JPH0315321B2 - - Google Patents

Info

Publication number
JPH0315321B2
JPH0315321B2 JP12230582A JP12230582A JPH0315321B2 JP H0315321 B2 JPH0315321 B2 JP H0315321B2 JP 12230582 A JP12230582 A JP 12230582A JP 12230582 A JP12230582 A JP 12230582A JP H0315321 B2 JPH0315321 B2 JP H0315321B2
Authority
JP
Japan
Prior art keywords
glass
glass tube
oxygen partial
partial pressure
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12230582A
Other languages
Japanese (ja)
Other versions
JPS5913302A (en
Inventor
Masaru Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12230582A priority Critical patent/JPS5913302A/en
Publication of JPS5913302A publication Critical patent/JPS5913302A/en
Publication of JPH0315321B2 publication Critical patent/JPH0315321B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ガラス封入形非直線抵抗器の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass-filled nonlinear resistor.

小形のガラス封入形部品は、ダイオードに代表
される第1図に示すような構成である。すなわ
ち、ガラス管3の中で、頭部がジメツト線でなる
一対のスラグリード2で素子1を挾持し、加熱す
ることによつてガラス管3が溶融し、ガラスとジ
メツト部が融着して固定・密封されている。この
ような構成の部品は、形状の使い易さや、環境条
件に特性が影響され難く高信頼性であるなどの特
徴から、サーミスタなど他の部品でも実用化され
ている。
The small glass-encapsulated component has a structure as shown in FIG. 1, which is represented by a diode. That is, the element 1 is held between a pair of slug leads 2 whose heads are made of a dimet wire in a glass tube 3, and the glass tube 3 is melted by heating, and the glass and the dimet portion are fused. Fixed and sealed. Parts with such a configuration have been put into practical use in other parts such as thermistors because of their easy-to-use shape and high reliability as their characteristics are not easily affected by environmental conditions.

ところで、本構成部品は通常グラフアイト製の
治具内に、ガラス管、素子、スラグリードを設置
した後に、真空または窒素雰囲気中で昇温して作
られる。昇温の手段は、トンネル式などの炉やグ
ラフアイト製治具に電流を通じて、その抵抗分に
よるジユール熱を利用するなどの方法がとられて
いる。また、真空や窒素雰囲気で処理される理由
は、グラフアイトの酸化による損耗防止、ジメツ
ト部表面の亜酸化銅の維持、スラグリードの酸化
防止などによる。さらに、グラフアイトが使われ
る理由は、高温でも安定で、溶融したガラスと融
着せず、加工性にも優れているためである。
By the way, this component is usually made by placing a glass tube, an element, and a slag lead in a jig made of graphite, and then raising the temperature in a vacuum or nitrogen atmosphere. The temperature is raised by passing an electric current through a tunnel type furnace or a graphite jig, and utilizing the Joule heat generated by the resistance. The reason why the treatment is performed in a vacuum or nitrogen atmosphere is to prevent wear and tear of graphite due to oxidation, maintain cuprous oxide on the surface of the dimet portion, and prevent oxidation of the slag lead. Furthermore, graphite is used because it is stable even at high temperatures, does not fuse with molten glass, and has excellent workability.

これら部品の製造条件で、酸化亜鉛を主成分と
する非直線抵抗器を製造した場合、その非直線性
は封止工程で大きく劣化し、本来の機能が得られ
ない。その理由は明確ではないが、素子の吸着酸
素が離脱することによつて特性が変化しているも
のと思われる。
If a nonlinear resistor containing zinc oxide as a main component is manufactured under the manufacturing conditions of these parts, its nonlinearity will be significantly degraded during the sealing process, and the original function will not be obtained. Although the reason for this is not clear, it is thought that the characteristics change due to the release of oxygen adsorbed in the element.

本発明は、実験の結果適当な範囲内の酸素分圧
中で優れた特性をもつZnOを主体とする非直線抵
抗器が得られることを導いたものであつて、他の
ガラス封入形部品とほぼ同様の製造方法で非直線
抵抗器を実用化したものである。
As a result of experiments, the present invention has led to the creation of a ZnO-based nonlinear resistor that has excellent characteristics under oxygen partial pressures within a suitable range, and which is comparable to other glass-encapsulated components. This is a practical non-linear resistor using almost the same manufacturing method.

以下、実施例に基づいて本発明の製造方法を説
明する。
Hereinafter, the manufacturing method of the present invention will be explained based on Examples.

酸化亜鉛(ZnO)に酸化ビスマス、酸化コバル
トなどの数種の添加物を加えて混合し、得られた
粉末を40mmφ×20mmtに成形し、これを空気中
1250℃で焼成した。このようにして作られたブロ
ツクを0.3mmtにスライスした後、両主面に銀電
極を塗布焼付けた。このようにして得られた薄板
素子を1.0mm×1.0mmにダイシングマシンで切断し
た。このようにして得た素子を、鉛ガラスの管内
で頭部がジメツト線でなる一対のスラグリードで
挾持して、グラフアイト製の治具にセツトした。
これをタンクに入れて減圧し、各酸素分圧に調整
した後、グラフアイト製治具に通電して660℃で
1分間加熱した後、放冷した。これによりガラス
管が溶融し、ガラスとジメツト部が融着、封止さ
れることになる。ここで、各酸素分圧での結果は
第2図に示す通りであつて、酸素分圧が0.5Torr.
未満の場合は素子の非直線指数αは10以下であ
り、酸化亜鉛系バリスタの本来の特性が得られて
いない。この領域では酸素が微量であるため、そ
の効果が得られないものである。そして、酸素分
圧を0.5Torr.より増すと非直線指数αは向上し、
素子封止前の特性が得られた。ところが酸素分圧
が30Torr.を超えると、スラグリードの酸化が激
しく、またジメツト部表面も酸化銅が支配的にな
つて封止具合に欠陥が生じた。さらに、グラフア
イトの損耗が急激に進行することが認められた。
Zinc oxide (ZnO) is mixed with several additives such as bismuth oxide and cobalt oxide, and the resulting powder is formed into a size of 40mmφ x 20mmt.
It was fired at 1250℃. After slicing the thus produced block into 0.3 mm thick pieces, silver electrodes were coated and baked on both main surfaces. The thin plate element thus obtained was cut into 1.0 mm x 1.0 mm pieces using a dicing machine. The thus obtained element was held in a lead glass tube by a pair of slug leads whose heads were made of dimeth wire, and set in a graphite jig.
This was placed in a tank and the pressure was reduced to adjust it to each oxygen partial pressure, then electricity was applied to a graphite jig to heat it at 660° C. for 1 minute, and then it was allowed to cool. As a result, the glass tube is melted, and the glass and the dimet portion are fused and sealed. Here, the results for each oxygen partial pressure are as shown in Figure 2, and the oxygen partial pressure is 0.5 Torr.
If it is less than 10, the nonlinear index α of the element is less than 10, and the original characteristics of a zinc oxide-based varistor cannot be obtained. Since the amount of oxygen in this region is small, the effect cannot be obtained. Then, when the oxygen partial pressure is increased beyond 0.5 Torr, the nonlinear index α improves,
Characteristics before device encapsulation were obtained. However, when the oxygen partial pressure exceeded 30 Torr, the slag lead was severely oxidized, and the surface of the dimet portion became dominated by copper oxide, resulting in defects in the sealing quality. Furthermore, it was observed that the wear and tear of graphite progressed rapidly.

以上から、昇温〜封止時の雰囲気は酸素分圧
0.5〜30Torr.で正常な特性が得られ、かつ商品と
なり得る範囲である。これによつて、ガラス封止
形の酸化亜鉛系非直線抵抗器を実用に供すること
が可能となつたものであり、本発明の産業性は大
なるものである。
From the above, the atmosphere during temperature rise and sealing is oxygen partial pressure.
Normal characteristics can be obtained at 0.5 to 30 Torr, and this is a range that can be used as a commercial product. This makes it possible to put a glass-sealed zinc oxide nonlinear resistor into practical use, and the industrial efficiency of the present invention is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なガラス封止形部品の一部を断
面にて示す正面図、第2図は本発明を説明するた
めの酸素分圧と非直線指数αとの関係を示す図で
ある。 1……素子、2……スラグリード、3……ガラ
ス管。
FIG. 1 is a front view showing a cross section of a part of a general glass-sealed component, and FIG. 2 is a diagram showing the relationship between oxygen partial pressure and nonlinear index α for explaining the present invention. . 1...Element, 2...Slag lead, 3...Glass tube.

Claims (1)

【特許請求の範囲】[Claims] 1 頭部がジメツト線でなる一対のスラグリード
でZnOを主成分とする焼結体の非直線抵抗素子を
ガラス管の中で挾持し、酸素分圧が0.5〜30Torr.
の雰囲気中で昇温して上記ガラス管を溶融させ、
ガラスとジメツト線を融着、封止することを特徴
とするガラス封入形非直線抵抗器の製造方法。
1 A sintered nonlinear resistance element whose main component is ZnO is held between a pair of slug leads whose heads are made of dimeth wire in a glass tube, and the oxygen partial pressure is 0.5 to 30 Torr.
The glass tube is melted by increasing the temperature in an atmosphere of
A method for manufacturing a glass-filled nonlinear resistor, which is characterized by fusing and sealing glass and dimet wire.
JP12230582A 1982-07-13 1982-07-13 Method of producing glass sealed nonlinear resistor Granted JPS5913302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12230582A JPS5913302A (en) 1982-07-13 1982-07-13 Method of producing glass sealed nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12230582A JPS5913302A (en) 1982-07-13 1982-07-13 Method of producing glass sealed nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS5913302A JPS5913302A (en) 1984-01-24
JPH0315321B2 true JPH0315321B2 (en) 1991-02-28

Family

ID=14832661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12230582A Granted JPS5913302A (en) 1982-07-13 1982-07-13 Method of producing glass sealed nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS5913302A (en)

Also Published As

Publication number Publication date
JPS5913302A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
US2496346A (en) Semiconductive resistance provided with metal contacts
US4087778A (en) Termination for electrical resistor and method of making the same
US3013328A (en) Method of forming a conductive film
JPH0315321B2 (en)
US20020050921A1 (en) Circuit arrangement comprising an smd-component, in particular a temperature sensor, and a method of manufacturing a temperature sensor
US1954832A (en) Automatic starter
US3767597A (en) High temperature thermistor composition
US3274669A (en) Method of making electrical resistance element
KR900005267B1 (en) Process for the production of ptc thermistors
US3221393A (en) Method of making bead type thermistors
JPH06224011A (en) Fuse resistor
US3629670A (en) Electrical contact to silicon carbide
US2183755A (en) Thermonegative resistor
JPS6322444B2 (en)
JPS6333282B2 (en)
JP2701052B2 (en) Surge absorbing element
JPS63190301A (en) Thermistor
JP2638903B2 (en) Manufacturing method of glass-enclosed thermistor
JPH02159756A (en) Thin film resistance element of tantalum
JPH0955302A (en) High temperature glass sealed thermistor
JPS6180783A (en) Airtight sealing for surge absorbing element
JPS6378502A (en) Manufacture of thermistor
JPH08167502A (en) Glass encapsulated thermistor
JPS5832481B2 (en) Manufacturing method of semiconductor thermistor
JPH0236501A (en) Manufacture of semiconductor device