JPS6333282B2 - - Google Patents

Info

Publication number
JPS6333282B2
JPS6333282B2 JP16452079A JP16452079A JPS6333282B2 JP S6333282 B2 JPS6333282 B2 JP S6333282B2 JP 16452079 A JP16452079 A JP 16452079A JP 16452079 A JP16452079 A JP 16452079A JP S6333282 B2 JPS6333282 B2 JP S6333282B2
Authority
JP
Japan
Prior art keywords
thermistor
temperature sensing
electrode
sensing element
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16452079A
Other languages
Japanese (ja)
Other versions
JPS5687302A (en
Inventor
Hiroshi Yamaoka
Mitsunobu Goto
Hisayoshi Kamioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP16452079A priority Critical patent/JPS5687302A/en
Publication of JPS5687302A publication Critical patent/JPS5687302A/en
Publication of JPS6333282B2 publication Critical patent/JPS6333282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、半導体セラミツクを用いた温度検知
素子およびその製造法に関するもので、その目的
はリード線の接着性を改善し信頼性に富んだ温度
検知素子を提供することにある。 近年、制御システムの高度化、省エネルギー等
の課題達成のため、各種の産業用、民生用の電
子・電気機器にマイクロコンピユータを内蔵した
ものが多くなり、それにつれてマイクロコンピユ
ータに正確な温度、熱の情報を与える高性能の温
度検知素子が必要となつてきている。この種の温
度検知素子としては、サーミスタが広く利用され
ている。 しかしながら、サーミスタ素子はバラツキが多
く、互換性に欠けるため、各素子に外付抵抗を接
続して調整したり、接続される回路の中に調整部
を設けたりしているため、素子の価格の数倍の調
整費を必要としている。本発明者らは、こういつ
たサーミスタの欠点を基本から改良した高精度、
高信頼性の温度検知素子の製造法を既に提案し
た。(特開昭56−36102号および昭和54年10月12日
付特許願)第1図にこの提案に従つて作成された
温度検知素子の断面図を示す。 1は、サーミスタチツプで通常Mn、Co、Ni等
の遷移金属の酸化物を混合し焼結した磁器であ
る。 2,3は電極で通常マイグレーシヨンの少ない
Ag−Pdペースト又はAuペーストを印刷、焼付し
て形成する。 4,5は、リード線で通常ガラスとの接着性に
秀れたジユメツト線が用いられる。 6はガラスで腐蝕性ガスからサーミスタを保護
し、耐湿性を向上させるためのものである。 7は溶接部であり、溶接方法として抵抗加熱式
を選んだ場合の形状である。 一般にMn−Ni−Co等の遷移金属酸化物よりな
るサーミスタは、原料の調製、混合、焼成温度と
雰囲気が均一になるように注意深く作製すると、
十分に再現ある特性が得られるためごく少量の電
極トリミングを処すことにより±1%程度のバラ
ツキに収めることは可能であり、またこの値は、
十分な互換性のあるものである。しかしながら、
リード線を耐熱塗料で焼付けて固着したり、ガラ
スに封止するさいに抵抗値が変化してしまう。こ
の変化はサーミスタ素体の熱変化に加えて電極中
のフリツト成分、耐熱塗料中のフリツトや有機バ
インダーの分解時の炭素、封止用ガラスからの蒸
発成分等が、サーミスタ成分に複雑に作用するた
め、一度特性を揃えても再びバラツキを生みだす
こととなり好ましいことではなかつた。そのた
め、極力低温でリード付けできることが好まし
く、溶接法によつて良好な結果を得た。 この抵抗加熱方法は、リード線の上から第4図
に示す電極イ,ロを圧着しておき、たとえば1V
程度の電圧を0.1〜0.5secほど印加、通電してやる
と発熱し、局部的に溶融し、瞬時に接着してしま
う方法である。印加パルス巾が長ければ、溶融は
完全である反面、電極が、はく離にいたることも
あり、電極層の厚さに対応して条件を定めるが、
機械的強度、電気的結合の向上は、多点にて接着
することが、良い結果をもたらした。 更に該リード線にAuメツキや銀メツキを施し
たものは、電気的接触に加えて接着性も良好であ
ることが見いだされた。本発明者らは更にこの点
を詳しく研究し次の現象を見い出すに到つた。 第2図は、従来のジユメツト線のみを用いた場
合の溶接部の断面図であり、第3図は本発明に関
する少なくとも一層のコーテイング層9を施した
ジユメツト線を用いた場合の溶接部の断面図であ
る。 第4図は、抵抗溶接時の模式図であり、基本概
念理解のため示した。 第2図(従来例)と第3図(本発明)との大き
な差異は電極層の溶融状態にある。 すなわち、第3図に示した溶接部は第2図のそ
れに比べて電極層の溶融あるいは損傷が少なく、
逆にリード線およびコーテイング層の溶融が大で
ある。 このことは、電極層とジユメツト線を直接圧接
して溶接のため通電すると比較的(相対的に)融
点の低い電極層から先に溶融が始まるのに比べ、
AuやAgをコーテイングしたジユメツト線を用い
た場合には、コーテイング層から、あるいはコー
テイング層と電極層とがほぼ同時に溶融をするこ
とを示している。更にはコーテイング層を融点の
低いもので構成することが、好ましいことを教示
している。 以下実施例に従がい本発明を詳しく説明する。 実施例 マンガン、ニツケル、コバルト等の金属酸化物
を所望の配合比で混合し、800〜1000℃の温度で
充分に仮焼し、均一にする。その後振動ミルにて
粉砕したのち、エチルセルロース、ターピネオー
ル等の結合剤を加えて塗料化する。 次にこの塗料を用いて、ドクターブレード法等
により、厚さ約1mm程度にシート化する。このシ
ートから一辺が5cm〜10cm程度の角板を打抜く。
角板の寸法が大きい程製造の能率は良くなるが、
逆に焼成時に炉内での焼成雰囲気等に差が出て抵
抗値のバラツキが大となり、規格外となるものが
増え、歩留まりが悪くなるから、使用する炉の容
量、精度等を勘案して最適寸法を定めることが必
要である。 次に、前記角板を1100〜1300℃で焼結せしめた
後、精度を出すため、焼結角板の両面を平行に平
面研磨し、所望の厚さにする。 次に第5図aに示す如く、角板1の両面に、
Ag−Pdを塗布し、600〜1000℃の温度で焼付け
て電極2,3を形成する。 次にこのサーミスタ素体1の寸法、抵抗値よ
り、最終的に得られるサーミスタ要素の寸法を計
算し、その計算結果に従つて、サーミスタ素体1
の片面からそれぞれ、第5図bに示すように格子
状に分割溝S1,S2、を切り込む。 次にこのサーミスタ要素T1〜Tnの集合体の各
サーミスタ要素T1〜Tnの抵抗値を測定し、記録
する。抵抗値の測定は、通常は室温25℃の雰囲気
で行なう。 抵抗値が所望する規格値より小さいものについ
ては、ダイヤモンドカツタ、超音波カツタ、レー
ザまたはサンドプラスト等により、電極2または
3のトリミングCを行ない(第5図c)、抵抗値
を大きくして所定値に合わせる。抵抗値が規格値
より大きいものについては、トリミングによつて
抵抗値を小さくすることは不可能であるから、レ
ーザで焼切るか、サンドプラスト等で電極2を消
除し、誤つて次の工程に入つてしまうことがない
ようにする。 次にサーミスタ要素集合体をウエハーブレーカ
を利用してサーミスタチツプに分割する。 リード線としてジユメツト線を用意し、溶接部
分にAu、Ag、Agロウ(硬ロウ)、半田(軟ロ
ウ)、Sn、Ni、Ag−Pd(電極と同一合金組成)、
Pd、Pt、Cuをコーテイングした。 各リード線を第4図に示す方法で1V、0.1〜
0.5secを通過し溶接した。目視にて溶接部を観察
した結果を表1に記す。
The present invention relates to a temperature sensing element using semiconductor ceramic and a method for manufacturing the same, and its purpose is to improve the adhesion of lead wires and provide a highly reliable temperature sensing element. In recent years, in order to achieve challenges such as sophistication of control systems and energy conservation, many types of industrial and consumer electronic and electrical equipment have built-in microcomputers. There is a growing need for high performance temperature sensing elements that provide information. Thermistors are widely used as this type of temperature sensing element. However, thermistor elements vary widely and lack compatibility, so adjustments are made by connecting an external resistor to each element, or by providing an adjustment part in the connected circuit, which reduces the price of the element. This requires several times the adjustment costs. The present inventors have developed a high-precision thermistor that has fundamentally improved the shortcomings of these thermistors.
We have already proposed a method for manufacturing highly reliable temperature sensing elements. (Japanese Unexamined Patent Publication No. 56-36102 and patent application dated October 12, 1974) FIG. 1 shows a cross-sectional view of a temperature sensing element made according to this proposal. 1 is a thermistor chip, which is usually made of porcelain mixed with oxides of transition metals such as Mn, Co, and Ni and sintered. 2 and 3 are electrodes that usually have little migration.
Formed by printing and baking Ag-Pd paste or Au paste. Reference numerals 4 and 5 are lead wires, which are usually made of a composite wire that has excellent adhesion to glass. 6 is glass to protect the thermistor from corrosive gas and improve moisture resistance. 7 is a welded part, which has a shape when resistance heating is selected as the welding method. In general, thermistors made of transition metal oxides such as Mn-Ni-Co are manufactured carefully so that the raw materials are prepared, mixed, and the firing temperature and atmosphere are uniform.
Since sufficiently reproducible characteristics can be obtained, it is possible to keep the variation within ±1% by performing a very small amount of electrode trimming, and this value can be
It is fully compatible. however,
The resistance value changes when the lead wire is baked and fixed with heat-resistant paint or sealed in glass. This change is caused by thermal changes in the thermistor body, as well as frit components in the electrodes, frit in the heat-resistant paint, carbon from the decomposition of the organic binder, and evaporated components from the sealing glass, all of which act in a complex manner on the thermistor components. Therefore, even if the characteristics were once made uniform, variations would occur again, which was not desirable. Therefore, it is preferable to be able to attach the leads at as low a temperature as possible, and good results were obtained using the welding method. In this resistance heating method, electrodes A and B shown in Figure 4 are crimped onto the lead wires, and the
In this method, when a voltage of about 0.1 to 0.5 seconds is applied and electricity is passed, heat is generated, locally melting, and instantaneous bonding occurs. If the applied pulse width is long, the melting will be complete, but the electrode may peel off, so conditions should be determined depending on the thickness of the electrode layer.
Adhesion at multiple points yielded good results in improving mechanical strength and electrical bonding. Furthermore, it has been found that lead wires plated with Au or silver have good adhesive properties in addition to electrical contact. The present inventors further investigated this point in detail and discovered the following phenomenon. FIG. 2 is a cross-sectional view of a welded portion when only a conventional composite wire is used, and FIG. 3 is a cross-sectional view of a welded portion when a composite wire coated with at least one coating layer 9 according to the present invention is used. It is a diagram. FIG. 4 is a schematic diagram during resistance welding, and is shown for the purpose of understanding the basic concept. The major difference between FIG. 2 (conventional example) and FIG. 3 (invention) is in the molten state of the electrode layer. In other words, the welded part shown in Fig. 3 has less melting or damage to the electrode layer than that shown in Fig. 2.
On the contrary, the lead wire and coating layer melt to a large extent. This means that when the electrode layer and the composite wire are directly pressed together and energized for welding, the electrode layer, which has a relatively (relatively) low melting point, starts melting first.
In the case of using a diamond wire coated with Au or Ag, it is shown that the coating layer or the coating layer and the electrode layer are melted almost simultaneously. Furthermore, it is taught that it is preferable to configure the coating layer with a material having a low melting point. The present invention will be described in detail below with reference to Examples. Example Metal oxides such as manganese, nickel, and cobalt are mixed in a desired mixing ratio and sufficiently calcined at a temperature of 800 to 1000°C to make the mixture uniform. After that, it is pulverized in a vibrating mill, and then a binder such as ethyl cellulose or terpineol is added to form a paint. Next, this paint is formed into a sheet with a thickness of about 1 mm by a doctor blade method or the like. Punch out a square plate with a side of about 5cm to 10cm from this sheet.
The larger the dimensions of the square plate, the better the manufacturing efficiency, but
On the other hand, differences in the firing atmosphere inside the furnace occur during firing, leading to large variations in resistance values, increasing the number of non-standard items, and decreasing yields. It is necessary to determine the optimum dimensions. Next, after sintering the square plate at 1100 to 1300°C, both sides of the sintered square plate are plane-polished in parallel to obtain a desired thickness for accuracy. Next, as shown in FIG. 5a, on both sides of the square plate 1,
Ag-Pd is applied and baked at a temperature of 600 to 1000°C to form electrodes 2 and 3. Next, the dimensions of the thermistor element to be finally obtained are calculated from the dimensions and resistance value of the thermistor element 1, and according to the calculation results, the thermistor element 1 is
Dividing grooves S 1 and S 2 are cut into each side in a lattice pattern as shown in FIG. 5b. Next, the resistance value of each thermistor element T 1 -Tn of this assembly of thermistor elements T 1 -Tn is measured and recorded. The resistance value is normally measured in an atmosphere at room temperature of 25°C. If the resistance value is smaller than the desired standard value, trim the electrode 2 or 3 using a diamond cutter, ultrasonic cutter, laser, sandplast, etc. (Fig. 5c) to increase the resistance value and set it to the specified value. Match the value. If the resistance value is larger than the standard value, it is impossible to reduce the resistance value by trimming, so please burn it off with a laser or remove the electrode 2 with sandplast, etc. to prevent it from being sent to the next process by mistake. Make sure it doesn't get caught. Next, the thermistor element assembly is divided into thermistor chips using a wafer breaker. Prepare a composite wire as a lead wire, and apply Au, Ag, Ag solder (hard solder), solder (soft solder), Sn, Ni, Ag-Pd (same alloy composition as the electrode) to the welding part.
Coated with Pd, Pt, and Cu. Connect each lead wire to 1V, 0.1~ by the method shown in Figure 4.
Welded after passing 0.5 seconds. Table 1 shows the results of visual observation of the welded parts.

【表】 ジユメツト線の芯線であるFe−Ni合金の融点
(1425℃)、および電極層として使用したAg−Pd
合金の融点、約1100℃(微粉化により正確な値は
不明)より低い融点をもつ材質をコーテイングし
た場合には、電極層の溶融が少ないことが分る。
従つてより理想的な溶接が可能となる。Cuの場
合は、Cu2OやCuOを生成しやすいため効果が低
かつたと思われる。また、半田(軟ロウ)は他の
低融点をもつコーテイング材質と較べて半田喰わ
れが大きく、そのために抵抗値のバラツキがでる
可能性が大きいためこれを回避した。 更に、これらの金属層の上に溶接を容易にする
ための成分(フラツクスと一般に呼ばれているも
ので、表面の酸化層を取除く還元剤等より構成さ
れている)をコーテイングしておけば更に好まし
い。 尚、これらの低融点金属も、リード線や金属材
と溶融合金化されるため、溶融後溶点が高くなる
ため後工程のガラス封止(400〜800℃)中にはく
りすることはなかつた。 又、これらのコーテイング層は、あくまで接着
部のみに限定されるべきで、ガラスによつて封止
されたリード線部(図1の8)にまで及んではな
らない。なぜならこの部分は、ジユメツト線の銅
層の塑性流動による応力吸収によつて気密性、接
着性を保つているからである。 なお、本発明は負の抵抗温度係数を有するサー
ミスタだけでなく、正の抵抗温度係数を有するチ
タン酸バリウム系のサーミスタによる温度検知素
子であつても同様に適用可能である。
[Table] Melting point (1425℃) of Fe-Ni alloy, which is the core wire of the composite wire, and Ag-Pd used as the electrode layer.
It can be seen that the electrode layer melts less when coated with a material that has a melting point lower than the melting point of the alloy, approximately 1100°C (the exact value is unknown due to pulverization).
Therefore, more ideal welding is possible. In the case of Cu, it seems that the effect was low because it easily generates Cu 2 O and CuO. Furthermore, solder (soft wax) is more likely to be eaten away by solder than other coating materials with a low melting point, and as a result there is a large possibility that variation in resistance value will occur, so this was avoided. Furthermore, if these metal layers are coated with a component to facilitate welding (commonly called flux, which consists of a reducing agent that removes the oxidized layer on the surface). More preferred. These low melting point metals are also molten and alloyed with lead wires and metal materials, so their melting point becomes high after melting, so they will not peel off during the glass sealing process (400 to 800°C) in the subsequent process. Ta. Further, these coating layers should be limited to only the adhesive portion and should not extend to the lead wire portion (8 in FIG. 1) sealed with glass. This is because this part maintains airtightness and adhesiveness by absorbing stress due to the plastic flow of the copper layer of the composite wire. Note that the present invention can be applied not only to a thermistor having a negative temperature coefficient of resistance, but also to a temperature sensing element using a barium titanate-based thermistor having a positive temperature coefficient of resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度検知素子の断面図、第2図
は、従来の温度検知素子の溶接部の断面図、第3
図は本発明による温度検知素子の溶接部の断面
図、第4図は溶接方法を示す見取り図、第5図は
実施例の製造方法を説明する図である。 1……サーミスタ素体、2,3……電極、4,
5……リード線、6……ガラス、7……溶接部、
8……封止部、9……コーテイング層。
Figure 1 is a sectional view of a conventional temperature sensing element, Figure 2 is a sectional view of a welded part of a conventional temperature sensing element, and Figure 3 is a sectional view of a welded part of a conventional temperature sensing element.
FIG. 4 is a cross-sectional view of a welded portion of a temperature sensing element according to the present invention, FIG. 4 is a sketch showing a welding method, and FIG. 5 is a diagram illustrating a manufacturing method of an embodiment. 1... Thermistor element body, 2, 3... Electrode, 4,
5...Lead wire, 6...Glass, 7...Welded part,
8...Sealing part, 9...Coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 サーミスタ素体の面上に設けた電極上に、一
端に銀ロウ、Au、Ag、Agロウ、Ag−Pd合金の
中から選ばれた少なくとも一種のコーテイング層
を施したジユメツトリード線を抵抗加熱法による
溶接により固着すると共に、該リード線の溶接
部、前記サーミスタおよび電極をガラスで封止し
たことを特徴とする温度検知素子。
1 A composite lead wire with at least one coating layer selected from silver solder, Au, Ag, Ag solder, and Ag-Pd alloy on one end is heated on the electrode provided on the surface of the thermistor body using a resistance heating method. 1. A temperature sensing element characterized in that the welded portion of the lead wire, the thermistor and the electrode are sealed with glass.
JP16452079A 1979-12-18 1979-12-18 Temperature detecting element and method of manufacturing same Granted JPS5687302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16452079A JPS5687302A (en) 1979-12-18 1979-12-18 Temperature detecting element and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16452079A JPS5687302A (en) 1979-12-18 1979-12-18 Temperature detecting element and method of manufacturing same

Publications (2)

Publication Number Publication Date
JPS5687302A JPS5687302A (en) 1981-07-15
JPS6333282B2 true JPS6333282B2 (en) 1988-07-05

Family

ID=15794717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16452079A Granted JPS5687302A (en) 1979-12-18 1979-12-18 Temperature detecting element and method of manufacturing same

Country Status (1)

Country Link
JP (1) JPS5687302A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328590Y2 (en) * 1980-10-24 1988-08-02
JPS6435704U (en) * 1987-08-26 1989-03-03
JPH07176405A (en) * 1993-12-21 1995-07-14 Murata Mfg Co Ltd Ntc thermistor element

Also Published As

Publication number Publication date
JPS5687302A (en) 1981-07-15

Similar Documents

Publication Publication Date Title
JP4033331B2 (en) Thermistor and manufacturing method thereof
EP3109868B1 (en) Preparation method for electronic components with an alloy electrode layer
JP3036567B2 (en) Conductive chip type ceramic element and method of manufacturing the same
JPS6333282B2 (en)
JPH1183641A (en) Glass sealed thermistor
CA2368337C (en) Thermistor and method of manufacture
JP6507826B2 (en) Conductive joint and method of manufacturing the same
JP2001135501A (en) Chip type thermistor
JP3580391B2 (en) Method for manufacturing conductive chip type ceramic element
JPS62285401A (en) Manufacture of thermistor
JP2009059755A (en) Electrode for ntc thermistor
JPH10303004A (en) Thermistor element and its manufacture
JPH0214161Y2 (en)
JP2001230103A (en) Glass-sealed thermistor
JP4290244B2 (en) Substrate type temperature fuse manufacturing method
JPH07201527A (en) Manufacture of conductive chip-type ceramic device
JPH02244531A (en) Base board type thermo-fuse and resistance element and manufacture of them
JPS622683B2 (en)
JP3471467B2 (en) Manufacturing method of grain boundary layer type semiconductor ceramic capacitor
JPS6378502A (en) Manufacture of thermistor
JPH01230258A (en) Manufacture of semiconductor device
JPH0236501A (en) Manufacture of semiconductor device
JPH06168803A (en) Thermistor and manufacture thereof
JP2002035930A (en) Heater tip for thermocompression bonding
JP2001176702A (en) Ptc thermistor