JPH03151422A - Suction port for excavating - Google Patents
Suction port for excavatingInfo
- Publication number
- JPH03151422A JPH03151422A JP29061889A JP29061889A JPH03151422A JP H03151422 A JPH03151422 A JP H03151422A JP 29061889 A JP29061889 A JP 29061889A JP 29061889 A JP29061889 A JP 29061889A JP H03151422 A JPH03151422 A JP H03151422A
- Authority
- JP
- Japan
- Prior art keywords
- excavation
- negative pressure
- excavating
- sludge
- suction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000009412 basement excavation Methods 0.000 claims description 78
- 238000005553 drilling Methods 0.000 claims description 32
- 238000000926 separation method Methods 0.000 claims description 7
- 239000010802 sludge Substances 0.000 abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 18
- 239000007789 gas Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/92—Digging elements, e.g. suction heads
- E02F3/9243—Passive suction heads with no mechanical cutting means
- E02F3/925—Passive suction heads with no mechanical cutting means with jets
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/8833—Floating installations
- E02F3/8841—Floating installations wherein at least a part of the soil-shifting equipment is mounted on a ladder or boom
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/8833—Floating installations
- E02F3/885—Floating installations self propelled, e.g. ship
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/92—Digging elements, e.g. suction heads
- E02F3/9293—Component parts of suction heads, e.g. edges, strainers for preventing the entry of stones or the like
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Ocean & Marine Engineering (AREA)
Abstract
Description
本発明は主として港湾における海底のヘドロや池や湖等
の底に溜まった老廃物等を浚渫して除去する時に使用さ
れる掘削吸引口に関するものである。
峨The present invention mainly relates to an excavation suction port used when dredging and removing sludge on the seabed in ports and waste materials accumulated at the bottom of ponds, lakes, etc.峨
ヘドロを除去する場合、従来では負圧形成手段に接続さ
れた吸引管の下端部に吸引ノズルを設け、この吸引ノズ
ルをヘドロ等の堆積する湖底や海底に位置させ、負圧形
成手段でヘドロ等を吸い上げて除去するようにしている
。
ところが、浚渫されるヘドロ等は多種の物質で形成され
ており、その堆積量や深さ等によりその固さが種々に異
なることから、単に吸引するだけではヘドロを確実に除
去することか出来ないと言う問題があった。
そこでこうした問題に対処するために、従来、吸引口の
近傍に掘削用の高圧ジェット水を噴射する噴口を下向き
に開口させた掘削手段を設けるようにしたものがある。When removing sludge, conventionally a suction nozzle is provided at the lower end of the suction pipe connected to the negative pressure forming means, and this suction nozzle is placed on the lake bed or ocean floor where the sludge etc. accumulates, and the sludge is removed by the negative pressure forming means. We try to suck up and remove it. However, the sludge that is dredged is made up of a variety of materials, and its hardness varies depending on the amount and depth of the sediment, so it is not possible to remove the sludge reliably by simply suctioning it. There was a problem. In order to deal with these problems, conventional excavation means have been provided with a downwardly opening nozzle for injecting high-pressure jet water for excavation near the suction port.
海底や湖底に堆積したヘドロ等を噴口から噴射した掘削
用の高圧ジェット水で掘削する場合、噴口から噴射した
折角の掘削用の高圧ジェット水もその周囲の水の粘性に
よりその勢いが急速に減衰されてしまい、充分な掘削効
果が得られないと言う問題があった。
しかも、高圧ジェット水で掘削されたヘドロ等の大部分
はその周辺に飛散・浮遊するために、吸引口からはヘド
ロ等の含有量が少ない水を吸い込み、浚渫効率が大幅に
低下してしまうという問題もあった。
そこで、本発明は上記問題点に鑑み提案されたもので、
掘削及び浚渫を効率よく行えるようにした吸引口を提供
出来るようにすることを目的とするものである。When excavating sludge deposited on the ocean floor or the bottom of a lake using high-pressure jet water for drilling, the momentum of the high-pressure jet water jetted from the nozzle rapidly decreases due to the viscosity of the surrounding water. There was a problem that the excavation effect could not be obtained sufficiently. Furthermore, most of the sludge excavated with high-pressure jet water scatters and floats around the excavation area, so water with low sludge content is sucked in from the suction port, significantly reducing dredging efficiency. There were also problems. Therefore, the present invention was proposed in view of the above problems.
The purpose of this invention is to provide a suction port that enables efficient excavation and dredging.
上記目的を達成するために、本発明に係る掘削吸引口は
、負圧形成手段に連結した吸引ノズルの周囲に上部が閉
蓋された掘削用囲壁を形成し、該掘削用囲壁内の空間に
掘削流体用噴口を掘削用囲壁の下端開口部に向けて開口
させ、該掘削流体用噴口から気体と、液体及び液体が混
入された気体とを掘削用囲壁の下端開口部に向けて噴射
させる掘削流体供給手段を設けたことを特徴とするもの
である。In order to achieve the above object, the excavation suction port according to the present invention forms an excavation enclosure whose upper part is closed around a suction nozzle connected to a negative pressure forming means, and fills the space within the excavation enclosure. Drilling in which a drilling fluid nozzle is opened toward the lower end opening of the excavation enclosure, and gas, liquid, and gas mixed with liquid are injected from the drilling fluid nozzle toward the lower end opening of the excavation enclosure. This device is characterized by being provided with a fluid supply means.
先ず、浚渫しようとする海底や湖底等に掘削吸引口を沈
め、掘削用囲壁の開口周縁部がヘドロ等の内方に埋没す
る状態に設置して掘削用囲壁の内部をその周囲の外部と
遮断する。
次に、負圧形成手段で吸引ノズルから掘削用囲壁内の水
及びヘドロ等を吸引してゆくと、この吸引された堆積分
、掘削室内が負圧になり、この負圧により掘削流体用噴
口から液体混じりの気体(掘削用流体)が掘削室内に強
く吸引され、掘削流体用噴口からは恰も液体混じりの気
体が噴射されているようになる。
こうして、掘削用囲壁内の負圧により掘削流体用噴口か
ら供給された気体中にヘドロ等が露出すると、この露出
した部分が掘削流体用噴口から供給された液体混じりの
気体により掘削され、掘削用囲壁内に飛散し、この掘削
用囲壁内に飛散するヘドロ等が負圧形成手段で吸引ノズ
ルから吸引されて除去されるのである。
この時、掘削流体用噴口から噴射された液体混じりの気
体は、その中に含まれる大質量で、且つ流速も速い液体
成分の大きな慣性力により、固くなっているヘドロ等を
も良好に掘削することが出来るのである。
また、こうして掘削されたヘドロ等には掘削流体用噴口
から噴射された気体が多く含まれており、比重も軽く成
っていることから、吸引ノズルから上方に吸引されるの
である。First, the excavation suction port is sunk into the seabed or lakebed to be dredged, and the opening periphery of the excavation wall is buried inside the sludge, etc., to isolate the inside of the excavation wall from the surrounding outside. do. Next, when water, sludge, etc. inside the excavation wall are sucked out from the suction nozzle by the negative pressure forming means, the sucked-in accumulated amount creates a negative pressure inside the excavation chamber, and this negative pressure causes the excavation fluid nozzle Gas mixed with liquid (drilling fluid) is strongly attracted into the excavation chamber, and the gas mixed with liquid is injected from the drilling fluid nozzle. In this way, when sludge, etc. is exposed in the gas supplied from the drilling fluid nozzle due to the negative pressure inside the excavation wall, this exposed part is excavated by the gas mixed with liquid supplied from the drilling fluid nozzle, and the drilling Sludge and the like scattered within the excavation wall are removed by suction from the suction nozzle by the negative pressure forming means. At this time, the liquid-mixed gas injected from the drilling fluid nozzle effectively excavates even hardened sludge due to the large inertial force of the liquid component, which has a large mass and a high flow rate. It is possible. Furthermore, the excavated sludge contains a large amount of gas injected from the drilling fluid nozzle and has a light specific gravity, so it is sucked upward from the suction nozzle.
以下、本発明に係る実施例を図面に基づいて説明する。
第1図は浚渫装置の概略構成を示す一部切欠き側面図で
あって、図中符号1は浚渫装置を全体的に示す。
この浚渫装置1は浚渫される場所に浮かべられた船体2
と、船体2上に設けられた負圧形成手段3と、サイフオ
ン式浚渫手段4と、サイフオン式浚渫手段4の1部を構
成する吸引管5の下端部に設けられた掘削吸引口6とか
らなる。
上記負圧形成手段3は第2図に示すように、気・液分離
タンク7に貯溜されている水を加圧する加圧ポンプ8と
、加圧された高圧水を大径の負圧形成管9に噴射する噴
射ノズル10と、この噴射ノズル10から噴射されたジ
ェット水流により負圧形成管9内に形成された負圧を取
り出す負圧取出口11とで形成されたジェットポンプM
JPで構成されている。
サイフオン式浚渫手段4は、上端部にサイクロン型すイ
クロン形固・気・液分離部12が位置する分離用支柱1
3と、固・気・液分離部12がら導出させた吸入管14
及び前記した吸引管5と、吸引管5内の流体の比重を調
整するために空気を供給する空気供給管15と、この空
気供給管15に空気を供給するコンプレッサ16とを備
えてなり、この空気供給管15の一部にはポンプ、17
で掘削用水18を供給するように構成された液体供給手
段(掘削流体供給手段)19が設けられている。
掘削吸引口6は第3図及び第4図に示すように、吸引管
5の下端部に筒状の吸引ノズル20を接続し、吸引ノズ
ル20の周囲に上半部が陣笠状の筒体21で閉蓋された
掘削用囲壁22を設け、筒体21の中間高さ位置を区画
壁23で仕切っ′て空気室24と掘削室25とを上下に
形成し、区画壁23には掘削室25に向けて開口する掘
削流体用噴口26が等間装置きに突出形成されるととも
に、空気室24の笠体2■部分には前記の空気供給管1
5が連結され、空気供給管15、空気室24及び掘削流
体用噴口26との間に空気供給路27が形成されている
。
この掘削流体用噴口26の1部は掘削室25に噴射され
た空気及び液体が旋回流を形成するように偏芯させであ
る。
尚、図中符号30は、下端開口31が末広がり状に形成
された吸引ノズル口であって、この吸引ノズル口30の
開口位置は任意の位置に固定することが出来るように上
下摺動可能に構成されている。
また、符号32は掘削室25の下端部に張設された掘削
用トラスである。
上記のように構成された浚渫装置lを通して吸引口6の
作用を次に説明する。
先ず、浚渫しようとする海底33上の海面に浮かべられ
た船体2から吸引管5を沈めてゆき、掘削用囲壁22の
下端の開口周縁部22aが海底33に堆積したヘドロ等
34内に埋没するように下降させて掘削室25の内部を
その周囲の外部と遮断する。
この時、空気室24や掘削室25の容積による浮力で吸
引口6が沈み難いような場合には掘削用囲壁22の周面
に適宜ウェイトを設けたり、吸引6を船体状に設けた押
し込み装置35で海面の上方から強制的に押し込むよう
にする。
次に、ジェットポンプMJPを駆動させて吸引ノズル2
0から掘削室25内の水及びヘドロ等34を吸引し、こ
れと同時に掘削流体用噴口26からコンプレッサ16で
圧縮された高圧の空気が空気室24内に供給されると、
この空気が先ず空気室24内に充満された後、吸引ノズ
ル20から吸引された掘削室25内の容積分、空気室2
4の空気が掘削流体用噴口26から掘削室25内に流入
し、掘削室25内のヘドロ等24が空気中に次第に露出
してゆく。
ヘドロ等34が掘削室25内の空気中に露出すると、こ
の露出した部分が掘削流体用噴口26から掘削室25に
向けて供給された空気と液体供給手段19で空気供給管
15を介して空気室24に供給された水とで掘削されて
掘削室25内に飛散し、この掘削室25内に飛散するヘ
ドロ等34が負圧形成手段3で吸引ノズル20から吸引
管14を介してジェットポンプMJPの負圧形成管9に
吸引されるのである。
ここで掘削の作用を更に詳述すると、ジェットポンプM
JPで発生した負圧により掘削室25が負圧になってお
り、空気室24との間に圧力差が生じていることからこ
の差圧で空気室24内の空気及び液体供給手段19で空
気供給管15を介して空気室24に供給された水が掘削
流体用噴口26から掘削室25に勢い良く吸引され、そ
の強い勢いで掘削室25の底部のヘドロ等34が良好に
掘削されるのである。
因みに実験したところ、掘削室25内の負圧は最大74
0〜750mmHgを記録しており、掘削用囲壁22の
径が2mの場合、掘削用トラス32には約30ト、の押
しつけ圧力が作用しており、この力により殆どの固塊物
が掘削用トラス32で破砕することが出来たのである。
然も、掘削流体用噴口26から掘削室25に勢い良く吸
引される空気及び水は掘削流体用噴口26の1部が偏芯
していることから掘削室25で旋回流が形成され、掘削
室25の底部のヘドロ等34は均一に且つ強力に掘削さ
れるのである。
そして、掘削吸引ノズル20から吸引管5に吸引された
ヘドロ等34には掘削流体用噴口26から噴射された多
量の空気が含まれて比重が軽く上昇し易くなっており、
吸引管5内を固・気・液分離部12まで上昇し、ここで
気体成分と固・液成分が分離され、気体成分は、吸入管
4でジェットポンプMJPの負圧形成管9に吸引され、
固・液成分は分離用支柱13を通じてヘドロ貯溜槽36
に流下する。
ここで、吸引管5内を流れる流体等の比重はそのヘドロ
等34の種類に応じて掘削流体用噴口26から噴射され
る空気量を調整することにより種々変更することが出来
るのである。
尚、上記実施例に於ける掘削吸引口6はその内部に空気
室24と掘削室25とを形成するようにしであるが第5
図に示すように、笛体21部分に連結した空気供給管1
5の下端部に掘削流体用噴口26キ・を直接形成して空
気室24を省略することも出来るし、第3図中想像線で
示すように液体供給手段19から液体を空気室24に直
接供給するようにしても良いし、液体を空気室24に強
制的に供給するポンプ17を省略して例えばオリフィス
等により調量された液体を自然吸引させるようにするこ
とも出来る。
また、図示は省略したが、負圧形成手段をプランジャ等
の一般的な真空ポンプで形成させたり、吸引口の掘削用
囲壁を角形に形成するようにしても良いことは言うまで
もないことである。
更に、掘削室の下端部に張設された掘削用トラスは省略
することが出来るし、コンプレッサを省略して空気供給
管の上端部を大気に開放するようしても良いことは勿論
である。
加えて、掘削用流体としての圧縮空気を高温の蒸気にす
ると、例えばヘドロ等の組成にピッチやタール等の油分
が多く固い場合にその熱で軟化させることが出来掘削効
率を高めることが出来るし、ヘドロ等の中からメタンガ
ス等の可燃性ガスが発生しているような場合には不燃性
ガス等を空気噴出口から噴射すると引火等の事故も無(
安全に浚渫することができるのである。
【発明の効果]
本発明は以上に説明したように、負圧形成手段で形成さ
れた負圧を掘削吸引口の掘削室に作用にさせ、この負圧
で掘削流体用噴口から掘削室に強力に吸引される空気中
の液体の強い慣性力により海底や湖底等に堆積するヘド
ロ等を掘削するように構成しであるので、掘削流体用噴
口から掘削室に噴射された強力な勢いが減衰されること
が無く、そのままヘドロ等を強力に掘削することが出来
、その掘削効果を大幅に向上させることが出来るという
利点がある。 ′
加えて、掘削用気体噴出口から噴射された高圧気体で掘
削されたヘドロは掘削用囲壁で区画されて外部に飛散す
ることが無く、その侭吸引ノズルから吸引されるので、
浚渫効率を大幅に向上させることができるとともに掘削
する周辺を汚したりすることも無いと言う利点もある。Embodiments according to the present invention will be described below based on the drawings. FIG. 1 is a partially cutaway side view showing a schematic configuration of a dredging device, and reference numeral 1 in the figure indicates the dredging device as a whole. This dredging device 1 has a hull 2 floating in the area to be dredged.
, a negative pressure forming means 3 provided on the hull 2 , a siphon dredging means 4 , and an excavation suction port 6 provided at the lower end of a suction pipe 5 that constitutes a part of the siphon dredging means 4 . Become. As shown in FIG. 2, the negative pressure forming means 3 includes a pressurizing pump 8 that pressurizes the water stored in the gas/liquid separation tank 7, and a large-diameter negative pressure forming pipe that pumps the pressurized high-pressure water. A jet pump M is formed by an injection nozzle 10 that injects water into the water jet 9, and a negative pressure outlet 11 that takes out the negative pressure formed in the negative pressure forming pipe 9 by the jet water flow injected from the injection nozzle 10.
It is composed of JP. The siphon type dredging means 4 includes a separation support 1 in which a cyclone type solid/gas/liquid separation part 12 is located at the upper end.
3, and the suction pipe 14 led out from the solid/gas/liquid separation section 12
It also includes the suction pipe 5 described above, an air supply pipe 15 that supplies air to adjust the specific gravity of the fluid in the suction pipe 5, and a compressor 16 that supplies air to this air supply pipe 15. A pump 17 is provided in a part of the air supply pipe 15.
A liquid supply means (drilling fluid supply means) 19 configured to supply drilling water 18 is provided. As shown in FIGS. 3 and 4, the excavation suction port 6 is constructed by connecting a cylindrical suction nozzle 20 to the lower end of the suction pipe 5, and surrounding the suction nozzle 20 with a cylindrical body 21 whose upper half is shaped like a canopy. A surrounding wall 22 for excavation is provided, and the middle height position of the cylindrical body 21 is partitioned by a partition wall 23 to form an air chamber 24 and an excavation chamber 25 above and below. A drilling fluid nozzle 26 that opens toward the spacer is formed protrudingly from the spacer, and the air supply pipe 1 is connected to the cap body 2 of the air chamber 24.
5 are connected, and an air supply path 27 is formed between the air supply pipe 15, the air chamber 24, and the drilling fluid nozzle 26. A portion of this drilling fluid nozzle 26 is eccentric so that the air and liquid injected into the drilling chamber 25 form a swirling flow. In addition, the reference numeral 30 in the figure is a suction nozzle port in which a lower end opening 31 is formed in a shape that widens toward the end, and the opening position of this suction nozzle port 30 is vertically slidable so that it can be fixed at an arbitrary position. It is configured. Moreover, the code|symbol 32 is a truss for excavation installed in the lower end part of the excavation chamber 25. The operation of the suction port 6 will be explained below through the dredging device 1 constructed as described above. First, the suction pipe 5 is sunk from the hull 2 floating on the sea surface above the seabed 33 to be dredged, and the opening periphery 22a at the lower end of the excavation wall 22 is buried in the sludge etc. 34 deposited on the seabed 33. The excavation chamber 25 is lowered in such a manner that the interior of the excavation chamber 25 is isolated from the surrounding exterior. At this time, if the suction port 6 is difficult to sink due to the buoyancy due to the volume of the air chamber 24 and the excavation chamber 25, a weight may be provided on the circumferential surface of the excavation wall 22, or a pushing device in which the suction port 6 is provided in the shape of a ship. 35 so that it is forcibly pushed in from above the sea level. Next, the jet pump MJP is driven to remove the suction nozzle 2.
When water, sludge, etc. 34 in the excavation chamber 25 are sucked from the excavation chamber 25 from 0, and at the same time, high-pressure air compressed by the compressor 16 is supplied from the excavation fluid nozzle 26 into the air chamber 24.
This air first fills the air chamber 24, and then the air chamber 2
4 flows into the excavation chamber 25 from the excavation fluid nozzle 26, and the sludge, etc. 24 in the excavation chamber 25 is gradually exposed to the air. When the sludge, etc. 34 is exposed to the air in the excavation chamber 25, this exposed portion is mixed with air supplied from the drilling fluid nozzle 26 toward the excavation chamber 25 and the liquid supply means 19, and the air is blown through the air supply pipe 15. The water supplied to the chamber 24 excavates and scatters into the excavation chamber 25, and the sludge etc. 34 scattered in the excavation chamber 25 is passed from the suction nozzle 20 through the suction pipe 14 by the negative pressure forming means 3 to the jet pump. It is sucked into the negative pressure forming tube 9 of the MJP. Here, to explain the action of excavation in more detail, the jet pump M
The excavation chamber 25 has a negative pressure due to the negative pressure generated in the JP, and since there is a pressure difference between it and the air chamber 24, this pressure difference causes the air in the air chamber 24 and the liquid supply means 19 to The water supplied to the air chamber 24 through the supply pipe 15 is vigorously sucked into the excavation chamber 25 from the drilling fluid nozzle 26, and the sludge, etc. 34 at the bottom of the excavation chamber 25 is excavated well by the strong force. be. By the way, in an experiment, the negative pressure inside the excavation chamber 25 was at a maximum of 74
0 to 750 mmHg is recorded, and when the diameter of the excavation wall 22 is 2 m, a pressing pressure of approximately 30 tons is acting on the excavation truss 32, and this force causes most of the solid material to be crushed by the excavation. The truss 32 was able to crush it. However, since a part of the drilling fluid nozzle 26 is eccentric, the air and water that are forcefully sucked into the excavation chamber 25 from the drilling fluid nozzle 26 form a swirling flow in the excavation chamber 25. Sludge, etc. 34 at the bottom of 25 is excavated uniformly and powerfully. The sludge etc. 34 sucked into the suction pipe 5 from the excavation suction nozzle 20 contains a large amount of air injected from the excavation fluid nozzle 26, so that its specific gravity is light and easy to rise.
It ascends inside the suction pipe 5 to the solid/gas/liquid separation section 12, where the gas component and the solid/liquid component are separated, and the gas component is sucked into the negative pressure forming pipe 9 of the jet pump MJP through the suction pipe 4. ,
The solid and liquid components pass through the separation column 13 to the sludge storage tank 36.
flows down to. Here, the specific gravity of the fluid flowing through the suction pipe 5 can be varied in various ways by adjusting the amount of air injected from the drilling fluid nozzle 26 depending on the type of the sludge or the like 34. The excavation suction port 6 in the above embodiment is configured to form an air chamber 24 and an excavation chamber 25 therein.
As shown in the figure, the air supply pipe 1 connected to the flute body 21 part
It is also possible to omit the air chamber 24 by forming the drilling fluid nozzle 26 directly at the lower end of the hole 5, or to directly supply the liquid from the liquid supply means 19 to the air chamber 24 as shown by the imaginary line in FIG. Alternatively, the pump 17 for forcibly supplying the liquid to the air chamber 24 may be omitted, and the liquid metered by an orifice or the like may be naturally sucked. Although not shown, it goes without saying that the negative pressure forming means may be formed by a general vacuum pump such as a plunger, or the excavation wall of the suction port may be formed into a rectangular shape. Furthermore, the excavation truss stretched over the lower end of the excavation chamber can be omitted, and it goes without saying that the compressor can be omitted and the upper end of the air supply pipe is opened to the atmosphere. In addition, if the compressed air used as the drilling fluid is turned into high-temperature steam, for example, if the composition of sludge contains a lot of oil such as pitch or tar, it can be softened by the heat, increasing drilling efficiency. If flammable gas such as methane gas is generated from sludge, etc., injecting non-flammable gas etc. from the air outlet will prevent accidents such as ignition (
It can be dredged safely. Effects of the Invention As explained above, the present invention causes the negative pressure formed by the negative pressure forming means to act on the excavation chamber of the excavation suction port, and uses this negative pressure to force the excavation chamber from the drilling fluid nozzle. The structure is designed to excavate sludge deposited on the ocean floor, lake bottom, etc. by the strong inertial force of the liquid in the air that is sucked into the excavation chamber, so the powerful force injected into the excavation chamber from the drilling fluid nozzle is attenuated. This method has the advantage that sludge, etc., can be excavated powerfully as it is without any damage, and the excavation effect can be greatly improved. ' In addition, the sludge excavated by the high-pressure gas injected from the excavation gas outlet is separated by the excavation wall and does not scatter outside, but is sucked from the suction nozzle on the side.
It has the advantage that dredging efficiency can be greatly improved and the area around the excavation site is not polluted.
図面は本発明の実施例を示し、第1図は掘削吸引口を備
えた浚渫装置の概略構成を示す1部切欠き側面図、第2
図は負圧形成手段の概略を示す1部切欠き側面図、第3
図は吸引口の縦断側面図、第4図はその1部切欠き底面
図であり、第5図は掘削吸引口の変形例を示す縦断側面
図である。
3・・・負圧形成手段、6・・・掘削吸引口、19・・
・掘削流体供給手段、20・・・吸引ノズル、22・・
・掘削用囲壁、26・・・掘削流体用噴口、。The drawings show an embodiment of the present invention, and FIG. 1 is a partially cutaway side view showing a schematic configuration of a dredging device equipped with an excavation suction port, and FIG.
The figure is a partially cutaway side view showing the outline of the negative pressure forming means, and
FIG. 4 is a partially cutaway bottom view of the suction port, and FIG. 5 is a vertical side view of a modified example of the excavation suction port. 3... Negative pressure forming means, 6... Excavation suction port, 19...
・Drilling fluid supply means, 20... Suction nozzle, 22...
- Excavation wall, 26... drilling fluid nozzle.
Claims (3)
部が閉蓋された掘削用囲壁を形成し、該掘削用囲壁内の
空間に掘削流体用噴口を掘削用囲壁の下端開口部に向け
て開口させ、該掘削流体用噴口から気体と、液体及び液
体が混入された気体とを掘削用囲壁の下端開口部に向け
て噴射させる掘削流体供給手段を設けたことを特徴とす
る掘削吸引口。(1) An excavation enclosure whose upper part is closed is formed around the suction nozzle connected to the negative pressure forming means, and a drilling fluid nozzle is provided in the space within the excavation enclosure at the lower end opening of the excavation enclosure. The excavation suction is characterized by being provided with a drilling fluid supply means that is opened toward the drilling fluid nozzle and injects gas, liquid, and gas mixed with the liquid toward the lower end opening of the excavation enclosure wall. mouth.
成し、該負圧を吸引ノズルに供給するように構成したジ
ェットポンプで負圧形成手段を形成したことを特徴とす
る特許請求の範囲第1項に記載の掘削吸引口。(2) The negative pressure forming means is formed by a jet pump configured to inject high pressure fluid into the negative pressure forming pipe to form negative pressure and supply the negative pressure to the suction nozzle. An excavation suction port according to claim 1.
分離手段を介在させたことを特徴とする特許請求の範囲
第1項または第2項に記載の掘削吸引口。(3) The excavation suction port according to claim 1 or 2, characterized in that solid/gas/liquid separation means is interposed between the suction nozzle and the negative pressure forming means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29061889A JPH03151422A (en) | 1989-11-08 | 1989-11-08 | Suction port for excavating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29061889A JPH03151422A (en) | 1989-11-08 | 1989-11-08 | Suction port for excavating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03151422A true JPH03151422A (en) | 1991-06-27 |
Family
ID=17758325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29061889A Pending JPH03151422A (en) | 1989-11-08 | 1989-11-08 | Suction port for excavating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03151422A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322327B1 (en) | 2000-01-13 | 2001-11-27 | Walker-Dawson Interests, Inc. | Jet pump for transfer of material |
US6817837B2 (en) | 2002-07-19 | 2004-11-16 | Walker-Dawson Interest, Inc. | Jet pump with recirculating motive fluid |
US6860042B2 (en) | 2002-07-19 | 2005-03-01 | Walker-Dawson Interests, Inc. | Excavation system employing a jet pump |
US6911145B2 (en) | 2002-07-19 | 2005-06-28 | Walker-Dawson Interests, Inc. | Apparatus and methods for separating slurried material |
WO2008046115A2 (en) * | 2006-10-09 | 2008-04-17 | Graham Albrecht | Submerged gravel mining device and system |
JP2009174196A (en) * | 2008-01-24 | 2009-08-06 | Tokyo Electric Power Co Inc:The | Dredging apparatus |
JP2010036151A (en) * | 2008-08-07 | 2010-02-18 | Sumitomo Heavy Industries Environment Co Ltd | Sand pumping apparatus |
US8286375B2 (en) * | 2007-11-29 | 2012-10-16 | Dredging International N.V. | Drag head of a trailing suction hopper dredger and method for dredging using this drag head |
WO2016080832A1 (en) * | 2014-11-21 | 2016-05-26 | Ihc Holland Ie B.V. | Hold offloading system |
CN108385760A (en) * | 2018-02-27 | 2018-08-10 | 宁波弘海众创空间服务有限公司 | A kind of transmission system of energy saving and environment friendly undisturbed soil hydraulic suction dredge |
CN110126996A (en) * | 2019-04-23 | 2019-08-16 | 烟台桑尼橡胶有限公司 | A kind of dredging pond and its dredging method |
WO2023068943A1 (en) * | 2021-10-22 | 2023-04-27 | Granfoss As | Device and method for removing granular material |
-
1989
- 1989-11-08 JP JP29061889A patent/JPH03151422A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322327B1 (en) | 2000-01-13 | 2001-11-27 | Walker-Dawson Interests, Inc. | Jet pump for transfer of material |
US6817837B2 (en) | 2002-07-19 | 2004-11-16 | Walker-Dawson Interest, Inc. | Jet pump with recirculating motive fluid |
US6860042B2 (en) | 2002-07-19 | 2005-03-01 | Walker-Dawson Interests, Inc. | Excavation system employing a jet pump |
US6911145B2 (en) | 2002-07-19 | 2005-06-28 | Walker-Dawson Interests, Inc. | Apparatus and methods for separating slurried material |
US7045068B2 (en) | 2002-07-19 | 2006-05-16 | Walker-Dawson Interests, Inc. | Apparatus and methods for separating slurried material |
WO2008046115A2 (en) * | 2006-10-09 | 2008-04-17 | Graham Albrecht | Submerged gravel mining device and system |
WO2008046115A3 (en) * | 2006-10-09 | 2009-05-07 | Graham Albrecht | Submerged gravel mining device and system |
US8286375B2 (en) * | 2007-11-29 | 2012-10-16 | Dredging International N.V. | Drag head of a trailing suction hopper dredger and method for dredging using this drag head |
JP2009174196A (en) * | 2008-01-24 | 2009-08-06 | Tokyo Electric Power Co Inc:The | Dredging apparatus |
JP2010036151A (en) * | 2008-08-07 | 2010-02-18 | Sumitomo Heavy Industries Environment Co Ltd | Sand pumping apparatus |
WO2016080832A1 (en) * | 2014-11-21 | 2016-05-26 | Ihc Holland Ie B.V. | Hold offloading system |
NL2013843B1 (en) * | 2014-11-21 | 2016-10-10 | Ihc Holland Ie Bv | Hold offloading system. |
CN107000821A (en) * | 2014-11-21 | 2017-08-01 | Ihc荷兰Ie有限公司 | Cabin uninstalling system |
CN107000821B (en) * | 2014-11-21 | 2020-11-03 | Ihc荷兰Ie有限公司 | Cabin unloading system |
CN108385760A (en) * | 2018-02-27 | 2018-08-10 | 宁波弘海众创空间服务有限公司 | A kind of transmission system of energy saving and environment friendly undisturbed soil hydraulic suction dredge |
CN108385760B (en) * | 2018-02-27 | 2020-12-25 | 浙江省围海建设集团股份有限公司 | Transmission system of energy-saving and environment-friendly undisturbed soil suction dredger |
CN110126996A (en) * | 2019-04-23 | 2019-08-16 | 烟台桑尼橡胶有限公司 | A kind of dredging pond and its dredging method |
CN110126996B (en) * | 2019-04-23 | 2020-08-04 | 烟台桑尼橡胶有限公司 | Desilting pool and desilting method thereof |
WO2023068943A1 (en) * | 2021-10-22 | 2023-04-27 | Granfoss As | Device and method for removing granular material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03151422A (en) | Suction port for excavating | |
US3967393A (en) | Underwater solids collecting apparatus | |
JP4782059B2 (en) | Pumping sand transport device and pumping sand transport method | |
JPH0826537B2 (en) | Groundwater pumping and reduction drainage system | |
JPH0979000A (en) | Mine drainage device | |
MXPA03005839A (en) | Method for hydraulic subsea dredging. | |
JPH03151421A (en) | Specific gravity control type siphon device for dredging | |
JPH0369727A (en) | Excavating suction port | |
CN100469977C (en) | Suction manifold for dredging | |
JP2005155024A (en) | Sediment discharge method and sediment discharge work ship | |
JP2001040674A (en) | Rejuvenation method for drain pipe | |
RU2053366C1 (en) | Method for mining of iron-manganese concretions from ocean bottom and device for its embodiment | |
JP2009057876A (en) | Jet pump such as dredging apparatus | |
NO314851B1 (en) | Installations for the removal of contaminated pulp and use | |
JP2840908B2 (en) | Underwater soft ground improvement device and improvement method | |
JP6886576B2 (en) | Negative pressure generator for ground improvement | |
SU1735569A1 (en) | Bottomhole cleaning device | |
JP4572451B2 (en) | Offshore hydraulic air compressor | |
RU76404U1 (en) | EJECTOR EQUIPMENT WITH HYDRAULFINDERS | |
JP2004003210A (en) | Dredge pump and dredging system | |
RU2167826C2 (en) | Plant for defferization of underground waters in bed | |
RU90716U1 (en) | INSTALLATION FOR TREATMENT OF BOTTOM ZONES OF OIL AND GAS-BURNING BEDS | |
JP2781306B2 (en) | Method for pumping liquid and apparatus used therefor | |
JPH0429703A (en) | Accumulator | |
JP2008309028A (en) | Device for forming negative pressure and method for forming negative pressure by jet flow |