JPH03152506A - Visual field limiting stop of infrared microscope device - Google Patents

Visual field limiting stop of infrared microscope device

Info

Publication number
JPH03152506A
JPH03152506A JP1291536A JP29153689A JPH03152506A JP H03152506 A JPH03152506 A JP H03152506A JP 1291536 A JP1291536 A JP 1291536A JP 29153689 A JP29153689 A JP 29153689A JP H03152506 A JPH03152506 A JP H03152506A
Authority
JP
Japan
Prior art keywords
field
visual field
sample piece
aperture
field limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291536A
Other languages
Japanese (ja)
Inventor
Akio Izumi
晶雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1291536A priority Critical patent/JPH03152506A/en
Publication of JPH03152506A publication Critical patent/JPH03152506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the operation efficiency of the visual field limiting stop by constituting variable stop plates of the visual field limiting stop by using a wavelength selective material which cuts infrared light and transmits only visible light. CONSTITUTION:The four variable stop plates 25 - 28 incorporated in the visual field limiting stop 11 are constituted by employing heat-ray absorbing filters. Therefore, even when a analytic sample piece 2 is observed through an ocular while the visual field limiting stop 1 is put in a stop-down state, a sample piece area part behind it can be observed. phosphate glass which is about 1mm thick is usable for the heat-ray absorbing filters used for the stop plates 25 - 28. The glass of the heat-ray absorbing filters is bluish, so while the sample piece is illuminated with light in visible observation mode, the border of the visual field range of the visual field limiting stop 11 can be discriminated clearly, which is convenient for the setting of an aperture. Consequently, setting operation for the aperture setting of the visual field limiting stop for an extremely small spectral measurement position specified on the sample piece is easily performed with efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フーリエ変換赤外分光光度計と組合せ、分析
試料片の微小な分光測定部位のアパーチュアを設定する
赤外顕微装置の視野制限絞りに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is a field-limiting diaphragm for an infrared microscope device that is combined with a Fourier transform infrared spectrophotometer and sets an aperture for a minute spectroscopic measurement site on an analysis sample piece. Regarding.

〔従来の技術〕[Conventional technology]

周知のように、フーリエ変換赤外分光光度計は視野制限
絞りを備えた赤外顕微装置と組合せて使用するようにし
ており、分析試料片の分光測定を行う際には、まず赤外
顕微装置の接眼レンズを通じて拡大された試料片の実像
を可視観察しながら分光測定部位(例えば異物)を捜し
、この部位に位置を合わせるように視野制限絞りを調節
して赤外測定モードでのアパーチュアを設定するように
している。
As is well known, a Fourier transform infrared spectrophotometer is used in combination with an infrared microscope equipped with a field-limiting aperture, and when performing spectroscopic measurements on an analytical sample, the infrared microscope must first be While visually observing the magnified real image of the sample piece through the eyepiece, search for a spectroscopic measurement site (for example, a foreign object), adjust the field-limiting diaphragm to align with this site, and set the aperture in infrared measurement mode. I try to do that.

次に、赤外分光光度計に組合せて使用する赤外顕微装置
の構成を第4図に示す0図において、1は分析試料片2
を載置したX−Y−Zの3軸方向に移動調節可能なステ
ージ、3は反射対物鏡、4は反射コンデンサ、5は落射
照明光源、6は透過照明光源、7は接眼レンズ、8はハ
ーフミラ−9,10は後述する赤外光用の反射鏡、11
は反射対物鏡3の前段に備えた視野制限絞りである。な
お、前記の反射対物鏡3の代わりに赤外光が透過する材
料で作られた対物レンズ(例えばシリコン、ゲルマニエ
ウム製のレンズ)を用いる場合もある。
Next, in Figure 4, which shows the configuration of an infrared microscope device used in combination with an infrared spectrophotometer, 1 indicates the analytical sample piece 2.
3 is a reflection objective, 4 is a reflection condenser, 5 is an epi-illumination light source, 6 is a transmitted-illumination light source, 7 is an eyepiece, and 8 is a Half mirrors 9 and 10 are infrared light reflecting mirrors 11 to be described later.
is a field-limiting diaphragm provided before the reflecting objective mirror 3. Note that an objective lens made of a material that transmits infrared light (for example, a lens made of silicon or germanium) may be used instead of the reflective objective mirror 3 described above.

また、視野制限絞り11の従来構成は第6図、第7図に
示すごと(である、すなわち、本体ケース12の中央に
は貫通窓13が開[1し、この窓内に内側縁を向かい合
わせて前後、左右には金属材で作られた4枚の可変絞り
仮14〜17が配備されており、この4枚の絞りFi、
14〜17で囲まれた中央開口域に視野領域のアパーチ
ュア18を設定するようにしている。そして、アパーチ
ュア18の位置、サイズを可変調節するように各絞り板
14〜17に対応して本体ケース12には移動りi!節
用のマイクロメータ19〜22を備えている。なお、2
3は絞り板を後退方向に付勢するバネである。
In addition, the conventional configuration of the field-limiting diaphragm 11 is as shown in FIGS. In total, there are four variable apertures 14 to 17 made of metal on the front and rear, left and right sides, and these four apertures Fi,
The viewing area aperture 18 is set in the central opening area surrounded by 14 to 17. Then, the main body case 12 is moved in correspondence with each aperture plate 14 to 17 so as to variably adjust the position and size of the aperture 18! It is equipped with micrometers 19 to 22 for knots. In addition, 2
3 is a spring that biases the aperture plate in the backward direction.

かかる構成でステージlに分析試料片2を載せ、落射照
明光源5.あるいは透過照明光源6のいずれかを選択し
た可視観測モードで試料片2に照明光を照射すると、試
料片2の実像が視野制限絞り11の位置に形成され、さ
らにこの実像は接眼レンズ7で拡大されて観察される。
With this configuration, the analysis sample piece 2 is placed on the stage l, and the epi-illumination light source 5. Alternatively, when illumination light is irradiated onto the sample piece 2 in the visible observation mode in which one of the transmitted illumination light sources 6 is selected, a real image of the sample piece 2 is formed at the position of the field-limiting aperture 11, and this real image is further enlarged with the eyepiece lens 7. observed.

ここで視野制限絞り11の絞り板14〜17を十分に開
いた状態で接眼レンズ7を通して見た実像を第3図(a
)に示す、なお、図中における2a、 2bは試料片2
における異物を示している。
Here, the real image seen through the eyepiece 7 with the diaphragm plates 14 to 17 of the field-limiting diaphragm 11 fully open is shown in Figure 3 (a).
), 2a and 2b in the figure are sample piece 2.
It shows a foreign object in the.

続いて、試料片2における異物2aの局所部分について
赤外分光測定を行うには、まず、接眼レンズ7で試料片
2を観察しながら視野制限絞り11の各マイクロメータ
19〜22を調節して可動絞り板14〜17を第3図(
b)の位1に移動し、試料片の分光測定部位を異物2a
の微小部分に合わせて視野制限絞り11のアパーチュア
を設定する。この設定状態では可視光、並びに次に行う
赤外測定モードでの赤外光の透過範囲が絞り板14〜1
7で囲まれた微小範囲のアパーチュアに限定される。
Next, in order to perform infrared spectroscopy on the local part of the foreign object 2a on the sample piece 2, first, while observing the sample piece 2 through the eyepiece 7, each micrometer 19 to 22 of the field-limiting diaphragm 11 is adjusted. The movable aperture plates 14 to 17 are shown in Figure 3 (
b) Move to the 1st position and place the spectroscopic measurement part of the sample piece on the foreign object 2a.
The aperture of the field limiting diaphragm 11 is set in accordance with the minute portion of the image. In this setting state, the transmission range of visible light and infrared light in the next infrared measurement mode is
It is limited to the aperture in the minute range surrounded by 7.

この状態で、次に第4図に示した赤外充用反射鏡9.l
Oを第5図の位置に移動して赤外顕微装置を赤外測定モ
ードに切換え、図示されてない分光器側から干渉計で変
調された赤外光24を赤外顕微装置内の光路に導くこと
により、赤外光24が試料片2.視野制限絞り11を透
過した後に図示されてない検出器で集光1検出される。
In this state, next the infrared charging reflector 9 shown in FIG. l
O to the position shown in Fig. 5, the infrared microscope device is switched to infrared measurement mode, and the infrared light 24 modulated by the interferometer is passed from the spectrometer side (not shown) into the optical path inside the infrared microscope device. By guiding the infrared light 24 to the sample piece 2. After passing through the field-limiting diaphragm 11, the condensed light 1 is detected by a detector (not shown).

さらに検出器で検出されたインターフェログラムをコン
ピュータなどでフーリエ変換することにより分光測定部
分のサンプルスペクトルが得られ。
Furthermore, by Fourier transforming the interferogram detected by the detector using a computer, etc., a sample spectrum of the spectroscopic measurement area can be obtained.

ところで、試料片2における測定部位特有の吸収スペク
トルを得るには、分光器システムでの測定手順として第
3図ら)のように試料片2の異物2aに位置を合わせて
視野制限絞り11のアパーチュアを設定した後、赤外顕
微装置のステージlを移動操作して試料片2を視野制限
絞り11の視野から完全に後退させて第3図(C)の状
態にし、ここでバックグラウンドスペクトルを測定する
0次に再度ステージ1を移動操作して試料片2を再び第
3図ら)の位置に戻し、この状態で異物2aに対するサ
ンプルスペクトルを測定し、前記のバックグラウンドス
ペクトルとのサンプルスペクトルとの比から異物28部
分の吸収スペクトルを求めるようにしている。
By the way, in order to obtain an absorption spectrum specific to the measurement site in the sample piece 2, as a measurement procedure using a spectrometer system, the aperture of the field-limiting diaphragm 11 is aligned with the foreign object 2a on the sample piece 2 as shown in Fig. 3, etc. After setting, the stage l of the infrared microscope device is moved and the sample piece 2 is completely retreated from the field of view of the field-limiting aperture 11, resulting in the state shown in Fig. 3 (C), and the background spectrum is measured here. 0 Next, the stage 1 is moved again to return the sample piece 2 to the position shown in Fig. 3, et al.), and in this state, the sample spectrum for the foreign object 2a is measured, and from the ratio of the sample spectrum to the background spectrum described above, The absorption spectrum of the foreign matter 28 portion is determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した従来構成の視野制限絞りを組み込ん
だ赤外顕微装置では、分析試料片の分光測定に際して、
視野制限絞りでアパーチュアを設定するためのセッテン
グ操作面で次記のような難点がある。
By the way, in the infrared microscope device incorporating the field-limiting diaphragm of the conventional configuration described above, when performing spectroscopic measurements of analysis sample pieces,
There are some difficulties in setting the aperture with a field-limiting diaphragm, as described below.

すなわち、第3図(a)に示した可視観察モードでの観
察状態から視野制限絞り11を調節し、分光測定部位に
合わせて第3図(b)のように視野制限絞りの絞り板1
4〜17を移動すると、この状態では微小な測定部位(
異物2a)を除いて他の部分が絞り板14〜17の背後
に隠れて完全に見えな(なる、このために、試料片2を
一旦視野から後退(第3図(C)の状態)させて赤外測
定モードでバックグラウンドスペクトルを測定した後、
測定部位(異物2a)に対するサンプルスペクトルの測
定を行うために赤外1IJi@装置を再び可視観察モー
ドに切り替えて試料片2を第3図(ハ)の位置に戻す場
合に、このままでは試料片2の位置決めの再現が極めて
困難となる。そこで、従来では視野制限絞り11の絞り
板14〜17を開放し、第3図(a)の状態にして測定
部位を目視f1認しながら再度視野制限絞りの絞り板を
第3図(ロ)の状態にまで戻し、その後にサンプルスベ
クトルを測定するようにしている。
That is, the field-limiting diaphragm 11 is adjusted from the observation state in the visible observation mode shown in FIG. 3(a), and the diaphragm plate 1 of the field-limiting diaphragm is adjusted as shown in FIG.
When moving from 4 to 17, in this state the minute measurement site (
Except for the foreign object 2a), the other parts are hidden behind the diaphragm plates 14 to 17 and cannot be seen completely (for this reason, the sample piece 2 is temporarily retreated from the field of view (the state shown in Fig. 3 (C)). After measuring the background spectrum in infrared measurement mode,
When switching the infrared 1IJi@ device again to visible observation mode and returning the sample piece 2 to the position shown in Figure 3 (c) in order to measure the sample spectrum for the measurement site (foreign object 2a), if the sample piece 2 It becomes extremely difficult to reproduce the positioning. Therefore, conventionally, the diaphragm plates 14 to 17 of the field-limiting diaphragm 11 are opened, the diaphragm plates 14 to 17 of the field-limiting diaphragm 11 are opened, and the diaphragm plates 14 to 17 of the field-limiting diaphragm 11 are opened to the state shown in FIG. The sample vector is then measured.

しかしながらこの場合にはアパーチュアの設定。However, in this case the aperture settings.

特に視野のサイズの精度についてはμmオーダの精度が
要求され、視野サイズがバックグラウンドスペクトル測
定時のアパーチュアと僅かでも相違していると、測定部
位の正しい吸収スペクトルを求めることができない。
In particular, accuracy on the order of micrometers is required for the accuracy of the field of view size, and if the field of view size differs even slightly from the aperture at the time of background spectrum measurement, it will not be possible to obtain the correct absorption spectrum of the measurement site.

そのために、試料片に対する測定部位の位1決めには慎
重な操作が要求され、そのセッテングには長い作業時間
がかかる。しかも同じ試料片について複数箇所の分光測
定を続けて行う場合には、その都度セッテングを改めて
やり直す必要があってアパーチュア設定に多くの時間を
費やすなど、従来の視野制限絞りのままでは作業能率が
すこぶる低い。
Therefore, careful operation is required to determine the position of the measurement site on the sample piece, and setting it takes a long time. Moreover, when performing spectroscopic measurements at multiple locations on the same sample piece in succession, it is necessary to redo the settings each time, and a large amount of time is spent on setting the aperture. Using the conventional field-of-view-limiting aperture reduces work efficiency. low.

本発明は上記の点にかんがみなされたものであり、視野
制限絞りの絞り板を改良することにより、従来と比べて
大幅に作業能率の向上化が図れるようにした赤外顕微装
置の視野制限絞りを提供することを目的とする。
The present invention has been made in consideration of the above points, and is a field-limiting diaphragm for an infrared microscope device that can significantly improve work efficiency compared to the conventional one by improving the diaphragm plate of the field-limiting diaphragm. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の視野制限絞りでは
、視野制限絞りの可変絞り板を、赤外光をカットして可
視光のみを透過する波長選択材料で構成するものとする
In order to solve the above problems, in the field-limiting diaphragm of the present invention, the variable diaphragm plate of the field-limiting diaphragm is made of a wavelength-selective material that cuts infrared light and transmits only visible light.

〔作用〕[Effect]

上記の構成にり、可視観察モードでは視野制限絞りの絞
り仮を絞った状態でも、接眼レンズを通じて絞り仮で覆
われた分析試料片の領域を観察することかできる。した
がって試料片の上で特定した微小な測定部位に位置を合
わせて視野制限絞りのアパーチュアを設定し、この状態
で試料片を視野から一旦後退させてバックグラウンドス
ペクトルを測定した後、再び試料片を元の位置に戻して
サンプルスペクトルを測定する場合には、視野制限絞り
のアパーチュアの設定をそのままに、可視観察モードで
試料片の広範囲な領域を観察しながら試料片を移動する
ことで、試料片のセッテング位置を簡単な操作で正しく
再現することが可能となり、これにより正確な吸収スペ
クトルを求めることができる。
With the above configuration, in the visible observation mode, even when the aperture of the field-limiting diaphragm is closed, the area of the analysis sample piece covered by the aperture can be observed through the eyepiece. Therefore, the aperture of the field-limiting diaphragm is set to align with the minute measurement site specified on the sample piece, and in this state, the sample piece is moved back from the field of view to measure the background spectrum, and then the sample piece is removed again. To measure the sample spectrum after returning the specimen to its original position, leave the field-limiting aperture setting unchanged and move the specimen while observing a wide area of the specimen in visible observation mode. It is possible to accurately reproduce the setting position with a simple operation, and thereby an accurate absorption spectrum can be obtained.

また、特に同じ試料片について複数箇所の分光測定を行
う場合には、−度設定した視野制限絞りをそのままに、
可視観察モードで試料片の全体を観察しながら別な測定
部位を捜して試料片の位置合わせを行うことにより、改
めてバックグラウンドスペクトルを測定することなく分
光測定操作を能率よく進めることが可能となる。
In addition, when performing spectroscopic measurements at multiple locations on the same sample piece, it is recommended to leave the field-limiting aperture set at -degrees as is.
By observing the entire sample piece in visible observation mode while searching for another measurement site and aligning the sample piece, it is possible to proceed with spectroscopic measurement operations efficiently without having to measure the background spectrum again. .

なお、絞り板の材料としては、例えば赤外線を吸収する
フィルタ(熱線吸収フィルタ)の他に、赤外線を反射し
て可視光のみを透過させる材料、さらにはガラス基板に
適当な薄膜干渉フィルタを形成したものなどが採用でき
る。
The aperture plate may be made of, for example, a filter that absorbs infrared rays (heat ray absorption filter), a material that reflects infrared rays and transmits only visible light, or a suitable thin film interference filter formed on a glass substrate. Things can be adopted.

〔実施例] 第1図、第2図は本発明実施例による視野制限絞りの構
成を示すものであり、第6図、第7図に対応する同一部
材には同じ符号が付しである。
[Embodiment] FIGS. 1 and 2 show the structure of a field-limiting diaphragm according to an embodiment of the present invention, and the same members corresponding to FIGS. 6 and 7 are given the same reference numerals.

第1図、第2図において、視野制限絞り11に組み込ま
れた4枚の可変絞り板25〜28は、従来の視野制限絞
り (第6図、第7図参照)に組み込んだ金属製の絞り
板14〜17に替えて、例えば熱線吸収フィルタを採用
して構成さている。したがって、第4図に示した赤外顕
微装置での可視観察モードでは、視野制限絞り11を絞
った状態で接眼レンズを通じて分析試料片2を観察した
状態でも、第3図(6)のごとく絞り板25〜28を透
視して絞り板で覆われた背後の試料片領域部分も目視観
察できることになる。
In FIGS. 1 and 2, the four variable diaphragm plates 25 to 28 incorporated in the field-limiting diaphragm 11 are metal diaphragms incorporated in the conventional field-limiting diaphragm (see FIGS. 6 and 7). Instead of the plates 14 to 17, for example, a heat ray absorption filter is used. Therefore, in the visible observation mode of the infrared microscope shown in FIG. 4, even when the analysis sample piece 2 is observed through the eyepiece with the field-limiting aperture 11 closed, the aperture is stopped as shown in FIG. 3 (6). By looking through the plates 25 to 28, the sample piece region behind the aperture plate can also be visually observed.

なお、前記絞り板25〜28に用いる熱線吸収フィルタ
としては例えば■保谷硝子の製品HA−30(厚さII
III程度の燐酸塩ガラス)が使用できる。
In addition, as the heat ray absorption filter used for the aperture plates 25 to 28, for example, ■Hoya Glass product HA-30 (thickness II
III phosphate glass) can be used.

この熱線吸収フィルタの特性は、可視光は減衰なくその
まま透過するが波長が950論より長い波長域の赤外光
に対する透過率は0.3%以下である。
The characteristics of this heat ray absorption filter are that visible light is transmitted as is without attenuation, but the transmittance for infrared light in a wavelength range longer than 950 nm is 0.3% or less.

したがって、中間赤外光、遠赤外光領域での分光測定に
は実用的に十分である。また、この熱線吸収フィルタの
ガラスの色は青みを帯びているので、可視観察モードで
試料片に照明光を与えた状態で、視野制限絞り11での
視野範囲の境界が明確に判別できてアパーチュアの設定
操作に便利である。
Therefore, it is practically sufficient for spectroscopic measurements in the mid-infrared light and far-infrared light regions. In addition, since the glass color of this heat ray absorption filter is bluish, when illumination light is applied to the sample piece in visible observation mode, the boundary of the field of view at the field-limiting aperture 11 can be clearly distinguished and the aperture It is convenient for setting operations.

また、絞り板25〜28の材料として溶融石英ガラスを
用いた場合には、波長が40μm以上の赤外光が透過す
るために、実用的に5〜40μmの範囲での分光測定が
可能である。なお、このガラス材に適当な薄膜干渉フィ
ルタを形成すれば、分光赤外領域を広げつつ、赤外光の
遮断性能を向上できる。また、絞り板25〜28の材料
には熱線1収フィルタの他に、可視光は透過するが赤外
光を反射カットする材料を用いることもできる。
Furthermore, when fused silica glass is used as the material for the aperture plates 25 to 28, infrared light with a wavelength of 40 μm or more is transmitted, so spectroscopic measurements in the range of 5 to 40 μm are practically possible. . Note that if a suitable thin film interference filter is formed on this glass material, the infrared light blocking performance can be improved while expanding the spectral infrared region. Furthermore, in addition to the heat ray 1-pass filter, materials that transmit visible light but reflect and cut infrared light may be used as the material for the diaphragm plates 25 to 28.

また、絞り板25〜28の材料が透明である場合には、
視野範囲の境界を見易くするために、絞り板のエツジ部
分に金属膜コートを施すなどの手段を講じるのがよい、
さらに、赤外測定モード時に絞り仮25〜28からの赤
外光透過を完全にカットするためには、絞り仮25〜2
8の他にもう1&11の金属製可変絞り板を視野制限絞
り11に組み込み、可視観察モードでアパーチュアを設
定した後に、この金属製絞り板を絞り板25〜28の位
置まで絞り込むように構成することもできる。
Moreover, when the material of the aperture plates 25 to 28 is transparent,
In order to make the boundaries of the viewing range easier to see, it is recommended to take measures such as applying a metal film coating to the edges of the aperture plate.
Furthermore, in order to completely cut off infrared light transmission from temporary apertures 25 to 28 in the infrared measurement mode, it is necessary to
In addition to 8, metal variable diaphragm plates 1 & 11 are incorporated into the field-limiting diaphragm 11, and after the aperture is set in visible observation mode, the metal diaphragm plates are configured to narrow down to the positions of diaphragm plates 25 to 28. You can also do it.

〔発明の効果〕〔Effect of the invention〕

本発明による赤外顕微装置の視野制限絞りは、以上説明
したように構成されているので、次記の効果を奏する。
Since the field-limiting diaphragm of the infrared microscope apparatus according to the present invention is configured as described above, it achieves the following effects.

すなわち、視野制限絞りの絞り板を、赤外光をカットし
て可視光のみを透過する波長選択材料材料で作って構成
したことにより、可視観察モードでは視野制限絞りを十
分に絞った状態でも分析試料片の広範囲な領域を接眼レ
ンズを通じて目視観察することができ、これにより試料
片上に特定した微小な分光測定部位に対する視野制限絞
りのアパーチュア設定のためのセッテング掻作を簡単。
In other words, by making the diaphragm plate of the field-limiting diaphragm from a wavelength-selective material that cuts out infrared light and transmits only visible light, analysis can be performed in visible observation mode even when the field-limiting diaphragm is sufficiently closed. A wide area of the sample piece can be visually observed through the eyepiece, making it easy to set the aperture of the field-limiting diaphragm for the minute spectroscopic measurement site specified on the sample piece.

かつ能率よく行うことができる。And it can be done efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明実施例による視野制限絞りの構
造を示す平面図、および側断面図、第3図(a)〜(ロ
)はアパーチュア設定の各操作状態に対応した視野制限
絞りでの視野範囲を表した模式図、第4図、第5図はそ
れぞれ可視観察モード、赤外測定モードの状態を示す赤
外顕微装置の構成図、第6図、第7図は従来における視
野制限絞りの構造を示す平面図、および側断面図である
0図において、 1:ステージ、2:分析試料片、7:接眼レンズ、11
:視野制限絞り、25〜28:絞り板。 ¥−1図 112肥 (C) (d”) 第3図 第4図 第6f?J 第5胆
1 and 2 are a plan view and a side sectional view showing the structure of a field-limiting diaphragm according to an embodiment of the present invention, and FIGS. 3(a) to 3(b) show field-of-view limits corresponding to each operation state of the aperture setting. A schematic diagram showing the field of view range at the aperture, Figures 4 and 5 are configuration diagrams of the infrared microscope device showing the visible observation mode and infrared measurement mode, respectively, and Figures 6 and 7 are the conventional In Figure 0, which is a plan view and a side sectional view showing the structure of the field-limiting diaphragm, 1: stage, 2: analysis sample piece, 7: eyepiece, 11
: Field-limiting aperture, 25-28: Aperture plate. ¥-1 Figure 112 Fertilizer (C) (d”) Figure 3 Figure 4 Figure 6f?J 5th gall

Claims (1)

【特許請求の範囲】[Claims] 1)赤外分光光度計と組合せて使用する赤外顕微装置の
視野制限絞りであり、分析試料片を載置するステージと
接眼レンズとの間の可視光、赤外光に共通な光路上に可
変絞り板を備えた視野制限絞りを設置し、接眼レンズを
通じて試料の拡大実像を可視観察しながら視野制限絞り
を調節して分析試料片に対する分光測定部位のアパーチ
ュアを設定するようにしたものにおいて、前記視野制限
絞りの可変絞り板を、赤外光をカットして可視光のみを
透過する波長選択材料で構成したことを特徴とする赤外
顕微装置の視野制限絞り。
1) This is a field-limiting diaphragm for an infrared microscope device used in combination with an infrared spectrophotometer, and is located on the optical path common to visible light and infrared light between the stage on which the analysis sample piece is placed and the eyepiece. A field-limiting diaphragm equipped with a variable diaphragm plate is installed, and the field-limiting diaphragm is adjusted while visually observing an enlarged real image of the sample through the eyepiece to set the aperture of the spectroscopic measurement site for the analysis sample piece, A field-limiting diaphragm for an infrared microscope apparatus, characterized in that the variable diaphragm plate of the field-limiting diaphragm is made of a wavelength-selective material that cuts infrared light and transmits only visible light.
JP1291536A 1989-11-09 1989-11-09 Visual field limiting stop of infrared microscope device Pending JPH03152506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291536A JPH03152506A (en) 1989-11-09 1989-11-09 Visual field limiting stop of infrared microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291536A JPH03152506A (en) 1989-11-09 1989-11-09 Visual field limiting stop of infrared microscope device

Publications (1)

Publication Number Publication Date
JPH03152506A true JPH03152506A (en) 1991-06-28

Family

ID=17770176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291536A Pending JPH03152506A (en) 1989-11-09 1989-11-09 Visual field limiting stop of infrared microscope device

Country Status (1)

Country Link
JP (1) JPH03152506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572120A (en) * 1991-03-08 1993-03-23 Shimadzu Corp Infrared microscopic measuring device
JP2007192552A (en) * 2006-01-17 2007-08-02 Jasco Corp Spectral measuring instrument
JP4642178B2 (en) * 2000-01-18 2011-03-02 オリンパス株式会社 Infrared microscope and observation tube used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572120A (en) * 1991-03-08 1993-03-23 Shimadzu Corp Infrared microscopic measuring device
JP4642178B2 (en) * 2000-01-18 2011-03-02 オリンパス株式会社 Infrared microscope and observation tube used therefor
JP2007192552A (en) * 2006-01-17 2007-08-02 Jasco Corp Spectral measuring instrument

Similar Documents

Publication Publication Date Title
Françon Progress in Microscopy: International Series of Monographs on Pure and Applied Biology: Modern Trends in Physiological Sciences
US8014069B2 (en) Polarization converter, optical system, method and applications
JPH08502600A (en) Method and device for contrasting object to be inspected by microscope
US7755775B1 (en) Broadband optical metrology with reduced wave front distortion, chromatic dispersion compensation and monitoring
EP0454090B1 (en) Objective lens system for use within microscope
Welford Useful optics
Schmoll et al. Statistical Test of Optical Fibers for Use in PMAS, the Potsdam Multi‐Aperture Spectrophotometer
JPS62266439A (en) Spectral temporary optical analyzer
JPH03152506A (en) Visual field limiting stop of infrared microscope device
JP3694298B2 (en) Surface measuring apparatus and measuring method thereof
US4184737A (en) Nonlinear optics microscope interferometer
JP3219462B2 (en) Thin film measuring instrument
JPH08271337A (en) Spectroscope
JPH0776746B2 (en) Infrared microspectrophotometer
JPS6345519A (en) Photoelasticity measuring instrument
US2880648A (en) Half-shade devices for use with polarizing instruments
US2694340A (en) Interference microscope
Breckinridge et al. Threshold raw retrieved contrast in coronagraphs is limited by internal polarization
JPH03235910A (en) Infrared microscope
JPH0572120A (en) Infrared microscopic measuring device
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JPS606752Y2 (en) spectrophotometer
JPH02290536A (en) Microspectral measuring instrument
Pluta Variable wavelength interferometry. III. Reflected-light techniques
JPH0436642A (en) Raman spectrophotometer