JPH06224011A - Fuse resistor - Google Patents

Fuse resistor

Info

Publication number
JPH06224011A
JPH06224011A JP4343142A JP34314292A JPH06224011A JP H06224011 A JPH06224011 A JP H06224011A JP 4343142 A JP4343142 A JP 4343142A JP 34314292 A JP34314292 A JP 34314292A JP H06224011 A JPH06224011 A JP H06224011A
Authority
JP
Japan
Prior art keywords
resistor
fuse resistor
film
short
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343142A
Other languages
Japanese (ja)
Inventor
Teruhiro Tanmachi
彰宏 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Electric Co Ltd
Original Assignee
Tama Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Electric Co Ltd filed Critical Tama Electric Co Ltd
Priority to JP4343142A priority Critical patent/JPH06224011A/en
Publication of JPH06224011A publication Critical patent/JPH06224011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fuse resistor having fuse characteristics in less dispersion and short fusing time. CONSTITUTION:A resistor is formed on an insulating substrate, a resisting film 2 with electrode parts formed on both ends is partly cut off to provide electrically insulating part 5 so that a band type conductive metallic film 6 may be formed on the insulating part 5 by sputtering step, etc., to be shortcircuited. Next, the shortcircuited metallic film 6 comprising Pb, Sn, Zn, Al, Cu, Fe and the alloys thereof is heat-treated in vaccum or an inert gas atmosphere to enhance the reliability upon the metallic film 6. At this time, the resistance value can be adjusted with high precision by cutting off the resistance film 2 excluding the shortcircuited part. Through these procedures, the deterioration in the title fuse resistor can be avoided even in severe environment of applications by sealing the fuse resistor in vacuum or the inert gas atmosphere.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電子回路基板上に実装
されるヒューズ抵抗器に関し、定常状態では優れた抵抗
器の機能を果たし、異常な大電流に対し瞬時に溶断し遮
断する。 【0002】 【従来の技術】従来のヒューズ抵抗器は、ヒューズ機能
を付与する方法として大電流が流れた際に発生するジュ
ール熱により抵抗体を溶断させるもの及び抵抗体に直列
に接続したヒューズ作用体を溶断させるものに大別でき
る。前者の場合、抵抗皮膜に塗料にSnやPbを混合
し、大電流による発熱を利用し前記金属を析出させ抵抗
値を急速に低下させて溶断させる方法が一般的である。
また、後者の場合は抵抗器に低融点の金属を直列に接続
し大電流によりその部分を溶断させるもので様々な構造
が考案されている。 【0003】 【発明が解決しようとする課題】抵抗皮膜にSnやPb
を混合した塗料を塗布し、大電流による発熱を利用し前
記金属を析出させ抵抗値を急速に低下させて溶断させる
方法では溶断時間が長く、溶断に要する時間のバツキを
抑えることが難しく、溶断の際に抵抗体自身が高温にな
り、他の回路部品に熱的悪影響を及ぼす危険性がある。
また、低融点の金属を直列に接続し大電流によりその部
分を溶断させるものでは形状を小型軽量化することが難
しく、加工工程も煩雑になり易くコスト面での障害も大
きかった。更に、従来のヒューズ抵抗器では抵抗値を高
精度に制御することが難しく、耐熱性に乏しいなどの問
題点があった。 【0004】 【課題を解決するための手段】本発明は、絶縁基体上に
抵抗体を着膜し、その両端に電極部を形成した抵抗素子
の抵抗皮膜を部分的に切除し、電気的に絶縁された部分
を設け、次いでその絶縁部にスパッタリング等の方法で
導電性金属皮膜を帯状に着膜し短絡させることを特徴と
している。短絡させる金属皮膜はPb、Sn、Zn、A
l、Cu、Fe及びそれらの合金を使用することができ
る。真空中または不活性ガス中にて熱処理を実施するこ
とにより短絡させた金属皮膜の信頼性を向上させること
ができる。また、短絡箇所を除いた抵抗皮膜をを切条す
ることにより高精度の抵抗値調整が可能になる。更に、
真空封止または不活性ガス封止を実施することにより、
過酷な使用環境においても機能的な劣化を防止すること
ができる。 【0005】 【作 用】本発明品は以下の作用を有するものであ
る。 1 溶断性能は短絡させる金属の種類、膜厚及び着膜面
積により制御する。 2 溶断の際の発熱箇所が微少であるため抵抗体自身が
高温にならない。 3 従来の抵抗器の構造を利用することにより小型軽量
化が実現できる。 4 短絡箇所を除いた抵抗皮膜部を切除することで抵抗
値を高精度に制御する。 5 短絡後の素子を真空中または不活性ガス中にて15
0℃から200℃で加熱処理することにより耐熱性を向
上させる。 6 ヒューズ抵抗器を真空封止または不活性ガス封止
し、酸化を防止する。 【0006】 【実施例1】以下にこの発明の請求項目に記載した内容
に準じた実施例を図面を参照して説明する。図1はその
一実施例のヒューズ抵抗器を示す説明図である。アルミ
ナ70%を主成分とする絶縁材料よりなる基体1に、例
えばニクロム合金などの抵抗用薄膜2を着膜させた後、
キャップ3及びリード線4を接続する。抵抗体の1箇所
に幅200μの絶縁溝5を設け、短絡部にスパッタリン
グによりAl皮膜6を着膜し短絡させる。 【0007】 【実施例2】図2はアルミナ70%を主成分とする絶縁
材料よりなる基体1に、例えばニクロム合金などの抵抗
用薄膜2を着膜させた後、キャップ3及びリード線4を
接続する。抵抗体の2箇所に幅200μの絶縁溝5
(a)及び5(b)を設け、短絡部にスパッタリングに
よりAl皮膜6を着膜し短絡させる。 【0008】 【実施例3】図3はその一実施例のヒューズ抵抗器を示
す説明図である。アルミナ70%を主成分とする絶縁材
料よりなる基体1に、例えばニクロム合金などの抵抗用
薄膜2を着膜させた後、キャップ3及びリード線4を接
続する。抵抗体の1箇所に幅200μの絶縁溝5を設
け、短絡部にスパッタリングによりAl皮膜6を着膜し
短絡させる。更に抵抗皮膜部に切条溝7を形成し抵抗値
を微調整した。 【0009】 【実施例4】図4はその一実施例のヒューズ抵抗器を示
す説明図である。アルミナ70%を主成分とする絶縁材
料よりなる基体1に、例えばニクロム合金などの抵抗用
薄膜2を着膜させた後、キャップ3及びリード線4を接
続する。抵抗体の1箇所に幅200μの絶縁溝5を設
け、短絡部にスパッタリングによりAl皮膜6を着膜し
短絡させ真空中にてガラス管8にて封止した。 【0010】 【実施例5】図5は、実施例3のヒューズ抵抗器を真空
中200℃にて4時間加熱処理したものを試料とし、1
50℃の恒温恒湿槽内で放置試験を行なった結果示す。
図5において熱処理がない場合をA、熱処理がある場合
をBで示した。図5より加熱処理することにより安定性
の高いヒューズ抵抗器を製造することが出来る。 【0011】 【実施例6】図6は、実施例3のヒューズ抵抗器を真空
中封止したものを試料とし、150℃の恒温恒湿槽内で
放置試験を行なった結果示す。図6において真空封止し
ない場合をA、熱処理がある場合をCで示した。図6よ
り真空封止することにより安定性の高いヒューズ抵抗器
を製造することが出来る。 【0012】 【発明の効果】以上説明したように、本発明品は従来技
術の様々な問題点を解決する効果が得られる。 1 発明品の溶断性能は短絡させる金属の種類、膜厚及
び着膜面積により制御するため、溶断時間が短く、溶断
に要する時間のバラツキの小さいヒューズ抵抗器を製造
できる。表1からも判るように、特性1つまり定格電力
の9倍の電力を印加した場合でも30秒以下で溶断して
いる。また、絶縁溝の数を増加させることにより溶断時
間のバラツキは更に縮小することができる。 2 溶断の際の発熱箇所が微少面積であり溶断時間も短
いため抵抗体自身が高温にならず、他の回路部品に熱的
悪影響を及ぼす危険性がない。溶断時の表面温度は30
0℃以下であった。 3 従来の抵抗器の構造を利用することにより小型軽量
化が実現できる。従って、低いコストで製造することが
できる。 4 短絡箇所を除いた抵抗皮膜部を切除することで容易
に抵抗値を高精度に制御できる。 5 短絡後の素子を真空中または不活性ガス中にて15
0℃から200℃で加熱処理は耐熱性を向上できる。 6 ヒューズ抵抗器を真空封止または不活性ガス封止す
れば耐環境性に優れたヒューズ抵抗器となる。 【0013】 【表1】 溶断特性1:定格電力の 9倍を印加した場合の溶断時
間(秒) 溶断特性1:定格電力の12倍を印加した場合の溶断時
間(秒) 溶断特性1:定格電力の16倍を印加した場合の溶断時
間(秒)
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuse resistor mounted on an electronic circuit board, which serves as an excellent resistor in a steady state and has an abnormally large current. In contrast, it melts and cuts off instantly. [0002] A conventional fuse resistor is a method of providing a fuse function in which a resistor is melted and cut by Joule heat generated when a large current flows and a fuse action connected in series to the resistor. It can be roughly divided into those that melt the body. In the former case, a method is generally used in which Sn or Pb is mixed with a paint in the resistance film and the heat generated by a large current is used to precipitate the metal to rapidly reduce the resistance value and melt the material.
In the latter case, a low melting point metal is connected in series to the resistor and a large current is used to melt the part, and various structures have been devised. [0003] Problems to be Solved by the Invention [0005] Sn or Pb is used as a resistance film.
In the method of applying paint mixed with the above, and utilizing the heat generated by a large current to precipitate the metal and rapidly reduce the resistance value to melt the fuse, it is difficult to suppress the fluctuation of the time required for melting, In this case, there is a risk that the resistor itself will become hot and will have a bad thermal effect on other circuit parts.
Further, it is difficult to reduce the size and weight of a metal by connecting a metal having a low melting point in series and melting the portion with a large current, and the processing process is likely to be complicated, which causes a large obstacle in terms of cost. Further, the conventional fuse resistor has a problem that it is difficult to control the resistance value with high accuracy and the heat resistance is poor. According to the present invention, a resistive element is formed on an insulating substrate, and the resistive film of a resistive element having electrode portions formed on both ends thereof is partially cut off to electrically cut the resistive element. It is characterized in that an insulated portion is provided, and then a conductive metal film is deposited on the insulating portion in a band shape by a method such as sputtering to short-circuit. The metal film to be short-circuited is Pb, Sn, Zn, A
1, Cu, Fe and their alloys can be used. By performing the heat treatment in vacuum or in an inert gas, the reliability of the short-circuited metal film can be improved. Further, by cutting the resistance film excluding the short-circuited portion, the resistance value can be adjusted with high accuracy. Furthermore,
By carrying out vacuum sealing or inert gas sealing,
It is possible to prevent functional deterioration even in a severe use environment. [Production] The product of the present invention has the following actions. 1 The fusing performance is controlled by the type of metal to be short-circuited, the film thickness and the film deposition area. 2 Since the number of heat generation points during fusing is very small, the resistor itself does not reach a high temperature. 3 Compactness and weight reduction can be realized by utilizing the structure of the conventional resistor. 4 The resistance value is controlled with high accuracy by cutting off the resistive film part excluding the short-circuited part. 5 After short-circuiting, place the element in vacuum or in an inert gas for 15
Heat resistance is improved by heat treatment at 0 ° C to 200 ° C. 6. Vacuum fuse or inert gas seal the fuse resistor to prevent oxidation. [Embodiment 1] An embodiment according to the contents described in the claims of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a fuse resistor of the embodiment. After depositing a resistance thin film 2 such as a nichrome alloy on a substrate 1 made of an insulating material whose main component is alumina 70%,
The cap 3 and the lead wire 4 are connected. An insulating groove 5 having a width of 200 μ is provided at one location of the resistor, and an Al film 6 is deposited on the short-circuited portion by sputtering to short-circuit. [Embodiment 2] FIG. 2 shows that after a resistance thin film 2 such as a nichrome alloy is deposited on a substrate 1 made of an insulating material whose main component is alumina 70%, a cap 3 and a lead wire 4 are attached. Connecting. Insulation groove 5 with a width of 200μ at two points on the resistor
(A) and 5 (b) are provided, and the Al film 6 is deposited on the short-circuited portion by sputtering and short-circuited. [Embodiment 3] FIG. 3 is an explanatory view showing a fuse resistor of one embodiment. After a resistance thin film 2 such as a nichrome alloy is deposited on a substrate 1 made of an insulating material whose main component is alumina 70%, a cap 3 and a lead wire 4 are connected. An insulating groove 5 having a width of 200 μ is provided at one location of the resistor, and an Al film 6 is deposited on the short-circuited portion by sputtering to short-circuit. Further, a cut groove 7 was formed in the resistance film portion to finely adjust the resistance value. [Embodiment 4] FIG. 4 is an explanatory view showing a fuse resistor of the embodiment. After a resistance thin film 2 such as a nichrome alloy is deposited on a substrate 1 made of an insulating material whose main component is alumina 70%, a cap 3 and a lead wire 4 are connected. An insulating groove 5 having a width of 200 μ was provided at one location of the resistor, and an Al film 6 was deposited on the short-circuited portion by sputtering to short-circuit and sealed with a glass tube 8 in vacuum. [Embodiment 5] FIG. 5 shows a sample obtained by heating the fuse resistor of Embodiment 3 at 200 ° C. for 4 hours in vacuum.
The results of the standing test in a constant temperature and humidity chamber of 50 ° C. are shown.
In FIG. 5, the case without heat treatment is indicated by A, and the case with heat treatment is indicated by B. As shown in FIG. 5, the heat treatment makes it possible to manufacture a highly stable fuse resistor. [Embodiment 6] FIG. 6 shows the results of a standing test conducted in a constant temperature and humidity chamber at 150 ° C. using a fuse resistor of Example 3 sealed in a vacuum as a sample. In FIG. 6, the case without vacuum sealing is shown with A, and the case with heat treatment is shown with C. As shown in FIG. 6, a highly stable fuse resistor can be manufactured by vacuum sealing. As described above, the product of the present invention has the effect of solving various problems of the prior art. 1 Since the fusing performance of the invention product is controlled by the kind of the metal to be short-circuited, the film thickness and the film deposition area, it is possible to manufacture a fuse resistor having a short fusing time and a small variation in the time required for the fusing. As can be seen from Table 1, even if the characteristic 1 is applied, that is, the electric power of 9 times the rated electric power is applied, the fusing occurs in 30 seconds or less. Further, by increasing the number of insulating grooves, variations in fusing time can be further reduced. (2) Since the heat generation point at the time of fusing is a very small area and the fusing time is short, the resistor itself does not reach a high temperature, and there is no risk of adversely affecting other circuit components thermally. Surface temperature during melting is 30
It was below 0 ° C. 3 Compactness and weight reduction can be realized by utilizing the structure of the conventional resistor. Therefore, it can be manufactured at low cost. 4. The resistance value can be easily controlled with high accuracy by cutting off the resistive film portion excluding the short-circuited portion. 5 After short-circuiting, place the element in vacuum or in an inert gas for 15
Heat treatment at 0 ° C to 200 ° C can improve heat resistance. 6. If the fuse resistor is vacuum-sealed or sealed with an inert gas, the fuse resistor has excellent environmental resistance. [Table 1] Fusing characteristic 1: Fusing time (second) when applying 9 times the rated power Fusing characteristic 1: Fusing time (second) when applying 12 times the rated power Fusing characteristic 1: 16 times the rated power was applied Case fusing time (seconds)

【図面の簡単な説明】 【図1】、 【図2】及び 【図3】本発明の実施例におけるヒューズ抵抗器の構造
を示す正面図。 【図4】本発明の実施例におけるヒューズ抵抗器の構造
を示す断面図。 【図5】及び, 【図6】本発明の実施例により製造したヒューズ抵抗器
の150℃中での放置試験結果を示した図である。 【符号の説明】 1 基体、 2 抵抗用薄膜 3 キャップ 4 リード線 5 5a ・5b 絶縁溝 6 金属薄膜 7 切条溝 8 ガラス管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2 and FIG. 3 are front views showing a structure of a fuse resistor in an embodiment of the present invention. FIG. 4 is a sectional view showing a structure of a fuse resistor according to an embodiment of the present invention. FIG. 5 and FIG. 6 are diagrams showing the results of a standing test at 150 ° C. of a fuse resistor manufactured according to an example of the present invention. [Explanation of reference numerals] 1 substrate, 2 thin film for resistance 3 cap 4 lead wire 5 5a, 5b insulating groove 6 metal thin film 7 cut groove 8 glass tube

Claims (1)

【特許請求の範囲】 【請求項目1】絶縁基体上に抵抗体を着膜し、その両端
に電極部を形成した抵抗素子の表面に電気的に絶縁され
た部分を1箇所設け、次いで絶縁部をPb、Al等の導
電性金属皮膜にて短絡させたヒューズ抵抗器。 【請求項目2】前記抵抗素子表面に2箇所以上の電気的
に絶縁された部分を設け、次いで絶縁部をPb、Al等
の導電性金属皮膜にて短絡させたヒューズ抵抗器。 【請求項目3】請求項目1に関し、円筒状絶縁基体上に
抵抗体を着膜し、その両端に電極部を形成した抵抗素子
の円周状に200μ以下の電気的に絶縁された部分を1
箇所設け、次いで絶縁部をPb、Al等の導電性金属皮
膜にて短絡させたヒューズ抵抗器。 【請求項目4】請求項目2に関し、円筒状絶縁基体上に
抵抗体を着膜し、その両端に電極部を形成した抵抗素子
の円周状に200μ以下の電気的に絶縁された部分を2
箇所以上設け、次いで絶縁部をPb、Al等の導電性金
属皮膜にて短絡させたヒューズ抵抗器。 【請求項目5】請求項目3及び4に関し、短絡後に抵抗
皮膜部を螺旋状に切条し、抵抗値を微調整したヒューズ
抵抗器。 【請求項目6】請求項目3,4及び5に関し、150℃
から200℃の温度範囲で真空雰囲気中で加熱処理した
ヒューズ抵抗器。 【請求項目7】請求項目3,4及び5に関し、150℃
から200℃の温度範囲で不活性ガス雰囲気中で加熱処
理したヒューズ抵抗器。 【請求項目8】請求項目3,4及び5に関し、150℃
から200℃の温度範囲で真空封止したヒューズ抵抗
器。 【請求項目9】請求項目3,4及び5に関し、150℃
から200℃の温度範囲で不活性ガス封止したヒューズ
抵抗器。
Claim: What is claimed is: 1. A resistive element having a resistive element formed on an insulating substrate and electrode portions formed on both ends of the resistive element. A fuse resistor in which Pb and Al are short-circuited with a conductive metal film. 2. A fuse resistor in which two or more electrically insulated portions are provided on the surface of the resistance element, and then the insulating portion is short-circuited with a conductive metal film such as Pb or Al. Item 3. Regarding the item 1, the resistance element having a resistor film formed on a cylindrical insulating substrate and having electrode portions formed on both ends thereof has a circumferentially electrically insulated portion of 200 μ or less.
A fuse resistor provided at a location and then the insulating portion is short-circuited with a conductive metal film such as Pb or Al. Item 4. Regarding the item 2, the resistance element having a resistor film formed on a cylindrical insulating substrate and having electrode portions formed on both ends thereof is provided with two circumferentially electrically insulated portions of 200 μ or less.
A fuse resistor in which more than one place is provided, and then the insulating part is short-circuited with a conductive metal film such as Pb or Al. Item 5. The fuse resistor according to items 3 and 4, wherein the resistance film portion is spirally cut after a short circuit and the resistance value is finely adjusted. [Claim 6] Concerning claims 3, 4 and 5, 150 ° C
Fuse resistor heat-treated in a vacuum atmosphere in the temperature range from 1 to 200 ° C. [Claim item 7] Regarding claim items 3, 4, and 5, 150 ° C.
Fuse resistor heat-treated in the inert gas atmosphere in the temperature range from 1 to 200 ° C. [Claim item 8] Regarding claim items 3, 4 and 5, 150 ° C.
Fuse resistor vacuum sealed in the temperature range from 1 to 200 ° C. [Claim 9] Regarding Claims 3, 4 and 5, 150 ° C
Fuse resistor sealed with an inert gas in the temperature range from 1 to 200 ° C.
JP4343142A 1992-11-30 1992-11-30 Fuse resistor Pending JPH06224011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343142A JPH06224011A (en) 1992-11-30 1992-11-30 Fuse resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343142A JPH06224011A (en) 1992-11-30 1992-11-30 Fuse resistor

Publications (1)

Publication Number Publication Date
JPH06224011A true JPH06224011A (en) 1994-08-12

Family

ID=18359240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343142A Pending JPH06224011A (en) 1992-11-30 1992-11-30 Fuse resistor

Country Status (1)

Country Link
JP (1) JPH06224011A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532689A (en) * 2002-07-09 2005-10-27 スマート エレクトロニクス インク Fuse resistor and manufacturing method thereof
JP2007097534A (en) * 2005-10-07 2007-04-19 Koa Corp Element for heat-volatilizing drug and method for heat-volatilizing drug by using the element
KR100854118B1 (en) * 2004-12-16 2008-08-26 스마트전자 주식회사 Fusible Resistor And Method Of Fabricating The Same
KR101365356B1 (en) * 2012-11-09 2014-02-20 스마트전자 주식회사 Resistor and manufacturing method thereof
CN103843078A (en) * 2011-09-29 2014-06-04 兴亚株式会社 Ceramic resistor
CN106519882A (en) * 2016-11-09 2017-03-22 天津大学 Preparation and coating method of fusing agent for wire-wound fusible resistor
CN107978402A (en) * 2016-10-24 2018-05-01 天津市汉陆电子有限公司 Compound quick fuse wire wound resistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532689A (en) * 2002-07-09 2005-10-27 スマート エレクトロニクス インク Fuse resistor and manufacturing method thereof
KR100854118B1 (en) * 2004-12-16 2008-08-26 스마트전자 주식회사 Fusible Resistor And Method Of Fabricating The Same
JP2007097534A (en) * 2005-10-07 2007-04-19 Koa Corp Element for heat-volatilizing drug and method for heat-volatilizing drug by using the element
CN103843078A (en) * 2011-09-29 2014-06-04 兴亚株式会社 Ceramic resistor
KR101365356B1 (en) * 2012-11-09 2014-02-20 스마트전자 주식회사 Resistor and manufacturing method thereof
US9589711B2 (en) 2012-11-09 2017-03-07 Smart Electronics Inc. Resistor and manufacturing method thereof
CN107978402A (en) * 2016-10-24 2018-05-01 天津市汉陆电子有限公司 Compound quick fuse wire wound resistor
CN106519882A (en) * 2016-11-09 2017-03-22 天津大学 Preparation and coating method of fusing agent for wire-wound fusible resistor

Similar Documents

Publication Publication Date Title
US5140295A (en) Fuse
CN102362328A (en) Protection element
CA1125872A (en) Fused electrolytic capacitor assembly
US4006443A (en) Composition resistor with an integral thermal fuse
EP1424711B1 (en) Alloy type thermal fuse and material for a thermal fuse element
US3486221A (en) High energy beam trimming of electrical components
JPH06224011A (en) Fuse resistor
US6368734B1 (en) NTC thermistors and NTC thermistor chips
US7173510B2 (en) Thermal fuse and method of manufacturing fuse
JPH04233122A (en) Dual element fuse device
US3013328A (en) Method of forming a conductive film
US6515572B2 (en) Circuit arrangement comprising an SMD-component, in particular a temperature sensor, and a method of manufacturing a temperature sensor
US3503030A (en) Indirectly-heated thermistor
US2769877A (en) Time delay fuse
US3936790A (en) Temperature sensitive resistor having a critical transition temperature of about 140°C
JPH08102409A (en) Chip resistor
US5518521A (en) Process of producing a low TCR surge resistor using a nickel chromium alloy
US4371862A (en) Variable resistance control
JPS58142505A (en) Overload fusion resistor
JPH11273520A (en) Thermal fuse with current fuse function
Nahar et al. Electrical properties of RF sputtered NiCr thin film resistors with Cu contacts
JPH08315717A (en) Fusing resistor
JPH02244531A (en) Base board type thermo-fuse and resistance element and manufacture of them
JPH07105825A (en) Chip resistor
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof