apparatus for recycle silica-gel using fan heating
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JPH078742A (en) Dehumidifier
JPH0487617A (en) Dehumidification structure
JPH1171829A (en) Wall structure having moisture adjusting function
JPH01281128A (en) Assembly for dehumidification
JP2004309131A (en) Humidity optimizing system
JPH0667450B2 (en) Permeable structure for dehumidification