JP4782059B2 - Pumping sand transport device and pumping sand transport method - Google Patents

Pumping sand transport device and pumping sand transport method Download PDF

Info

Publication number
JP4782059B2
JP4782059B2 JP2007090410A JP2007090410A JP4782059B2 JP 4782059 B2 JP4782059 B2 JP 4782059B2 JP 2007090410 A JP2007090410 A JP 2007090410A JP 2007090410 A JP2007090410 A JP 2007090410A JP 4782059 B2 JP4782059 B2 JP 4782059B2
Authority
JP
Japan
Prior art keywords
pipe
solid
air
suction transport
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007090410A
Other languages
Japanese (ja)
Other versions
JP2008030021A (en
Inventor
隆洋 鈴木
典男 有城
勘六 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2007090410A priority Critical patent/JP4782059B2/en
Publication of JP2008030021A publication Critical patent/JP2008030021A/en
Application granted granted Critical
Publication of JP4782059B2 publication Critical patent/JP4782059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

本発明は、沈降性の固体を液体とともに効率的に吸引し、かつ輸送する揚砂輸送装置および揚砂輸送方法に係り、特に下水処理施設やし尿処理施設の沈砂池あるいは浄化槽汚泥中に堆積した沈砂を真空吸引により液体とともに揚砂し、固液回収タンクに輸送する揚砂輸送装置および揚砂輸送方法に関するものである。   The present invention relates to a sand transporting apparatus and a sand transporting method for efficiently sucking and transporting a sedimentary solid together with a liquid, and in particular, deposited in a sand basin or septic tank sludge of a sewage treatment facility or a human waste processing facility. The present invention relates to a sand-carrying apparatus and a sand-carrying transport method for sand-carrying sand together with liquid by vacuum suction and transporting it to a solid-liquid recovery tank.

下水処理施設やし尿処理施設などの沈砂池における揚砂輸送設備は、し渣、砂利、金属類の沈降物などを含み、かつ、強い臭気を発生する環境にある。したがって、沈砂を自動で、目詰まりなどの問題もなく、高揚程にて輸送距離も長く、省エネルギーで効率的かつ安全に除去することが求められてきた。このため、沈砂池から揚砂して固液回収タンクなどへ輸送し、洗浄し、固液分離する技術として、様々の方法が提案されてきた。   The sand transportation facilities in sand basins such as sewage treatment facilities and human waste treatment facilities contain sediment, gravel, metal deposits, etc., and are in an environment that generates strong odors. Accordingly, it has been demanded to remove sand sediment automatically, without problems such as clogging, with a high lift, a long transport distance, energy saving, efficient and safe removal. For this reason, various methods have been proposed as techniques for sanding from a sand basin, transporting to a solid-liquid recovery tank, washing, and solid-liquid separation.

従来、沈砂を揚砂輸送するには、サンドポンプを用いる方法や真空により吸引する方法が主に使用されてきた。しかしながら、サンドポンプを用いる方法では、沈砂中に混在する石片、金属片などによりブレードが破損したり、急速に磨耗することがある。また沈砂の輸送にはコンベアが使用される場合があるが、コンベアをカバーで覆っても臭気が漏洩したり、汚水が飛散するなどの、気密性が保てないことなどの維持管理上の問題があった。   Conventionally, in order to transport sand by sand transport, a method using a sand pump or a method of suctioning by vacuum has been mainly used. However, in the method using the sand pump, the blade may be damaged or rapidly worn by stone pieces, metal pieces, etc. mixed in the settling sand. In addition, conveyors are sometimes used for transporting sand settling, but maintenance problems such as odor leaking and sewage splashing cannot be maintained even if the conveyor is covered with a cover. was there.

また、真空により吸引する方法には、様々の方式があり、改良されてきた。例えば、高圧水噴射により負圧を発生させるエゼクター方式や、揚砂輸送管内にさらに高圧水に空気を混気させた混気ジェット水流として、吸引輸送管の端部開口部近くに噴射して負圧とエアリフト効果を作用させ、吸引する方式(例えば特許文献1,2参照)、真空ポンプによる真空吸引と揚砂輸送管の端部近傍に接続された空気導入管からブロワで加圧空気や大気を連続注入し、吸引して揚砂輸送する方式がある(例えば特許文献3〜5参照)。また、揚砂輸送管の途中に空気および/または加圧水を導入させるようにした方式もある(例えば特許文献6参照)。   Further, there are various methods for suctioning by vacuum, and they have been improved. For example, an ejector method that generates a negative pressure by high-pressure water injection, or an air-jet mixed water stream in which high-pressure water is further mixed with air in the sand transport pipe, is jetted near the end opening of the suction transport pipe. Pressure and air lift effects are applied and suctioned (see, for example, Patent Documents 1 and 2), vacuum suction by a vacuum pump, and compressed air or air with a blower from an air introduction pipe connected in the vicinity of the end of the sand transport pipe There is a method of continuously injecting, sucking and transporting sand by sand (see, for example, Patent Documents 3 to 5). There is also a system in which air and / or pressurized water is introduced in the middle of the sand transport pipe (see, for example, Patent Document 6).

また、揚砂輸送管の端部の開口部を工夫し、内筒(揚砂輸送管)を外筒で包む形状とし、外気吸引コントロール弁を有し、吸引口近くから螺旋状等に吸引する装置も提案されている(例えば特許文献7,8参照)。さらに、内筒と外筒の間隙を大きくして混合室とし、液面下の混合室の上部に吸気管を設け、その吸気管の液面上に開閉機構(弁)を設け、開閉機構の開閉により混合室に沈砂池の固液と吸引空気を混合し、真空吸引することを断続的に行うことも提案されている(例えば特許文献9参照)。この方法によれば、混合室内の固形分の見掛け比重を軽減することで多量の土砂の揚砂輸送ができるとされている。   In addition, the opening of the end of the sand transport pipe is devised, the inner cylinder (sand transport pipe) is wrapped in the outer cylinder, it has an outside air suction control valve, and sucks in a spiral from the suction port. An apparatus has also been proposed (see, for example, Patent Documents 7 and 8). Furthermore, the gap between the inner cylinder and the outer cylinder is increased to form a mixing chamber, an intake pipe is provided above the mixing chamber below the liquid level, and an open / close mechanism (valve) is provided on the liquid level of the intake pipe. It has also been proposed to intermittently perform vacuum suction by mixing the solid liquid and suction air of the sand basin into the mixing chamber by opening and closing (see, for example, Patent Document 9). According to this method, it is said that a large amount of earth and sand can be transported by reducing the apparent specific gravity of the solid content in the mixing chamber.

さらに、液体の吸引装置として、液面直上に絞り弁付吸気管を設け、吸引ポンプにより吸引して吸引揚送管内に段状の気液層を多数形成し、気層柱の分だけ高揚程にする方法も提案されている(例えば特許文献10参照)。また、泥水の高揚程の吸上げ装置として、吸引輸送管の液面直上と、屈曲部に絞り弁付空気導入管を設け、吸引輸送管内に泥水部と空気部を連接して多段形成させつつ真空吸引することで、空気部段数の高さの和の分だけ揚程を高くする装置も提案されている(例えば特許文献11参照)。   In addition, as a liquid suction device, an intake pipe with a throttle valve is provided directly above the liquid surface, and suction is performed by a suction pump to form a number of stepped gas-liquid layers in the suction pumping pipe. There has also been proposed a method (see, for example, Patent Document 10). In addition, as a suction device for the high head of mud water, an air inlet pipe with a throttle valve is provided directly above the liquid level of the suction transport pipe and at the bent part, and the muddy water part and the air part are connected and formed in multiple stages in the suction transport pipe. There has also been proposed an apparatus that raises the head by the amount of the sum of the heights of the air sections by performing vacuum suction (see, for example, Patent Document 11).

また、地下タンクなど構造物底部の貯留液の揚水方法として、真空ポンプを付属する気液分離槽からの揚水管端部開口部を貯留液内とし、貯留液面の上の位置に、制御弁付(大気)導入管を接続した装置において、電磁制御弁を閉鎖して揚水管内に液体を吸上げる揚水工程と、電磁制御弁を開にして前記導入管から空気を流入させ、空気によって揚水管内の液体を押し上げる工程とを繰り返し行い、液体を断続的に汲み上げる方法も提案されている(例えば特許文献12参照)。   In addition, as a method of pumping the stored liquid at the bottom of structures such as underground tanks, the opening of the pumping pipe from the gas-liquid separation tank attached with the vacuum pump is set in the stored liquid, and the control valve is positioned above the stored liquid level. In a device with an attached (atmospheric) introduction pipe, the pumping process for closing the electromagnetic control valve and sucking liquid into the pumping pipe, and opening the electromagnetic control valve to allow air to flow from the introduction pipe, A method of repeatedly pumping up the liquid and intermittently pumping up the liquid has also been proposed (see, for example, Patent Document 12).

現在、主に実用されているのは、高圧水を単独に用いた負圧発生の水エゼクター方式、および高圧水に空気を混合させる混気ジェット水流により、負圧にエアリフト効果を加えた方式である。これらの方法によれば、コンベヤなどに比べて輸送経路を自由に曲げることができ、省スペース化を図ることができ、また臭いが出ず、メンテナンスを省力化することができるなどの利点があるとされている。   Currently, the water ejector method that generates negative pressure using high-pressure water alone and the method that adds the air lift effect to the negative pressure by the mixed jet water flow that mixes air with high-pressure water are mainly used. is there. According to these methods, the transportation route can be freely bent as compared to a conveyor and the like, space saving can be achieved, no odor is produced, and maintenance can be saved. It is said that.

しかし、これら実用されている装置は、高圧水エゼクターによる負圧で沈砂と水を吸い上げるものであるため、大きな動力(55〜75kW)の高圧水ポンプが必要となり、エネルギー消費が大きくなる。そして、短時間に多くの水量を必要とするため、それなりに大きい貯槽が必要となる。また、高圧水として、濁質の少ない、例えば下水の二次処置水、あるいは水道水並みの水質が要求され、この確保が問題となる。更に、沈砂と共に吸い上げられる水量が多いため、輸送先において沈砂と水とを分離する規模の大きい分離装置が必要となる。このため、装置全体がコンパクトでない問題点、更にエネルギー消費が大きいという、解決すべき大きい問題点を有している。上記の如く従来の装置は、地球温暖化や省エネルギーの面で時代の要請にそぐわないものになってきている。   However, since these devices that are practically used suck up sedimentation and water by negative pressure by a high-pressure water ejector, a high-pressure water pump with a large power (55 to 75 kW) is required, and energy consumption increases. Since a large amount of water is required in a short time, a large storage tank is required. In addition, as high-pressure water, low turbidity, for example, secondary treatment water of sewage or water quality equivalent to tap water is required, and securing this becomes a problem. Furthermore, since the amount of water sucked up together with the settling sand is large, a large-scale separation device for separating the settling sand and the water at the transportation destination is required. For this reason, there is a problem that the entire apparatus is not compact, and there is a large problem to be solved that energy consumption is large. As described above, conventional devices have become unsuitable for the needs of the times in terms of global warming and energy saving.

特開昭52−111008号公報JP 52-111008 A 実開昭59−119305号公報Japanese Utility Model Publication No.59-119305 特開昭60−216813号公報JP-A-60-216813 特開平02−035902号公報Japanese Patent Laid-Open No. 02-035902 特開平07−031807号公報Japanese Patent Application Laid-Open No. 07-031807 特開平08−038811号公報Japanese Patent Laid-Open No. 08-038811 実開昭62−144504号公報Japanese Utility Model Publication No. 62-144504 特開昭63−253200号公報JP 63-253200 A 特開平07−103199号公報Japanese Patent Application Laid-Open No. 07-103199 実公昭41−004361号公報Japanese Utility Model Publication No.41-004361 特開昭55−064200号公報Japanese Patent Laid-Open No. 55-064200 特開平11−193800号公報JP-A-11-193800

本発明は、このような従来技術の問題点に鑑みてなされたもので、沈砂池の沈砂を小さな動力で効率的に、高揚程で、長距離を揚砂輸送することができる揚砂輸送装置および揚砂輸送方法を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and is capable of efficiently transporting sand in a sand basin with a small amount of power, with a high head, and over a long distance. And to provide a method of transporting sand.

本発明の第1の態様によれば、小さな動力で沈砂を引き上げることができる揚砂輸送装置が提供される。この揚砂輸送装置は、固液回収タンクと吸引輸送管とを備えている。吸引輸送管は、沈砂池の水中に没される第1の端部と、上記固液回収タンクに接続される第2の端部とを有している。揚砂輸送装置は、上記固液回収タンクおよび上記吸引輸送管の内部を減圧する減圧装置と、上記沈砂池の最高水位よりも上方の位置で上記吸引輸送管に接続される大気開放管と、上記大気開放管を通じて上記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁とを備えている。また、揚砂輸送装置は、上記大気開放弁を閉じて上記沈砂池に堆積した沈砂を水とともに固液混合体として上記吸引輸送管内に吸引し、その水位が上記大気開放管との接続部よりも上方に上昇したときに上記大気開放弁を開くことにより上記接続部よりも上方に輸送用水柱を形成し、上記輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により上記輸送用水柱を上記固液回収タンクに輸送し、上記輸送用水柱の全体が上記固液回収タンクに入る直前に上記大気開放弁を閉じ、上記大気開放弁の開閉を繰り返すことにより上記輸送用水柱の形成と輸送とを繰り返す制御部を備えている。 According to the first aspect of the present invention, there is provided a sand-carrying transport device that can lift sand by small power. This sand transporting device includes a solid-liquid recovery tank and a suction transport pipe. The suction transport pipe has a first end that is submerged in the water in the sand basin and a second end that is connected to the solid-liquid recovery tank. The sand-carrying transport device includes a decompression device that decompresses the solid-liquid recovery tank and the suction transport pipe, and an open air pipe connected to the suction transport pipe at a position above the highest water level of the sand basin, An atmosphere release valve is provided for opening the connection portion of the suction transport pipe with the atmosphere release pipe through the atmosphere release pipe. In addition, the sand transporting device closes the air release valve and sucks the sediment deposited in the sand basin as a solid-liquid mixture with water into the suction transport tube, and the water level is from the connection with the air release tube. When the air rises upward, the air release valve is opened to form a transport water column above the connecting portion, and the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank The transport water column is transported to the solid-liquid recovery tank by the above, the air release valve is closed immediately before the entire transport water column enters the solid-liquid recovery tank, and the air release valve is repeatedly opened and closed to repeat the transport. A control unit that repeats the formation and transportation of the water column is provided.

なお、本明細書で使用する真空度とは、大気圧を0kPaとし、負圧はそのまま、マイナス表示で表す。例えば−49.0kPa(−5mAq)とは大気圧を0kPaとして、それより49.0kPa低下したことを意味する。さらに、真空度が高いとは負圧が大きいこと、真空度が低いとは負圧が小さいことを意味する。   The degree of vacuum used in the present specification is represented by minus display with the atmospheric pressure set to 0 kPa and the negative pressure as it is. For example, −49.0 kPa (−5 mAq) means that the atmospheric pressure is set to 0 kPa and the pressure is lowered by 49.0 kPa. Further, a high vacuum means that the negative pressure is large, and a low vacuum means that the negative pressure is small.

このような構成によれば、減圧装置により沈砂を含む水を吸引輸送管内に吸引し、吸引輸送管の水位が大気開放管の接続部よりも上方に上昇したときに、大気開放弁を開くと、大気開放管の接続部は大気開放され、この接続部より上方に輸送用水柱を形成することができる。この輸送用水柱は、両端に作用する大気圧と真空度との差により固液回収タンクまで輸送される。   According to such a configuration, when the water containing sedimentation is sucked into the suction transport pipe by the decompression device and the air release valve is opened when the water level of the suction transport pipe rises above the connection portion of the air release pipe. The connection portion of the atmosphere release pipe is open to the atmosphere, and a transport water column can be formed above the connection portion. This transport water column is transported to the solid-liquid recovery tank by the difference between the atmospheric pressure acting on both ends and the degree of vacuum.

すなわち、上記減圧装置により、上記接続部から大気が一気に吸引され大気圧となる。そして、この接続部より上方の輸送用水柱の上面に作用する真空度と、輸送用水柱の下面に作用する大気圧との差により、上記接続部から大気を吸引しつつ、輸送用水柱を輸送するのである。このとき輸送用水柱は、当初は固液混合体であるが、輸送中に徐々に、輸送用水柱の後方から気固液混合体に変化していく。本発明において重要なのは、大気開放弁を開とした時、一気に、ピストン流的に大気が吸引される構成とすることである。大気吸引が遅いほど、形成される輸送用水柱中にかなりの量の大気が気泡として入り込み易く、水柱としての形状の崩れの程度が大きくなる。しかし、この形状の崩れがあっても、揚砂輸送工程を繰り返すことによって、気固液の水柱の全体が最終的に輸送されていくのである。   In other words, the atmospheric pressure is sucked from the connecting portion at a stroke by the decompression device, and becomes atmospheric pressure. The transport water column is transported while sucking the air from the connection portion due to the difference between the degree of vacuum acting on the upper surface of the transport water column above the connection portion and the atmospheric pressure acting on the lower surface of the transport water column. To do. At this time, the transport water column is initially a solid-liquid mixture, but gradually changes from the rear of the transport water column to a gas-solid liquid mixture during transport. What is important in the present invention is that the atmosphere is sucked in a piston flow at once when the atmosphere release valve is opened. The slower the air suction, the more easily a large amount of air enters the formed water column for transportation as bubbles, and the degree of collapse of the shape of the water column increases. However, even if this shape collapses, the entire water-solid liquid column is finally transported by repeating the sand transporting process.

そして、輸送用水柱の全体が固液回収タンク内に入る直前に、大気開放弁を閉じ、沈砂池に堆積した沈砂を水とともに固液混合体として吸引輸送管内に吸引する。その水位を大気開放管の接続部よりも上方に上昇させ、次いで大気開放弁を開き、上記接続部より上方に輸送用水柱を形成する。   And just before the whole water column for transport enters the solid-liquid recovery tank, the air release valve is closed, and the sediment deposited in the sedimentation basin is sucked into the suction transport pipe together with water as a solid-liquid mixture. The water level is raised above the connection portion of the atmosphere release pipe, and then the atmosphere release valve is opened to form a transport water column above the connection portion.

吸引輸送管内には、基本的に固液混合体が形成された後に輸送用水柱が形成され、その輸送用水柱全体が固液回収タンク内に入ってしまう前に、すなわち、輸送されてしまう前に、沈砂池からの固液混合体の吸引が始まり、次の輸送用水柱の形成が可能になるように制御する。これにより、固液回収タンクと大気開放管との間に空気が連通することがなく、固液回収タンクの真空度はそれほど変化せず、一定の範囲の真空度が常に吸引輸送管全体に作用し、沈砂池から固液混合体を吸引する流速および吸引輸送管内の輸送用水柱の輸送流速を安定させることができる。
大気開放弁を開いた時に、吸引輸送管に吸引された空気が輸送により固液回収タンクに入るが、固液回収タンクの真空度が低くならないよう、所定の範囲に保つため、減圧装置としての例えば水封式真空ポンプをほぼ連続運転し、吸引された空気を排出していく。
In the suction transport pipe, a transport water column is basically formed after the solid-liquid mixture is formed, and before the entire transport water column enters the solid-liquid recovery tank, that is, before it is transported. In addition, the suction is started so that the solid-liquid mixture is sucked from the sand basin and the next water column for transportation can be formed. As a result, air does not communicate between the solid-liquid recovery tank and the open air pipe, the vacuum level of the solid-liquid recovery tank does not change so much, and a certain range of vacuum always acts on the entire suction transport pipe. In addition, it is possible to stabilize the flow rate of sucking the solid-liquid mixture from the sand basin and the transport flow rate of the transport water column in the suction transport pipe.
When the air release valve is opened, the air sucked into the suction transport pipe enters the solid-liquid recovery tank by transport, but in order to keep the degree of vacuum of the solid-liquid recovery tank within a predetermined range, For example, the water-sealed vacuum pump is operated almost continuously, and the sucked air is discharged.

例えば、吸引輸送管の口径を80A(呼び径:例えばSUS304のSch 20Sでは内径81.1mmとなる)とし、実用的な真空度としてその初期値を−49.0kPa(−5mAq)としたところ、沈砂池最高水位より2.0〜2.5mの高さに固液混合体を吸引できた。そして、輸送用水柱の高さ(長さ)は平均2.3mとなり、このときの沈砂濃度は20〜35%であり、その平均は27%であった。また、揚砂輸送を繰り返しても、真空度の変動の幅は所定値内であった。   For example, when the diameter of the suction transport pipe is 80 A (nominal diameter: for example, the inner diameter is 81.1 mm in Sch 20S of SUS304) and the initial value is −49.0 kPa (−5 mAq) as a practical degree of vacuum, The solid-liquid mixture could be sucked to a height of 2.0 to 2.5 m from the highest water level in the sand basin. And the height (length) of the water column for transport became an average of 2.3 m, and the sedimentation concentration at this time was 20 to 35%, and the average was 27%. Moreover, even if the sand transport was repeated, the fluctuation range of the degree of vacuum was within a predetermined value.

このように、本発明によれば、一度所定の真空度に達した後の、固液回収タンクの真空度を維持するための真空ポンプの動力は小さい動力でよく、小さな動力で固液回収タンクに揚砂輸送する操作を断続的に繰り返し行うことで、沈砂を含んだ固液混合体を輸送することができる。   As described above, according to the present invention, the power of the vacuum pump for maintaining the vacuum degree of the solid-liquid recovery tank after reaching the predetermined vacuum degree may be small power, and the solid-liquid recovery tank with small power. By repeating the operation of transporting the sand to the sand, the solid-liquid mixture containing the sand can be transported.

本発明の第2の態様によれば、小さな動力で、より効率的に沈砂を引き上げることができる揚砂輸送装置が提供される。この揚砂輸送装置は、固液回収タンクと吸引輸送管とを備えている。吸引輸送管は、沈砂池の水中に没される第1の端部と、上記固液回収タンクに接続される第2の端部とを有している。揚砂輸送装置は、上記固液回収タンクおよび上記吸引輸送管の内部を減圧する減圧装置と、上記沈砂池の最高水位よりも上方の位置で上記吸引輸送管に接続される大気開放管と、上記大気開放管を通じて上記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁とを備えている。また、揚砂輸送装置は、上記沈砂池の水中で上記吸引輸送管に接続される空気注入管と、上記吸引輸送管の内部に空気を送り込む空気移送装置と、上記空気注入管を通じて上記空気移送装置によって上記吸引輸送管の空気注入管との接続部から空気を上記吸引輸送管の内部に注入するための空気注入弁とを備えている。さらに、揚砂輸送装置は、上記大気開放弁および上記空気注入弁を閉じて上記沈砂池に堆積した沈砂を水とともに固液混合体として上記吸引輸送管内に吸引し、その水位が上記沈砂池の最高水位よりも上方に上昇したときに上記空気注入弁を開くことにより上記空気注入管との接続部より上方の固液混合体を、上記大気開放管との接続部の近傍またはそれよりも上方に押し上げ、上記大気開放弁を開くとともに上記空気注入弁を閉じることにより上記大気開放管との接続部を大気開放して上記大気開放管との接続部よりも上方に輸送用水柱を形成し、上記輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により上記輸送用水柱を上記固液回収タンクに輸送し、上記輸送用水柱の全体が上記固液回収タンクに入る直前に上記大気開放弁を閉じ、上記大気開放弁および上記空気注入弁の開閉を繰り返すことにより上記輸送用水柱の形成と輸送とを繰り返す制御部を備えている。 According to the second aspect of the present invention, there is provided a sand transporting device capable of pulling up sand sink more efficiently with small power. This sand transporting device includes a solid-liquid recovery tank and a suction transport pipe. The suction transport pipe has a first end that is submerged in the water in the sand basin and a second end that is connected to the solid-liquid recovery tank. The sand-carrying transport device includes a decompression device that decompresses the solid-liquid recovery tank and the suction transport pipe, and an open air pipe connected to the suction transport pipe at a position above the highest water level of the sand basin, An atmosphere release valve is provided for opening the connection portion of the suction transport pipe with the atmosphere release pipe through the atmosphere release pipe. The sand transporting device includes an air injection pipe connected to the suction transport pipe in the water of the sand basin, an air transfer device for sending air into the suction transport pipe, and the air transfer through the air injection pipe. The apparatus includes an air injection valve for injecting air into the suction transport pipe from a connection portion of the suction transport pipe with the air injection pipe. Furthermore, the sand transporting device sucks the sand deposited in the sand settling basin together with water as a solid-liquid mixture into the suction transport pipe by closing the air release valve and the air injection valve, and the water level of the sand settling basin is When the air injection valve is opened above the highest water level, the solid-liquid mixture above the connection with the air injection pipe is opened in the vicinity of or above the connection with the air release pipe. To open the atmosphere release valve and close the air injection valve to open the connection with the atmosphere release pipe to the atmosphere to form a water column for transportation above the connection with the atmosphere release pipe, The transport water column is transported to the solid-liquid recovery tank due to the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank, and the entire transport water column enters the solid-liquid recovery tank. Just before the above Closing the open valve, and a control unit to repeat the transportation with the formation of the transportation of water by repeating the opening and closing of the atmosphere release valve and the inflation valve.

このような構成によれば、減圧装置により沈砂を含む水を固液混合体として吸引輸送管内に吸引し、その水位が空気注入管との接続部よりも上方に上昇したときに、空気注入弁を開くことで加圧空気が注入され、この加圧空気により上記固液混合体を押し上げることができる。さらに、大気開放弁を開くとともに空気注入弁を閉じることにより、吸引輸送管内に長い輸送用水柱を形成し、輸送用水柱の下面を大気開放管の接続部近傍またはそれよりも上方に上昇させることができる。そして、輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により、この輸送用水柱を固液回収タンクまで輸送することができる。   According to such a configuration, when the water containing sedimentation is sucked into the suction transport pipe as a solid-liquid mixture by the decompression device, and the water level rises above the connection with the air injection pipe, the air injection valve Pressurized air is injected by opening and the solid-liquid mixture can be pushed up by this pressurized air. Furthermore, by opening the atmosphere release valve and closing the air injection valve, a long water column for transportation is formed in the suction transportation pipe, and the lower surface of the transportation water column is raised near or above the connection part of the air release pipe. Can do. Then, due to the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank, the transport water column can be transported to the solid-liquid recovery tank.

すなわち、空気注入管の接続部からの加圧空気により、好ましくは沈砂池の最高水位より上方に吸引された固液混合体の下面を、大気開放管の接続部の近傍またはこれよりも上方に押し上げ、次いで大気開放弁を開くとともに空気注入弁を閉じる。これにより、比較的長い輸送用水柱が形成され、この輸送用水柱の両端に作用する大気圧と真空度との差により、輸送用水柱を固液回収タンクまで輸送する。この輸送用水柱全体が固液回収タンク内に入る直前に、大気開放弁を閉じ、再度、輸送用水柱を形成し、次いで大気開放弁を開いて輸送を繰り返すことができる。この輸送用水柱のうち、加圧空気によって上方に押し上げられる部分は、大気開放管の接続部と空気注入管の接続部との間の長さに相当する部分であり、輸送用水柱の下部に相当する。このため、沈砂の重力沈降等の影響により、この部分の沈砂濃度は高い傾向にある。したがって、大気開放管のみを用いた場合に比べて、形成される輸送用水柱が長くできる分、およびその沈砂濃度が高い分、輸送の効率が向上する。   That is, the lower surface of the solid-liquid mixture sucked above the highest water level of the sand settling basin by the pressurized air from the connection portion of the air injection pipe is preferably set close to or above the connection portion of the air release pipe. Then, open the air release valve and close the air injection valve. Thereby, a comparatively long transportation water column is formed, and the transportation water column is transported to the solid-liquid recovery tank by the difference between the atmospheric pressure and the degree of vacuum acting on both ends of the transportation water column. Immediately before the entire transport water column enters the solid-liquid recovery tank, the atmosphere release valve is closed, the transport water column is formed again, and then the atmosphere release valve is opened to repeat the transportation. Of this transport water column, the portion pushed upward by the pressurized air is a portion corresponding to the length between the connection portion of the air release pipe and the connection portion of the air injection pipe, and is located below the transport water column. Equivalent to. For this reason, the sediment concentration in this part tends to be high due to the influence of gravity sedimentation of the sediment. Therefore, compared with the case where only the atmosphere open pipe is used, the transportation efficiency is improved because the formed water column for transportation can be made longer and the sediment concentration is higher.

吸引輸送管内には、基本的に輸送用水柱が1つ存在しており、その1つの輸送用水柱全体が固液回収タンク内に入ってしまう前に、すなわち、輸送されてしまう前に、沈砂池からの固液混合体の吸引が始まり、次の輸送用水柱の形成が可能になるように制御する。これにより、固液回収タンクと大気開放管との間に空気が連通することがなく、固液回収タンクの真空度はそれほど変化せず、一定の範囲の真空度が常に吸引輸送管全体に作用し、沈砂池から固液混合体を吸引する流速および吸引輸送管内の輸送用水柱の輸送流速を安定させることができる。   There is basically one transport water column in the suction transport pipe, and before the entire transport water column enters the solid-liquid recovery tank, that is, before transport, Control so that the suction of the solid-liquid mixture from the pond starts and the next water column for transportation can be formed. As a result, air does not communicate between the solid-liquid recovery tank and the open air pipe, the vacuum level of the solid-liquid recovery tank does not change so much, and a certain range of vacuum always acts on the entire suction transport pipe. In addition, it is possible to stabilize the flow rate of sucking the solid-liquid mixture from the sand basin and the transport flow rate of the transport water column in the suction transport pipe.

空気注入弁および大気開放弁を開いた時には、加圧された、あるいは吸引された空気が断続的に固液回収タンクに入るが、固液回収タンクの真空度を所定の範囲に保つため、減圧装置としての例えば水封式真空ポンプをほぼ連続運転し、固液回収タンクに吸引された空気を排出していく。
固液回収タンクに真空度センサを設け、固液回収タンクの真空度を所定の範囲の値になるように減圧装置としての真空ポンプを選定し、運転することが好ましい。
また、固液回収タンクには、吸引した沈砂を洗浄するため、真空度を開放する換気弁が設けられることが好ましい。
When the air injection valve and the air release valve are opened, pressurized or sucked air intermittently enters the solid-liquid recovery tank, but the pressure is reduced to maintain the vacuum level of the solid-liquid recovery tank within the specified range. For example, a water-sealed vacuum pump as an apparatus is operated almost continuously, and the air sucked into the solid-liquid recovery tank is discharged.
It is preferable to provide a vacuum sensor in the solid-liquid recovery tank, and select and operate a vacuum pump as a decompression device so that the vacuum of the solid-liquid recovery tank falls within a predetermined range.
In addition, the solid-liquid recovery tank is preferably provided with a ventilation valve that opens the degree of vacuum in order to wash the sucked sediment.

例えば、吸引輸送管の口径を80Aとし、大気開放管の接続部より1m下部の液面下に空気注入管を接続し、実用的な真空度としてその初期値を−49.0kPa(−5mAq)としたところ、沈砂池最高水位HWLより2.0〜2.5m、平均2.3mの高さに固液混合体を吸引できた。次いで、空気注入弁を開いて加圧空気を注入し、空気注入管の接続部より上部の固液混合体の下面を大気開放管の接続部の近傍またはその上方に押し上げ、大気開放弁を開くと、上述した平均2.3mの高さに加えて、約1mプラスされた平均3.3mの長い輸送用水柱を形成することができた。この長い輸送用水柱の沈砂濃度は20〜35%であり、その平均は30%であった。また、揚砂輸送を繰り返しても、真空度の変動はほとんど見られなかった。   For example, the suction transport pipe has a diameter of 80 A, an air injection pipe is connected below the liquid level 1 m below the connection part of the open air pipe, and the initial value is -49.0 kPa (-5 mAq) as a practical degree of vacuum. As a result, it was possible to suck the solid-liquid mixture to a height of 2.0 to 2.5 m and an average of 2.3 m from the highest water level HWL. Next, the air injection valve is opened to inject pressurized air, and the lower surface of the solid-liquid mixture above the connection part of the air injection pipe is pushed up near or above the connection part of the atmosphere release pipe to open the atmosphere release valve. In addition to the above-mentioned average height of 2.3 m, a long transport water column with an average of 3.3 m, which was increased by about 1 m, could be formed. The sediment concentration of this long water column for transportation was 20 to 35%, and the average was 30%. Moreover, even if the sand transport was repeated, there was almost no change in the degree of vacuum.

また、揚砂輸送を繰り返しても、真空度の変動の幅は所定値内であった。上述の約1mのプラスの長さ分は、水中の空気注入管の接続部と大気開放管の接続部の長さに相当していた。一方、加圧空気の注入を行わなかった場合では、形成される固液混合体、すなわち、輸送用水柱の長さが、平均2.3mであり、かつその沈砂濃度は20〜35%、平均27%であった。   Moreover, even if the sand transport was repeated, the fluctuation range of the degree of vacuum was within a predetermined value. The above-mentioned positive length of about 1 m corresponds to the length of the connecting portion of the underwater air injection pipe and the connecting portion of the open air pipe. On the other hand, when the pressurized air is not injected, the formed solid-liquid mixture, that is, the length of the water column for transportation is 2.3 m on average, and the sand concentration is 20 to 35%, average. 27%.

このように、本発明によれば、空気注入管の接続部と大気開放管の接続部との間の距離を適切に設定することにより、その高さ(距離)の分として長い輸送用水柱が得られる。また、その沈砂濃度を高めることができるため、効率的に揚砂輸送できる。また、一度所定の真空度に達した後の、固液回収タンクの真空度を維持するための真空ポンプの動力は小さい動力でよく、小さな動力で固液回収タンクに揚砂輸送する操作を断続的に繰り返し行うことで、沈砂を含んだ固液混合体を輸送することができる。   Thus, according to the present invention, by appropriately setting the distance between the connection portion of the air injection pipe and the connection portion of the atmospheric release pipe, a long water column for transportation can be obtained as the height (distance). can get. Moreover, since the sedimentation concentration can be increased, it is possible to transport the sand efficiently. Also, once the vacuum level has been reached, the vacuum pump power to maintain the vacuum level of the solid / liquid recovery tank may be small, and the operation of transporting sand to the solid / liquid recovery tank with low power will be interrupted. By repeating the process repeatedly, the solid-liquid mixture containing the sedimentation can be transported.

上記第1の態様において、上記吸引輸送管の第1の端部は、50度から70度の傾斜を有するように内径が徐々に小さくなる形状を有しており、その開口部の最小口径は該吸引輸送管の口径の1/2以上、その最小口径を40A以上とする。このような最小口径の開口部における吸引流速は吸引輸送管本管の吸引流速の約4倍と大きくなり、取り込んだ沈砂が吸引輸送管内を輸送される途中で詰まることなく固液回収タンクまで移送できるようになる。すなわち、従来の開口部形状のベルマウス型も使用できるが、上述のように、先端に向かって内径が徐々に小さくなるように、水平面に対して傾斜を有している開口部形状が好ましい。これは、開口部の吸引流速がベルマウス型より大きくなるからである。 In the first aspect, the first end of the suction transport pipe has a shape in which the inner diameter gradually decreases so as to have an inclination of 50 degrees to 70 degrees, and the minimum diameter of the opening is 1/2 or more of the diameter of the suction transport tube, you its minimum diameter and 40A or more. The suction flow rate at the opening with such minimum diameter is about 4 times the suction flow rate of the main suction pipe, and it is transferred to the solid-liquid recovery tank without clogging the sand that has been taken in the transport pipe. become able to. That is, a conventional bell mouth type having an opening shape can be used, but as described above, an opening shape having an inclination with respect to the horizontal plane is preferable so that the inner diameter gradually decreases toward the tip. This is because the suction flow velocity of the opening is larger than that of the bell mouth type.

また、上記揚砂輸送装置は、上記吸引輸送管の第1の端部の近傍の沈砂を水の噴射により流動化させる水噴射ノズルをさらに備えていることが好ましい。これにより、吸引輸送管の吸引部に多量の沈砂が堆積しているときに、水噴射ノズルによりこの沈砂を流動化することで、吸引輸送管内に沈砂をスムーズに吸引できるようになる。この水噴射ノズルは、吸引輸送管の第1の端部の近傍に集砂するように沈砂池内に配置され、これに適合するように、水噴射ノズルの構成や流速、沈砂池の構造なども設計される。   Moreover, it is preferable that the said sand transporting apparatus is further provided with the water injection nozzle which fluidizes the sedimentation sand of the vicinity of the 1st end part of the said suction transportation pipe | tube by jetting water. As a result, when a large amount of sand is accumulated in the suction portion of the suction transport pipe, it is possible to smoothly suck the sand into the suction transport pipe by fluidizing the sand sediment by the water jet nozzle. This water spray nozzle is placed in the sand settling basin so as to collect sand near the first end of the suction transport pipe. Designed.

また、上記揚砂輸送装置は、上記吸引輸送管の上記大気開放管の接続部より上方に設けられた吸引輸送弁をさらに備えていてもよい。1つの固液回収タンクおよび減圧装置に対して吸引輸送弁を有する複数系列の吸引輸送管を設けることにより、これら複数系列の吸引輸送管による揚砂を吸引輸送弁の制御により行うことが可能となる。また、初期起動時において、吸引輸送弁を閉じた状態で減圧装置により十分に固液回収タンク内を減圧した後に吸引輸送弁を開けることで、吸引輸送管の第1の端部の開口部により高い真空度(吸引力)をかけることができ、高粘度および高比重の沈砂を吸い上げることが可能である。   Moreover, the said sand transporting apparatus may further be provided with the suction transport valve provided above the connection part of the said air release pipe of the said suction transport pipe. By providing a plurality of suction transport pipes having suction transport valves for one solid-liquid recovery tank and a decompression device, it is possible to perform sanding by these suction suction transport pipes by controlling the suction transport valves. Become. Moreover, at the time of initial start-up, by opening the suction transport valve after fully depressurizing the inside of the solid-liquid recovery tank with the decompression device with the suction transport valve closed, the opening of the first end of the suction transport pipe A high degree of vacuum (suction force) can be applied, and sand with high viscosity and high specific gravity can be sucked up.

また、複数の沈砂池がある場合、各沈砂池に対応する各吸引輸送管に設けられた吸引輸送弁を制御することによって、複数の沈砂池に対応できる。一方、沈砂池および吸引輸送管がそれぞれ1つずつ設けられる場合は、吸引輸送弁を設けなくても本発明を実施できる。吸引輸送弁を設けない場合、通常60〜120秒かけて、固液回収タンクの真空度を高くすると、吸引輸送管内の真空度も徐々に高くなる。そして、吸引輸送管内の真空度が所定値に達すると、その真空度に応じて、固液混合体を吸引輸送管内の所定レベルの水位にまで吸引する。   Moreover, when there are a plurality of sand basins, it is possible to cope with a plurality of sand basins by controlling a suction transport valve provided in each suction transport pipe corresponding to each sand basin. On the other hand, when one sand basin and one suction transport pipe are provided, the present invention can be implemented without providing a suction transport valve. When the suction / transport valve is not provided, the degree of vacuum in the suction / transport pipe gradually increases when the degree of vacuum of the solid-liquid recovery tank is increased usually over 60 to 120 seconds. When the degree of vacuum in the suction transport pipe reaches a predetermined value, the solid-liquid mixture is sucked to a predetermined level in the suction transport pipe according to the degree of vacuum.

上記第2の態様において、上記空気注入管は、水平面に対して50度から70度の角度を持って上記吸引輸送管に接続され、上記空気注入弁の全開時の開口面積は、上記空気注入管の断面積と略同一であることを特徴とする。
これは、大気吸引時および加圧空気の注入時の、配管および弁による空気抵抗をできるだけ小さくすることで、大気吸引および加圧空気の注入が一気に、ピストン流的に行われるようにして、空気混入による輸送用水柱の形状の崩れをできるだけ防止し、輸送を効率的に行うためである。
本発明の第3の態様は、固液回収タンクと、沈砂池の水中に没される第1の端部と、上記固液回収タンクに接続される第2の端部とを有する吸引輸送管と、上記固液回収タンクおよび上記吸引輸送管の内部を減圧する減圧装置と、上記沈砂池の最高水位よりも上方の位置で上記吸引輸送管に接続される大気開放管と、上記大気開放管を通じて上記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁と、上記大気開放弁を閉じて上記沈砂池に堆積した沈砂を水とともに固液混合体として上記吸引輸送管内に吸引し、その水位が上記大気開放管との接続部よりも上方に上昇したときに上記大気開放弁を開くことにより上記接続部よりも上方に輸送用水柱を形成し、上記輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により上記輸送用水柱を上記固液回収タンクに輸送し、上記輸送用水柱の全体が上記固液回収タンクに入る直前に上記大気開放弁を閉じ、上記大気開放弁の開閉を繰り返すことにより上記輸送用水柱の形成と輸送とを繰り返す制御部とを備え、上記大気開放管は、水平面に対して50度から70度の角度を持って上記吸引輸送管に接続され、上記大気開放管の内径は、上記吸引輸送管の口径の1/2以上であり、かつ上記吸引輸送管の口径以下であり、上記大気開放弁の全開時の開口面積は、上記大気開放管の断面積と略同一であることを特徴とする
In the second aspect, the air injection pipe is connected to the suction transport pipe at an angle of 50 degrees to 70 degrees with respect to a horizontal plane, and the opening area when the air injection valve is fully opened is the air injection pipe. The cross-sectional area of the tube is substantially the same.
This is because air resistance by piping and valves is reduced as much as possible at the time of atmospheric suction and pressurized air injection, so that atmospheric suction and pressurized air injection are performed at once in a piston flow. This is to prevent the collapse of the shape of the water column for transportation due to mixing as much as possible and to carry out transportation efficiently.
According to a third aspect of the present invention, there is provided a suction / transport pipe having a solid / liquid recovery tank, a first end immersed in the water of a sand basin, and a second end connected to the solid / liquid recovery tank. A decompression device that depressurizes the solid-liquid recovery tank and the suction transport pipe, an atmosphere open pipe connected to the suction transport pipe at a position above the highest water level of the sand basin, and the air open pipe An air release valve for releasing the connection between the suction transport pipe and the air release pipe through the atmosphere, and the sand settling in the sand basin with the air release valve closed to form a solid-liquid mixture together with water in the suction transport pipe When the water level rises above the connection with the atmosphere release pipe, the atmosphere release valve is opened to form a transport water column above the connection, and the transport water column Acting atmospheric pressure and vacuum level of the above solid-liquid recovery tank The transport water column is transported to the solid-liquid recovery tank due to the difference between the above, the air release valve is closed immediately before the entire transport water column enters the solid-liquid recovery tank, and the air release valve is repeatedly opened and closed. A control unit that repeats formation and transportation of the water column for transportation, and the atmosphere release pipe is connected to the suction transportation pipe at an angle of 50 degrees to 70 degrees with respect to a horizontal plane. The inner diameter is ½ or more of the diameter of the suction transport pipe and less than or equal to the diameter of the suction transport pipe, and the opening area when the atmosphere release valve is fully opened is substantially the same as the cross-sectional area of the atmosphere release pipe. It is characterized by being .

本発明の好ましい態様は、上記吸引輸送管の第2の端部から3〜15m離れた位置に、該吸引輸送管内の真空度を検出する真空度センサを設け、上記真空度センサにより検出された真空度をモニタリングするモニタリング装置をさらに設けたことを特徴とする。
吸引輸送管内の真空度を検出することにより、揚砂輸送装置の運転状態、すなわち水柱の輸送状態を把握でき、さらに検知した真空度の変化を制御に反映させ、有効に活用することができる。吸引輸送管の第2の端部から3〜15mの位置に真空度センサを設ける理由は、水柱の輸送流速が、3m/秒から15m/秒の範囲で変動するため、固液回収タンク内に輸送用水柱の全体が入りきってしまう前に、輸送用水柱が通過していることを検出する必要があるからである。この設置位置が固液回収タンクに近すぎるほど、輸送用水柱の全体が入りきってしまい、固液回収タンクと大気開放管とが連通する危険が増大する。固液回収タンクと大気開放管とが連通してしまうと、吸引輸送管内および固液回収タンク内の真空度が低下してしまう。この危険を避けるために、真空度センサは吸引輸送管の第2の端部から3〜15mの位置に設けることが好ましい。
In a preferred embodiment of the present invention, a vacuum degree sensor that detects the degree of vacuum in the suction transport pipe is provided at a position 3 to 15 m away from the second end of the suction transport pipe, and is detected by the vacuum degree sensor. A monitoring device for monitoring the degree of vacuum is further provided.
By detecting the degree of vacuum in the suction transport pipe, it is possible to grasp the operating state of the sand transporting device, that is, the transport state of the water column, and to reflect the detected change in the degree of vacuum in the control and effectively utilize it. The reason why the vacuum degree sensor is provided at a position of 3 to 15 m from the second end of the suction transport pipe is that the transport speed of the water column fluctuates in the range of 3 m / sec to 15 m / sec. This is because it is necessary to detect that the transport water column has passed before the entire transport water column has entered. The closer the installation position is to the solid-liquid recovery tank, the more the entire water column for transportation enters, and the risk of communication between the solid-liquid recovery tank and the open air pipe increases. If the solid-liquid recovery tank and the open air pipe communicate with each other, the degree of vacuum in the suction transport pipe and in the solid-liquid recovery tank will decrease. In order to avoid this danger, the vacuum degree sensor is preferably provided at a position 3 to 15 m from the second end of the suction transport pipe.

本発明の一参考例によれば、小さな動力で沈砂を引き上げることができる揚砂輸送方法が提供される。この方法によれば、沈砂池の水中に吸引輸送管の第1の端部を没するとともに、上記吸引輸送管の第2の端部を固液回収タンクに接続する。上記沈砂池の最高水位よりも上方の位置で大気開放管を上記吸引輸送管に接続する。上記固液回収タンクおよび上記吸引輸送管の内部を減圧する。上記大気開放管に設けられた大気開放弁を閉じて上記沈砂池に堆積した沈砂を水とともに固液混合体として上記吸引輸送管内に吸引する。その水位が上記大気開放管の接続部よりも上方に上昇したときに、上記大気開放弁を開いて上記大気開放管との接続部を大気開放して上記接続部よりも上方に輸送用水柱を形成する。上記輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により、上記大気開放管を通じて大気を吸引しつつ、上記輸送用水柱を上記固液回収タンクに輸送する。上記輸送用水柱の全体が上記固液回収タンクに入る直前に上記大気開放弁を閉じる。上記大気開放弁の開閉を繰り返すことにより上記輸送用水柱の形成と輸送とを繰り返す。 According to one reference example of the present invention, there is provided a sand transporting method capable of lifting sand by small power. According to this method, the first end of the suction transport pipe is submerged in the water of the sand basin, and the second end of the suction transport pipe is connected to the solid-liquid recovery tank. An air release pipe is connected to the suction transport pipe at a position above the highest water level of the sand basin. The inside of the solid-liquid recovery tank and the suction transport pipe is depressurized. The air release valve provided in the air release pipe is closed, and the sand deposited in the sand basin is sucked into the suction transport pipe together with water as a solid-liquid mixture. When the water level rises above the connection part of the atmosphere release pipe, the atmosphere release valve is opened to open the connection part with the atmosphere release pipe to the atmosphere, and the water column for transportation is placed above the connection part. Form. Due to the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank, the transport water column is transported to the solid-liquid recovery tank while suctioning the atmosphere through the open air pipe. The air release valve is closed immediately before the entire water column for transportation enters the solid-liquid recovery tank. The formation and transportation of the water column for transportation are repeated by repeatedly opening and closing the air release valve.

本発明の他の態様によれば、小さな動力で沈砂を引き上げることができる揚砂輸送方法が提供される。この方法によれば、沈砂池の水中に吸引輸送管の第1の端部を没するとともに、上記吸引輸送管の第2の端部を固液回収タンクに接続する。上記沈砂池の最高水位よりも上方の位置で大気開放管を上記吸引輸送管に接続する。上記沈砂池の水中で空気注入管を上記吸引輸送管に接続する。上記固液回収タンクおよび上記吸引輸送管の内部を減圧する。上記大気開放管に設けられた大気開放弁と上記空気注入管に設けられた空気注入弁を閉じて上記沈砂池に堆積した沈砂を水とともに固液混合体として上記吸引輸送管内に吸引する。その水位が上記沈砂池の水位よりも上方に上昇したときに、上記空気注入弁を開いて空気移送装置から空気を上記吸引輸送管の内部に注入して上記空気注入管との接続部より上方の固液混合体を上方に押し上げる。上記大気開放弁を開くとともに上記空気注入弁を閉じて上記大気開放管との接続部を大気開放して上記大気開放管との接続部よりも上方に輸送用水柱を形成する。上記輸送用水柱に作用する大気圧と上記固液回収タンクの真空度との差により、上記大気開放管を通じて大気を吸引しつつ、上記輸送用水柱を上記固液回収タンクに輸送する。上記輸送用水柱の全体が上記固液回収タンクに入る直前に上記大気開放弁を閉じる。上記大気開放弁および上記空気注入弁の開閉を繰り返すことにより上記輸送用水柱の形成と輸送とを繰り返す。   According to another aspect of the present invention, there is provided a sand transporting method capable of lifting sand by small power. According to this method, the first end of the suction transport pipe is submerged in the water of the sand basin, and the second end of the suction transport pipe is connected to the solid-liquid recovery tank. An air release pipe is connected to the suction transport pipe at a position above the highest water level of the sand basin. An air injection pipe is connected to the suction transport pipe in the water of the sand basin. The inside of the solid-liquid recovery tank and the suction transport pipe is depressurized. The air release valve provided in the air release pipe and the air injection valve provided in the air injection pipe are closed, and the sediment deposited in the sand basin is sucked into the suction transport pipe together with water as a solid-liquid mixture. When the water level rises above the water level of the sand basin, the air injection valve is opened to inject air from the air transfer device into the suction transport pipe and above the connection with the air injection pipe. Push the solid-liquid mixture upward. The air release valve is opened and the air injection valve is closed to open the connection portion with the atmosphere release pipe to the atmosphere to form a transport water column above the connection portion with the atmosphere release pipe. Due to the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank, the transport water column is transported to the solid-liquid recovery tank while suctioning the atmosphere through the open air pipe. The air release valve is closed immediately before the entire water column for transportation enters the solid-liquid recovery tank. The formation and transportation of the transport water column are repeated by repeatedly opening and closing the air release valve and the air injection valve.

本発明によれば、沈砂池の沈砂を小さな動力で効率的に、高揚程で、長距離を揚砂輸送することができる。また、揚砂輸送装置の主要機器を小さくすることができ、吸引輸送管の配置の自由度を高めることができるため、従来の装置に比べて省エネルギー化を図ることができるとともに、装置の設置に対する自由度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the sand sink of a sand basin can be sand-transported for a long distance efficiently with a small power with a high head. In addition, since the main equipment of the sand transporting device can be made smaller and the degree of freedom of the arrangement of the suction transportation pipe can be increased, energy saving can be achieved compared to the conventional device, and the installation of the device can be reduced. The degree of freedom can be improved.

以下、本発明に係る揚砂輸送装置の実施形態について図1から図15を参照して詳細に説明する。なお、図1から図15において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, an embodiment of a sand transporting apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 15. 1 to 15, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の第1の実施形態における揚砂輸送装置の構成を示す模式図である。図1に示すように、この揚砂輸送装置は、沈砂池1内の水中に一端部2a(開口部)が没された吸引輸送管2と、吸引輸送管2の他端部2bが接続された固液回収タンク3と、固液回収タンク3に接続された真空ポンプ(減圧装置)4とを備えている。固液回収タンク3の下部には、固液回収タンク3に回収された沈砂を排出するための沈砂排出弁5が設けられている。   FIG. 1 is a schematic diagram showing the configuration of the sand transporting apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the sand transporting device includes a suction transport pipe 2 in which one end 2 a (opening) is submerged in water in a sand basin 1 and the other end 2 b of the suction transport pipe 2. The solid-liquid collection tank 3 and a vacuum pump (decompression device) 4 connected to the solid-liquid collection tank 3 are provided. A sedimentation discharge valve 5 for discharging the sediment collected in the solid-liquid collection tank 3 is provided below the solid-liquid collection tank 3.

固液回収タンク3は、一般に、沈砂池1よりも上方に位置しており、揚砂輸送装置は、沈砂池1内に堆積した沈砂を水とともに固液回収タンク3に揚砂輸送できるようになっている。なお、沈砂池1の池底に堆積した沈砂は、砂以外に小石等の土砂やし渣を含むものである。   The solid-liquid recovery tank 3 is generally positioned above the sand basin 1 so that the sand transporting device can transport the sand accumulated in the sand basin 1 to the solid-liquid recovery tank 3 along with water. It has become. In addition, the sedimentation sediment deposited on the bottom of the sedimentation basin 1 includes earth and sand such as pebbles and sand residue in addition to the sand.

吸引輸送管2には、大気開放弁6が設けられた大気開放管7が接続されている。この大気開放管7は、沈砂池1の最高水位HWLよりも若干(100〜500mm)上方に位置する接続部7aで吸引輸送管2に接続されている。大気開放管7に取り付けられた大気開放弁6を開くと、吸引輸送管2の大気開放管7との接続部7aが大気開放されるようになっている。この大気開放弁6には制御部8が接続されており、この制御部8によって大気開放弁6の開閉が制御される。   An air release pipe 7 provided with an air release valve 6 is connected to the suction transport pipe 2. The air release pipe 7 is connected to the suction transport pipe 2 at a connection portion 7 a located slightly (100 to 500 mm) above the highest water level HWL of the sand basin 1. When the atmosphere release valve 6 attached to the atmosphere release pipe 7 is opened, the connection portion 7a of the suction transport pipe 2 with the atmosphere release pipe 7 is opened to the atmosphere. A controller 8 is connected to the atmosphere release valve 6, and the controller 8 controls the opening and closing of the atmosphere release valve 6.

また、吸引輸送管2の端部2aの近傍には、水を噴射する多数の水噴射ノズル19が設けられており、この水噴射ノズル19からの水の噴射により沈砂が流動化し、吸引輸送管2の端部2aの近傍に集砂されるようになっている。また、沈砂池1の底部の構造も集砂しやすいように傾斜を有している。   In addition, a large number of water injection nozzles 19 for injecting water are provided in the vicinity of the end portion 2 a of the suction transport pipe 2, and the sedimentation fluid is fluidized by the water injection from the water injection nozzle 19, and the suction transport pipe. Sand is collected in the vicinity of the end portion 2a. In addition, the structure of the bottom of the sand basin 1 is also inclined to facilitate sand collection.

このような構成の揚砂輸送装置を用いて沈砂池1の池底に堆積した沈砂を引き上げる場合の動作について説明する。図2は、図1における真空ポンプ4の運転および停止、大気開放弁6の開閉タイミング、固液回収タンク3の真空度の変化、およびその水位の変化を示す揚砂輸送装置の動作を示すタイミングチャート(工程表)の一例である。   An operation in the case where the sedimentation sediment deposited on the bottom of the sedimentation basin 1 is pulled up using the sand transporting device having such a configuration will be described. FIG. 2 is a timing chart showing the operation of the pumping sand transport device showing the operation and stop of the vacuum pump 4 in FIG. 1, the opening / closing timing of the air release valve 6, the change in the degree of vacuum of the solid-liquid recovery tank 3, and the change in the water level. It is an example of a chart (process table).

まず、図1および図2に示すように、大気開放弁6を閉じた状態で真空ポンプ4を駆動する。これにより、真空ポンプ4が接続された固液回収タンク3および吸引輸送管2の内部が所定の真空度、例えば−58.8kPa(−6mAq)まで約60秒程度で減圧されて、その間に、図3に示すように、沈砂池1中の沈砂を含んだ水が固液混合体9として吸引輸送管2内に吸引される。このとき、必要に応じて水噴射ノズル19から水噴射を行い、沈砂を流動化し、端部2aの開口部から沈砂を吸引しやすいようにする。   First, as shown in FIGS. 1 and 2, the vacuum pump 4 is driven with the atmosphere release valve 6 closed. Thereby, the inside of the solid-liquid recovery tank 3 and the suction transport pipe 2 to which the vacuum pump 4 is connected is depressurized in about 60 seconds to a predetermined degree of vacuum, for example, −58.8 kPa (−6 mAq), As shown in FIG. 3, the water containing the settling sand in the settling basin 1 is sucked into the suction transport pipe 2 as a solid-liquid mixture 9. At this time, if necessary, water is jetted from the water jet nozzle 19 to fluidize the sand and make it easy to suck the sand from the opening of the end 2a.

そして、制御部8は、固液回収タンク3の真空度が−19.6kPa(−2mAq)〜−78.4kPa(−8mAq)になるまで、好ましくは−44.1kPa(−4.5mAq)〜58.8kPa(−6mAq)になるまで待機する。図2に示す例では、初期真空度を−58.8kPa(−6mAq)とし、定常運転時(2回目以降の揚砂輸送時)の真空度を−49.0kPa(−5mAq)程度としている。   The control unit 8 is preferably -44.1 kPa (-4.5 mAq) until the degree of vacuum of the solid-liquid recovery tank 3 is -19.6 kPa (-2 mAq) to -78.4 kPa (-8 mAq). Wait until it reaches 58.8 kPa (-6 mAq). In the example shown in FIG. 2, the initial degree of vacuum is set to −58.8 kPa (−6 mAq), and the degree of vacuum during steady operation (during the second and subsequent sand transport) is set to about −49.0 kPa (−5 mAq).

固液回収タンク3の真空度が−44.1kPa(−4.5mAq)〜58.8kPa(−6mAq)になり、吸引輸送管2内の固液混合体9の水位が大気開放管7の接続部7aよりも上方に上昇したときに大気開放弁6を開いて吸引輸送管2の大気開放管7との接続部7aを大気開放する。このように大気開放弁6を開くことにより、図4に示すように、大気開放管7の接続部7aよりも上方に位置していた吸引輸送管2内の固液混合体9は輸送用水柱10となる。そして、この輸送用水柱10は、固液回収タンク3側の端部に作用する真空度と大気開放側の端部、すなわち輸送用水柱10の下面に作用する大気圧との圧力差により、図5の10−1,10−2で示すように固液回収タンク3に向かって移動し輸送される。   The degree of vacuum of the solid-liquid recovery tank 3 is -44.1 kPa (-4.5 mAq) to 58.8 kPa (-6 mAq), and the water level of the solid-liquid mixture 9 in the suction transport pipe 2 is connected to the atmosphere open pipe 7. When rising above the part 7a, the air release valve 6 is opened to open the connection part 7a of the suction transport pipe 2 to the air release pipe 7 to the atmosphere. By opening the air release valve 6 in this way, as shown in FIG. 4, the solid-liquid mixture 9 in the suction transport pipe 2 located above the connection portion 7a of the air release pipe 7 is transported to the water column for transportation. 10 And this water column 10 for transport is a figure by the pressure difference of the vacuum degree which acts on the edge part by the side of the solid-liquid collection | recovery tank 3, and the atmospheric pressure which acts on the edge part by the side of open air, ie, the lower surface of the water column 10 for transportation. As shown by 5-1, 10-1 and 10-2, it moves toward the solid-liquid recovery tank 3 and is transported.

なお、制御部8が大気開放弁6を開くときには、吸引輸送管2内の固液混合体9の水位が大気開放管7の接続部7aよりも上方にある必要がある。制御部8は大気開放弁6を開閉するタイミングを、通常、時間によって制御する。また、制御部8は、固液回収タンク3の真空度センサ(図示せず)や図6に示す吸引輸送管2に設けられた真空度センサ14が検出した真空度の変化から、揚砂輸送工程が正常に行われているか否かを判断し、装置全体の制御を行ってもよい。すなわち、検出した真空度の異常により、警報を出し、更に運転停止としてもよい。   When the controller 8 opens the atmosphere release valve 6, the water level of the solid-liquid mixture 9 in the suction transport pipe 2 needs to be above the connection part 7 a of the atmosphere release pipe 7. The control unit 8 normally controls the timing for opening and closing the atmosphere release valve 6 according to time. Further, the controller 8 transports the sand from the change in the degree of vacuum detected by the degree-of-vacuum sensor (not shown) of the solid-liquid recovery tank 3 or the degree-of-vacuum sensor 14 provided in the suction transport pipe 2 shown in FIG. It may be determined whether the process is normally performed, and the entire apparatus may be controlled. That is, an alarm may be issued and the operation may be stopped due to the detected abnormality in the degree of vacuum.

揚砂輸送工程の終了は、固液回収タンク3の高水位、沈砂池1の低水位、設定時間のタイムアップなどに基づいて判断される。本実施形態においては、輸送用水柱の吸引輸送管2内の輸送流速は、3〜15m/秒、通常は6〜7m/秒と高流速が得られる。真空度センサ14(図6参照)の設置位置は、この高流速と大気開放弁6の急開・急閉に要する0.5〜1.0秒の時間を考慮し、また、輸送用水柱全体が固液回収タンク3に入ってしまい、大気開放管7と固液回収タンク3が連通し、吸引輸送管2を含めて固液回収タンク3の真空度が大幅に低下してしまうことがないように、真空度センサ14からの信号を受けて、余裕をもって大気開放弁6が開閉できるように、第2の端部2bから3〜15m、好ましくは5〜10m離れた吸引輸送管2上とする。   The end of the sand transporting process is determined based on the high water level of the solid-liquid recovery tank 3, the low water level of the sand basin 1, the time-up of the set time, and the like. In the present embodiment, the transport flow rate in the suction transport pipe 2 of the water column for transport is 3 to 15 m / sec, and usually a high flow rate of 6 to 7 m / sec is obtained. The installation position of the vacuum sensor 14 (see FIG. 6) takes into account the high flow rate and the time of 0.5 to 1.0 seconds required for the air release valve 6 to be opened and closed, and the entire water column for transportation. Does not enter the solid-liquid recovery tank 3, the open-air pipe 7 and the solid-liquid recovery tank 3 communicate with each other, and the vacuum degree of the solid-liquid recovery tank 3 including the suction transport pipe 2 is not significantly reduced. As described above, on the suction transport pipe 2 which is 3 to 15 m, preferably 5 to 10 m away from the second end 2b so that the atmosphere release valve 6 can be opened and closed with a margin in response to the signal from the vacuum sensor 14. To do.

ここで、固液回収タンク3の真空度が維持されるように、輸送用水柱10の全体が固液回収タンク3に入る直前に、すなわち、図5に示すように、輸送用水柱10−2の後端部が固液回収タンク3内に入りきってしまう前に、制御部8が大気開放弁6を閉じ、大気開放弁6から固液回収タンク3までの経路に空気の連通路ができないようにすることが好ましい。これにより大気開放弁6からの空気の流入量を最小限にすることができるため、固液回収タンク3内の真空度を高く、かつ、その変動幅を小さく保つことができる。例えば、定常真空度を−49.0kPa(−5mAq)とすると、その変動幅は−46.5kPa(−4.75mAq)〜−51.4kPa(−5.25mAq)と小さい。   Here, just before the entire transport water column 10 enters the solid-liquid recovery tank 3, that is, as shown in FIG. 5, the transport water column 10-2 is maintained so that the vacuum of the solid-liquid recovery tank 3 is maintained. The control unit 8 closes the air release valve 6 before the rear end of the gas enters the solid / liquid recovery tank 3, and there is no air communication path from the air release valve 6 to the solid / liquid recovery tank 3. It is preferable to do so. Thereby, since the inflow amount of air from the atmosphere release valve 6 can be minimized, the degree of vacuum in the solid-liquid recovery tank 3 can be increased and the fluctuation range can be kept small. For example, when the stationary vacuum is −49.0 kPa (−5 mAq), the fluctuation range is as small as −46.5 kPa (−4.75 mAq) to −51.4 kPa (−5.25 mAq).

大気開放弁6が再び閉じられると、図3に示すように、上述と同様に沈砂池1中の沈砂を含んだ水が吸引輸送管2内に吸引され固液混合体9が再び形成される。その後は上述と同様の工程を繰り返すことにより、沈砂池1の池底に堆積した沈砂を断続的に固液回収タンク3に揚砂輸送することができる。   When the air release valve 6 is closed again, as shown in FIG. 3, the water containing the sand settling in the sand settling basin 1 is sucked into the suction transport pipe 2 as described above, and the solid-liquid mixture 9 is formed again. . Thereafter, by repeating the same process as described above, the sediment deposited on the bottom of the sedimentation basin 1 can be intermittently sand transported to the solid-liquid recovery tank 3.

なお、大気開放弁6を通じて大気開放するときは、多量の空気をほとんど損失なく、短時間で流れ込ませることが重要である。空気が輸送用水柱10の下方に入り込み混合するのを避け、効率よく揚砂輸送することが好ましい。また、輸送用水柱10が吸引輸送管2内を、図5の10−1,10−2で示すように輸送されていくにつれて、沈砂と水の分離および吸引された空気との混合が進むため、輸送用水柱10は当初の形状から崩れていく。このため、本実施形態では、吸引輸送管2内に空気の連通路ができないように、輸送用水柱10が10−1,10−2の状態になった場合でも、吸引輸送管2内壁は必ずシールされた部分がある状態に維持することが好ましい。   When releasing the atmosphere through the atmosphere release valve 6, it is important to allow a large amount of air to flow in in a short time with almost no loss. It is preferable to transport the sand efficiently by avoiding air from entering and mixing below the water column 10 for transportation. Further, as the transport water column 10 is transported through the suction transport pipe 2 as indicated by 10-1 and 10-2 in FIG. 5, the sedimentation and water separation and mixing of the sucked air proceed. The water column 10 for transportation collapses from the original shape. For this reason, in this embodiment, even if the transport water column 10 is in the state of 10-1 and 10-2 so that there is no air communication path in the suction transport pipe 2, the inner wall of the suction transport pipe 2 is always It is preferred to keep the sealed portion in place.

ここで、シールされた部分がある状態を常に維持するとは、吸引輸送管2の少なくとも一部が輸送用水柱10,10−1,10−2によってシールされている状態を維持してもよいが、輸送用水柱10,10−1,10−2でのシールがされにくくなる危険を避け、より確実性を保つために、大気開放弁6を開状態から閉状態とし、固液混合体9の吸引形成を開始して固液回収タンク3の真空度が吸引輸送管2内全体に作用するように、大気開放弁6の開閉タイミングを制御部8により制御してもよい。この開閉タイミングは、沈砂池1の沈砂の状態、すなわち固液混合体9の性状や輸送距離などにより異なるので、試運転によって最適な開閉タイミングや開閉時間などを決めることが好ましい。   Here, maintaining the state where the sealed portion is always maintained may maintain the state where at least a part of the suction transport pipe 2 is sealed by the transport water columns 10, 10-1, 10-2. In order to avoid the risk of being difficult to seal with the water columns 10, 10-1, 10-2 for transportation and to maintain more certainty, the air release valve 6 is changed from the open state to the closed state, and the solid-liquid mixture 9 The opening / closing timing of the atmosphere release valve 6 may be controlled by the control unit 8 so that the suction formation is started and the degree of vacuum of the solid-liquid recovery tank 3 acts on the entire inside of the suction transport pipe 2. Since the opening / closing timing varies depending on the state of sand settling in the sand basin 1, that is, the properties of the solid-liquid mixture 9, the transport distance, and the like, it is preferable to determine the optimum opening / closing timing, opening / closing time, etc. by trial operation.

このため、吸引輸送管2の口径は50Aから125A、好ましくは65Aから100Aとする。その口径が50Aよりも小さいと、吸引輸送管2、特にその横引き配管部において、沈砂が沈降し、配管自体を詰まらせてしまう現象が生じ易く、固液回収タンク3の真空度によっては輸送できなくなる事態の生ずるリスクがある。一度この詰まりが生じてしまうと、真空度を上げても解消することは難しい。一方、口径が125Aよりも大きいと、次のような問題が生じる。すなわち、大気開放管7の接続部7aで大気開放されると、吸引輸送管2内には固液混合体からなる輸送用水柱が形成される。ところが、輸送用水柱の下方は大気圧であるため、固液混合体としての液を含む沈砂が輸送用水柱の下面から落下しやすい。このため、輸送用水柱が下方から崩れて行き、その形状維持が困難となる。更に横引き配管部での沈砂と液の分離も生じ易く、ついには、揚砂輸送管内に前述のシールされた部分がある状態を常に維持することが困難となる。また、口径が大きいほど、吸引する固液混合体の量も多くなり、それに見合った真空度に短時間で到達することができる真空ポンプ性能が必要になり、省エネルギー上、好ましくない。   Therefore, the diameter of the suction transport pipe 2 is 50A to 125A, preferably 65A to 100A. If the diameter is smaller than 50A, the phenomenon that the sedimentation is likely to settle in the suction transport pipe 2, particularly the horizontal pipe section, and clog the pipe itself. Depending on the degree of vacuum of the solid-liquid recovery tank 3, the transport is possible. There is a risk that a situation will become impossible. Once this clogging occurs, it is difficult to eliminate even if the degree of vacuum is increased. On the other hand, if the aperture is larger than 125A, the following problem occurs. That is, when the atmosphere is released at the connection portion 7 a of the atmosphere release pipe 7, a transport water column made of a solid-liquid mixture is formed in the suction transport pipe 2. However, since the atmospheric pressure is below the transport water column, the sand sediment containing the liquid as the solid-liquid mixture is likely to fall from the lower surface of the transport water column. For this reason, the water column for transportation collapses from below, making it difficult to maintain its shape. Furthermore, the sedimentation and the liquid are easily separated in the horizontal pulling pipe portion, and finally it is difficult to always maintain the state where the above-described sealed portion is present in the sand transporting pipe. In addition, the larger the diameter, the larger the amount of the solid-liquid mixture to be sucked, which requires a vacuum pump performance that can reach the corresponding vacuum degree in a short time, which is not preferable in terms of energy saving.

また、大気開放弁6の口径は吸引輸送管2の口径の1/2以上、吸引輸送管2の口径以下とし、かつ1秒以下、好ましくは0.5秒以下の急開急閉ができる大気開放弁であることが好ましい。また、大気開放弁6は、全開全閉のできる弁とし、全開時の開口面積は大気開放管7の断面積と同等程度にすることが好ましい。さらに、大気開放管7は、水平面に対して所定の角度、好ましくは50〜70度の角度を持って、吸引輸送管2に接続されていることも重要である。これは吸引輸送管2内の固体物、すなわち沈砂が大気開放弁6側に逆流し、堆積することを防止するためである。また、大気開放管7内に沈砂が若干入り込んでも、沈砂の安息角よりも上記接続角度が大きいことによって、粘性のある沈砂もより容易に吸引輸送管2内に吸引され、残留することがなく、大気の吸引上、圧力損失が生じないようにするためである。それ故、上記接続角度は70度より大きくてもよい。しかし、口径の異なる配管をかなりの角度を持って接続することは、製作上の観点から好ましくなく、実用的には、接続しやすい70度以下とすれば充分である。   The air opening valve 6 has a diameter of 1/2 or more than the diameter of the suction transport pipe 2 and less than the diameter of the suction transport pipe 2 and can be opened and closed quickly for 1 second or less, preferably 0.5 seconds or less. An open valve is preferred. Moreover, it is preferable that the atmosphere release valve 6 is a valve that can be fully opened and fully closed, and the opening area when fully opened is approximately equal to the cross-sectional area of the atmosphere release pipe 7. Furthermore, it is also important that the atmosphere release pipe 7 is connected to the suction transport pipe 2 at a predetermined angle with respect to the horizontal plane, preferably 50 to 70 degrees. This is to prevent the solid matter in the suction transport pipe 2, that is, the sand sediment, from flowing back to the atmosphere release valve 6 and accumulating. Further, even if the sand is slightly inserted into the air release pipe 7, the above-mentioned connection angle is larger than the repose angle of the sand, so that the viscous sand is more easily sucked into the suction transport pipe 2 and does not remain. This is to prevent pressure loss from occurring in the air suction. Therefore, the connection angle may be larger than 70 degrees. However, it is not preferable to connect pipes having different diameters at a considerable angle from the viewpoint of manufacturing, and in practice, it is sufficient to set the angle to 70 degrees or less that is easy to connect.

本発明の実施形態においては、大気開放弁6を開とした時に、吸引輸送管2と大気開放弁7の接続部7aに空気がスムーズに、一気に吸引され、該接続部7a近傍よりも上方の固液混合体をピストン流的に、固液回収タンク3の真空度の作用により吸引して、輸送用水柱を形成させるようにすることが必要である。これは、空気がスムーズに、一気にピストン流的に吸引されることが遅れるほど、形成される輸送用水柱内には空気が入り込み易くなり、ピストン流的に輸送されにくくなり、輸送用水柱の形状の崩れ、すなわち、沈砂と液の分離が進むことになるからである。一方、接続部7aより下方の固液混合体部分は沈砂と液が分離しながら、沈砂池の方に移動落下していく。   In the embodiment of the present invention, when the air release valve 6 is opened, the air is smoothly sucked into the connection portion 7a of the suction transport pipe 2 and the air release valve 7 at a stretch, and is higher than the vicinity of the connection portion 7a. It is necessary to suck the solid-liquid mixture in a piston flow by the action of the degree of vacuum of the solid-liquid recovery tank 3 so as to form a water column for transportation. This is because the more slowly the air is drawn into the piston flow at a stretch, the more easily the air enters the formed transport water column, and the more difficult it is to transport in the piston flow. This is because the collapse of the sand, that is, the separation of the sand and the liquid proceeds. On the other hand, the solid-liquid mixture part below the connecting portion 7a moves and falls toward the sand basin while the sand and liquid are separated.

大気開放弁6が全開から全閉までの時間は通常2〜10秒間、全閉から全開までの時間は1〜5秒間であり、図2に示す例では、それぞれ5秒間、3秒間と極めて短時間に設定している。このように、大気開放弁6の全開から全閉までの時間と全閉から全開までの時間が短時間であることから、大気開放弁6の急開および急閉に要する時間は短いほどよく、急開急閉可能な弁を選定するとともに、弁の仕様によってその開閉の信号発信のタイミングを決めなければならない。   The time from the full open to the full close of the air release valve 6 is usually 2 to 10 seconds, and the time from the full close to the full open is 1 to 5 seconds. In the example shown in FIG. Set to time. Thus, since the time from the full open to the full close of the atmosphere release valve 6 and the time from the full close to the full open are short, the time required for the sudden opening and the sudden close of the atmosphere release valve 6 is better, A valve that can be opened and closed quickly must be selected, and the timing of opening and closing signal transmission must be determined according to the valve specifications.

また、吸引輸送管2の端部2aの開口部口径は、吸引輸送管2の口径の1/2以上とするのが好ましい。これは、口径が小さすぎると沈砂などで詰まることがあり、大きすぎると吸引流速、すなわち吸引力が小さくなりすぎるからである。固液回収タンク3の真空度を−49.0kPa(−5mAq)、吸引輸送管2の口径を80Aとすると、吸引輸送管2内の固液混合体9の吸引速度は通常1.5〜2.5m/秒を示す。したがって、例えば、端部2aの開口部の口径を1/2の40Aとすると、その開口面積は1/4になり、その吸引流速は約4倍の6〜10m/秒と大きくなる。このような開口部の高い吸引流速により小石等も吸引でき、詰まることはない。   Moreover, it is preferable that the opening diameter of the end portion 2 a of the suction transport pipe 2 is ½ or more of the diameter of the suction transport pipe 2. This is because if the diameter is too small, it may be clogged with sedimentation, and if it is too large, the suction flow rate, that is, the suction force becomes too small. When the degree of vacuum of the solid-liquid recovery tank 3 is −49.0 kPa (−5 mAq) and the diameter of the suction transport pipe 2 is 80 A, the suction speed of the solid-liquid mixture 9 in the suction transport pipe 2 is normally 1.5-2. .5m / sec. Therefore, for example, if the diameter of the opening part of the end part 2a is 40A, which is 1/2, the opening area becomes 1/4, and the suction flow rate becomes about 4 times as large as 6 to 10 m / second. Pebbles and the like can also be sucked by such a high suction flow rate of the opening and will not be clogged.

また、図1に示すように、吸引輸送管2は、横引き配管部2c,2dと鉛直配管部2eとを有することが好ましい。特に横引き配管部2cと鉛直配管部2eとが数段あることが好ましい。そして、鉛直配管部と横引き配管部を交互に有していることが好ましい。固液回収タンク3と接続する部分は長い横引き配管部に続いて、鉛直配管部とするのが好ましい。この横引き配管部の長さは、輸送用水柱の輸送流速が3〜15m/秒、通常は6〜7m/秒であることから、3〜15m、好ましくは5〜10mとする。大気開放弁6および後述する第2の実施形態の空気注入弁では弁の急開および急閉に要する時間が0.5秒〜1.0秒かかることから、輸送用水柱全体が固液回収タンク3に入ってしまい、吸引輸送管2にシール部が無くなり、大気が固液回収タンク3と連通してしまうことがないように、余裕を持って、弁開閉ができる時間分の長さとする。   Moreover, as shown in FIG. 1, it is preferable that the suction conveyance pipe 2 has the horizontal piping parts 2c and 2d and the vertical piping part 2e. In particular, it is preferable that there are several stages of the horizontal piping portion 2c and the vertical piping portion 2e. And it is preferable to have a vertical piping part and a horizontal piping part alternately. The portion connected to the solid-liquid recovery tank 3 is preferably a vertical piping portion following a long horizontal piping portion. The length of the horizontal piping section is 3 to 15 m, preferably 5 to 10 m because the transport flow rate of the water column for transport is 3 to 15 m / sec, usually 6 to 7 m / sec. In the air release valve 6 and the air injection valve of the second embodiment to be described later, the time required for rapid opening and closing of the valve takes 0.5 seconds to 1.0 seconds, so that the entire transport water column is a solid-liquid recovery tank. 3 so that there is no seal portion in the suction transport pipe 2 and the atmosphere does not communicate with the solid-liquid recovery tank 3.

図1においては、鉛直配管部2eは、横引き配管部2cから上方に延びているが、横引き配管部2cから下方に延びる構成であってもよい。輸送用水柱10が通過した後、輸送用水柱10中の砂を含む一部が吸引輸送管2の管壁に残留しても、鉛直配管部2eでは落下して、横引き配管部2cに残留する場合がある。しかしながら、この横引き配管部2cに残留した砂は、次回の揚砂輸送時に高流速で通過する輸送用水柱10に吸収され、固液回収タンク3に輸送される。   In FIG. 1, the vertical piping portion 2e extends upward from the horizontal piping portion 2c, but may be configured to extend downward from the horizontal piping portion 2c. After the transport water column 10 passes, even if a part of the transport water column 10 containing sand remains on the pipe wall of the suction transport pipe 2, it falls in the vertical piping part 2e and remains in the horizontal piping part 2c. There is a case. However, the sand remaining in the horizontal pipe portion 2c is absorbed by the transport water column 10 passing at a high flow rate during the next sand transport, and transported to the solid-liquid recovery tank 3.

本発明の実施形態においては、積極的に横引き配管部を設けることが重要である。それゆえ、複数段の鉛直配管部と横引き配管部からなる吸引輸送管2が好ましい。これは、横引き配管部に入ってきた輸送用水柱の沈砂が横引き配管部の底部に沈降・残留しても、次の輸送用水柱に吸収され、輸送されていくからである。このことから、吸引輸送管2の沈砂池1からの鉛直配管部の長さは、図4で示す輸送用水柱10が収容できる程度の長さとし、すぐに屈曲部2fから横引き配管部2cとしてよい。この鉛直配管部を必要以上に長くするのは、鉛直配管部での沈砂の分離、沈降が進むので好ましくない。積極的に横引き配管部2cを長くして、該配管の底部に沈砂を残留させても、輸送できる範囲の長さなら何ら問題はない。横引き配管部が短い場合に比べて、長い横引き配管部とした場合は、その横引き配管部の底部に分離残留する沈砂が多くなる。しかし、この残留した沈砂は、次に輸送されてくる輸送用水柱の高い輸送速度によって吸引輸送されていく。したがって、適切な長さの横引き配管部2cとすることによって、沈砂の輸送は効率的になる。他の横引き配管部も適切な長さとすることが好ましい。   In the embodiment of the present invention, it is important to positively provide the horizontal piping portion. Therefore, the suction transport pipe 2 including a plurality of stages of vertical pipe portions and horizontal pulling pipe portions is preferable. This is because even if the sedimentation of the transport water column that has entered the horizontal piping section sinks and remains at the bottom of the horizontal piping section, it is absorbed and transported to the next transport water column. Therefore, the length of the vertical piping portion from the sand basin 1 of the suction transport pipe 2 is set to a length that can accommodate the transport water column 10 shown in FIG. 4, and immediately from the bent portion 2f to the horizontal pulling pipe portion 2c. Good. It is not preferable to lengthen this vertical piping part more than necessary because the separation and sedimentation of the sand in the vertical piping part proceed. There is no problem as long as the length is within the transportable range, even if the laterally drawn piping portion 2c is lengthened positively and sand remains at the bottom of the piping. Compared with the case where the horizontal pipe portion is short, when the long horizontal pipe portion is used, the amount of sand that remains separated at the bottom of the horizontal pipe portion increases. However, the remaining sand sediment is sucked and transported at a high transport speed of the transport water column transported next. Therefore, by using the horizontal pulling pipe portion 2c having an appropriate length, the sedimentation can be transported efficiently. It is preferable that other horizontal piping parts also have an appropriate length.

なお、吸引輸送管2の鉛直配管部と横引き配管部とをつなぐ屈曲部2fを、半径(R)=0.5m〜1.5mの緩やかな曲がりを有するベント管としてスムーズな流れとすることも重要である。このような適正な曲がり、すなわち適正な半径を有するベント管とすることによって、輸送時の抵抗を通常のエルボー等の場合よりも、大幅に小さくし、スムーズな流れを得ることができる。   The bent portion 2f that connects the vertical piping portion and the horizontal piping portion of the suction transport pipe 2 is a smooth flow as a vent pipe having a gentle bend of radius (R) = 0.5 m to 1.5 m. It is also important. By using a bent pipe having such an appropriate bend, that is, an appropriate radius, the resistance during transportation can be made much smaller than that of a normal elbow or the like, and a smooth flow can be obtained.

上述したように、輸送用水柱10の輸送時には大気開放弁6が開かれ大気が吸引される。このとき、輸送用水柱10は大気と固液回収タンク3との間にあるため、直接大気が固液回収タンク3に流入することはない。しかしながら、固液回収タンク3の手前では、輸送用水柱10はかなりの運動エネルギーを有しているため、大気開放弁6を閉じる前に、そのすべてが固液回収タンク3内へ輸送されてしまうおそれがある。そして、開かれた大気開放弁6と固液回収タンク3との間で空気が連通してしまうと、水に対して流動性の良い空気が短時間で固液回収タンク3へ流れ込み、その真空度を下げてしまう。これを避ける手段として、タイマーを用いた制御方法のみを採用してもよいが、輸送用水柱10の輸送速度は沈砂の濃度(比重)あるいはその長さにより変化が生じてしまうため、安定した運転のためには、固液回収タンク3自体の真空度センサ(図示せず)だけでなく、図6に示すように、固液回収タンク3の手前の吸引輸送管2に真空度センサ14を設置するのが好ましい。この場合には、輸送用水柱10が通り抜けて大気圧になったことを真空度センサ14により確認し、これを大気開放弁6の閉動作を行うタイマー制御の補助とする。図6では、真空度センサ14は固液回収タンク3との第2の端部2bから10m離れた吸引輸送管2の鉛直配管部2eに設置されている。横引き配管部2dの上面が設置しやすいが、第2の端部2bからの距離を優先する場合は、前述の理由からその限りではない。なお、真空度センサ14としては、隔膜式のセンサを用いることができる。   As described above, when the transport water column 10 is transported, the air release valve 6 is opened to suck the air. At this time, since the transport water column 10 is between the atmosphere and the solid-liquid recovery tank 3, the air does not directly flow into the solid-liquid recovery tank 3. However, since the transport water column 10 has a considerable kinetic energy before the solid-liquid recovery tank 3, all of it is transported into the solid-liquid recovery tank 3 before closing the air release valve 6. There is a fear. When air is communicated between the opened air release valve 6 and the solid-liquid recovery tank 3, air having good fluidity flows into the solid-liquid recovery tank 3 in a short time, and the vacuum Decrease the degree. As a means for avoiding this, only a control method using a timer may be employed. However, since the transport speed of the transport water column 10 varies depending on the concentration (specific gravity) of sand sediment or the length thereof, stable operation is possible. For this purpose, not only the vacuum sensor (not shown) of the solid-liquid recovery tank 3 itself, but also the vacuum sensor 14 is installed in the suction transport pipe 2 in front of the solid-liquid recovery tank 3 as shown in FIG. It is preferable to do this. In this case, it is confirmed by the vacuum degree sensor 14 that the transport water column 10 has passed through and has become the atmospheric pressure, and this is used as an auxiliary to the timer control for closing the atmosphere release valve 6. In FIG. 6, the vacuum sensor 14 is installed in the vertical piping part 2 e of the suction transport pipe 2 that is 10 m away from the second end 2 b with the solid-liquid recovery tank 3. Although it is easy to install the upper surface of the horizontal pipe portion 2d, this is not the case for the reason described above when priority is given to the distance from the second end portion 2b. As the vacuum sensor 14, a diaphragm type sensor can be used.

また、制御部8は、大気開放弁6の開時間と閉時間の設定、そのタイミング、弁開閉の速度、全開全閉の確認、固液回収タンク3の真空度の制御などを行うとともに、他の必要な制御機能を同時に有していてもよい。   The control unit 8 sets the opening time and closing time of the air release valve 6, the timing thereof, the valve opening / closing speed, confirmation of full opening / closing, control of the degree of vacuum of the solid-liquid recovery tank 3, etc. The necessary control functions may be simultaneously provided.

図7は、本発明の第2の実施形態における揚砂輸送装置の構成を示す模式図である。なお、特に説明しない第2の実施形態の構成および動作は、上述した第1の実施形態と同様であり、その重複する説明を省略する。本実施形態においては、大気開放管7との接続部7aの下方の沈砂池水中の接続部12aにおいて吸引輸送管2に接続される空気注入管12が設けられている。この空気注入管12の接続部12aと大気開放管7の接続部7aとの間の長さは好ましくは0.5〜2.0mとし、この長さは、沈砂池1の設計水位や適用する固液回収タンク3の真空度等によって適宜変更される。   FIG. 7 is a schematic diagram showing the configuration of the sand transporting apparatus according to the second embodiment of the present invention. Note that the configuration and operation of the second embodiment that are not particularly described are the same as those of the first embodiment described above, and redundant description thereof is omitted. In the present embodiment, an air injection pipe 12 connected to the suction transport pipe 2 is provided at a connection part 12a in the sand basin water below the connection part 7a to the atmosphere opening pipe 7. The length between the connection part 12a of the air injection pipe 12 and the connection part 7a of the atmosphere opening pipe 7 is preferably 0.5 to 2.0 m, and this length is applied to the design water level of the sand settling basin 1 or applied. It is appropriately changed depending on the degree of vacuum of the solid-liquid recovery tank 3 or the like.

空気注入管12には、減圧弁13を介して空気移送装置としてのコンプレッサ16が接続されており、コンプレッサ16と吸引輸送管2との間には空気注入弁15が設けられている。大気開放弁6と空気注入弁15には制御部20が接続されており、この制御部20によって大気開放弁6および空気注入弁15の開閉が制御される。   A compressor 16 as an air transfer device is connected to the air injection pipe 12 via a pressure reducing valve 13, and an air injection valve 15 is provided between the compressor 16 and the suction transport pipe 2. A control unit 20 is connected to the atmosphere release valve 6 and the air injection valve 15, and the opening and closing of the atmosphere release valve 6 and the air injection valve 15 is controlled by the control unit 20.

また、本実施形態においては、吸引輸送管2の途中に吸引輸送弁18が設けられている。上述した第1の実施形態の例においては、吸引輸送弁18が設けられていないため、固液回収タンク3の初期真空度を例えば−58.8kPa(−6mAq)程度と高くしないと、その後の繰り返し時に必要な−49.0kPa(−5mAq)程度の真空度が得られない。これは、初期真空度の形成時に固液混合体などの吸引にエネルギーが消費されるためである。本実施形態や第1の実施形態において吸引輸送弁18を設けた場合は、当初から−49.0kPa(−5mAq)程度の真空度で揚砂を輸送できる。このように、吸引輸送弁18を設けることにより、真空形成時間(〜60秒)を事前に行っておくことができ、吸引輸送に要する時間を見かけ上短縮することができ、また、初期真空度を低くできる分だけ省エネルギー化を図ることができる。   In the present embodiment, a suction transport valve 18 is provided in the middle of the suction transport pipe 2. In the example of the first embodiment described above, since the suction transport valve 18 is not provided, if the initial vacuum degree of the solid-liquid recovery tank 3 is not increased to, for example, about −58.8 kPa (−6 mAq), A degree of vacuum of about −49.0 kPa (−5 mAq) required at the time of repetition cannot be obtained. This is because energy is consumed to suck the solid-liquid mixture or the like when the initial vacuum degree is formed. When the suction transport valve 18 is provided in the present embodiment or the first embodiment, the sand can be transported at a vacuum degree of about −49.0 kPa (−5 mAq) from the beginning. Thus, by providing the suction transport valve 18, the vacuum formation time (˜60 seconds) can be performed in advance, the time required for suction transport can be apparently reduced, and the initial vacuum degree can be reduced. Energy saving can be achieved as much as possible.

このような構成の揚砂輸送装置を用いて沈砂池1の池底に堆積した沈砂を引き上げる場合の動作について説明する。図8は、図7の揚砂輸送装置の動作を示すタイミングチャート(工程表)である。また、図9は、空気注入弁15および大気開放弁6の開閉動作の一例を示すタイミングチャート(工程表)である。   An operation in the case where the sedimentation sediment deposited on the bottom of the sedimentation basin 1 is pulled up using the sand transporting device having such a configuration will be described. FIG. 8 is a timing chart (process table) showing the operation of the sand transporting apparatus of FIG. FIG. 9 is a timing chart (process table) showing an example of the opening / closing operation of the air injection valve 15 and the atmosphere release valve 6.

まず、図7から図9に示すように、大気開放弁6、空気注入弁15、および吸引輸送弁18を閉じた状態で真空ポンプ4を駆動する。これにより、真空ポンプ4が接続された固液回収タンク3および吸引輸送弁18から固液回収タンク3までの吸引輸送管2の内部を、例えば−49.0kPa(−5mAq)程度まで約60秒で減圧する。   First, as shown in FIGS. 7 to 9, the vacuum pump 4 is driven with the atmosphere release valve 6, the air injection valve 15, and the suction transport valve 18 closed. As a result, the solid-liquid recovery tank 3 to which the vacuum pump 4 is connected and the inside of the suction transport pipe 2 from the suction transport valve 18 to the solid-liquid recovery tank 3 are, for example, about −49.0 kPa (−5 mAq) for about 60 seconds. Reduce pressure with.

制御部20は、求められる揚砂輸送の揚程、輸送距離などに対応するため、固液回収タンク3の真空度を−19.6kPa(−2mAq)〜−78.4kPa(−8mAq)に、好ましくは−44.1kPa(−4.5mAq)〜−58.8kPa(−6mAq)に制御できるのがよい。図8に示す例では、初期真空度を−49.0kPa(−5mAq)とし、定常運転時の真空度も−49.0kPa(−5mAq)程度としている。   The control unit 20 preferably has a vacuum degree of the solid-liquid recovery tank 3 in the range of −19.6 kPa (−2 mAq) to −78.4 kPa (−8 mAq) in order to correspond to the required lifting height of the sand transport, the transport distance, and the like. Can be controlled to -44.1 kPa (-4.5 mAq) to -58.8 kPa (-6 mAq). In the example shown in FIG. 8, the initial degree of vacuum is -49.0 kPa (-5 mAq), and the degree of vacuum during steady operation is also about -49.0 kPa (-5 mAq).

固液回収タンク3の真空度が−46.5kPa(−4.75mAq)〜−51.4kPa(−5.25mAq)となったら、吸引輸送弁18を急開する。これにより、図10に示すように、沈砂池1中の沈砂を含んだ水が固液混合体9として吸引輸送管2内に吸引される。このとき、必要に応じて水噴射ノズル19から水噴射を行い、沈砂を流動化し、端部2aの開口部から沈砂を吸引しやすいようにする。このように、水噴射ノズル19から水を噴射して、沈砂池1内の砂を流動化させるとともに、吸引輸送管2の吸引輸送弁18を開けることにより、吸引輸送管2の端部2aの開口部近傍に沈砂池1内の砂を集めつつ、図10に示すように、沈砂池1中の沈砂を含んだ水が固液混合体9として吸引輸送管2内に吸引される。このとき、必要により一部の水噴射ノズル19から継続的に水を噴射させてもよい。この固液混合体9の沈砂の濃度は20〜35%とし、好ましくは平均30%前後とする。これにより、揚砂輸送効率を安定および向上させることができる。   When the degree of vacuum of the solid-liquid recovery tank 3 becomes −46.5 kPa (−4.75 mAq) to −51.4 kPa (−5.25 mAq), the suction transport valve 18 is opened rapidly. As a result, as shown in FIG. 10, the water containing the settling sand in the settling basin 1 is sucked into the suction transport pipe 2 as the solid-liquid mixture 9. At this time, if necessary, water is jetted from the water jet nozzle 19 to fluidize the sand and make it easy to suck the sand from the opening of the end 2a. In this way, water is jetted from the water jet nozzle 19 to fluidize the sand in the sand basin 1 and the suction transport valve 18 of the suction transport pipe 2 is opened, so that the end 2a of the suction transport pipe 2 is opened. While collecting the sand in the sand basin 1 in the vicinity of the opening, as shown in FIG. 10, water containing the sand in the sand basin 1 is sucked into the suction transport pipe 2 as a solid-liquid mixture 9. At this time, if necessary, water may be continuously ejected from some of the water ejection nozzles 19. The concentration of the sand in the solid-liquid mixture 9 is 20 to 35%, preferably about 30% on average. Thereby, the sand transport efficiency can be stabilized and improved.

そして、図11に示すように、空気注入弁15を1〜4秒間開いて、沈砂池1の水位よりも高い圧力、例えば20kPa〜50kPaの加圧空気を吸引輸送管2の内部に注入する。これにより、図10に示す固液混合体9の上部、すなわち空気注入管12の接続部12aよりも上方の固液混合体9を、大気開放管7の接続部7aの近傍またはそれよりも上方に上昇させる。   Then, as shown in FIG. 11, the air injection valve 15 is opened for 1 to 4 seconds, and a pressure higher than the water level of the sand basin 1, for example, pressurized air of 20 kPa to 50 kPa is injected into the suction transport pipe 2. Thus, the upper part of the solid-liquid mixture 9 shown in FIG. 10, that is, the upper part of the solid-liquid mixture 9 above the connection part 12a of the air injection pipe 12 is moved to the vicinity of the connection part 7a of the atmosphere release pipe 7 or above it. To rise.

次いで、大気開放弁6を開くとともに空気注入弁15を閉じ、大気開放管7の接続部7aを大気開放することにより、図11に示すように長い輸送用水柱11が形成される。この長い輸送用水柱11は、固液回収タンク3側の端部に作用する真空度と大気開放側の端部に作用する大気圧との圧力差により、図12の11−1,11−2で示すように固液回収タンク3に向かって移動し輸送される。   Next, the air release valve 6 is opened, the air injection valve 15 is closed, and the connection portion 7a of the atmosphere release pipe 7 is opened to the atmosphere, whereby a long water column 11 for transportation is formed as shown in FIG. This long water column 11 for transporting is due to the pressure difference between the degree of vacuum acting on the end portion on the solid-liquid recovery tank 3 side and the atmospheric pressure acting on the end portion on the open side of the atmosphere. As shown in FIG. 2, the liquid moves toward the solid-liquid recovery tank 3 and is transported.

そして、制御部20により輸送用水柱11全体が固液回収タンク3に入る直前に大気開放弁6が再び閉じられる。これにより、図10に示すように、沈砂池1中の沈砂と水を含んだ固液混合体9が、再度、吸引輸送管2内に吸引される。その後は上述と同様の工程を繰り返すことにより、沈砂池1の池底に堆積した沈砂を断続的に固液回収タンク3に輸送する。なお、大気開放弁6が開である時間は2〜10秒とする。この開時間は、揚程や輸送距離などに応じて変更することができる。   The control unit 20 closes the atmosphere release valve 6 again immediately before the entire transport water column 11 enters the solid-liquid recovery tank 3. As a result, as shown in FIG. 10, the solid-liquid mixture 9 containing the sand and water in the sand basin 1 is again sucked into the suction transport pipe 2. Thereafter, by repeating the same process as described above, the sediment deposited on the bottom of the sedimentation basin 1 is intermittently transported to the solid-liquid recovery tank 3. In addition, the time for which the air release valve 6 is open is 2 to 10 seconds. This opening time can be changed according to the lift and transport distance.

なお、大気開放弁6を通じて大気開放するときは、多量の空気をほとんど損失なく、短時間で流れ込ませることが重要である。空気が輸送用水柱11の下方に入り込み混合するのを避け、効率よく揚砂輸送することが好ましい。また、長い輸送用水柱11が吸引輸送管2内を、図12の11−1,11−2で示すように輸送されていくにつれて、沈砂と水の分離および吸引された空気との混合が進むため、輸送用水柱11は当初の形状から崩れていく。このため、本実施形態では、吸引輸送管2内に空気の連通路ができないように、輸送用水柱11が11−1,11−2の状態になった場合でも、吸引輸送管2内壁は必ずシールされた部分がある状態に維持することが好ましい。   When releasing the atmosphere through the atmosphere release valve 6, it is important to allow a large amount of air to flow in in a short time with almost no loss. It is preferable to transport the sand efficiently by avoiding air from entering and mixing below the water column 11 for transport. Further, as the long transport water column 11 is transported in the suction transport pipe 2 as indicated by 11-1 and 11-2 in FIG. 12, the separation of the sand and water and the mixing of the sucked air proceed. Therefore, the water column 11 for transportation collapses from the original shape. For this reason, in this embodiment, even when the transport water column 11 is in the state of 11-1 and 11-2 so that no air communication path is formed in the suction transport pipe 2, the inner wall of the suction transport pipe 2 is always It is preferred to keep the sealed portion in place.

ここで、シールされた部分がある状態を常に維持するとは、吸引輸送管2の少なくとも一部が輸送用水柱11,11−1,11−2によってシールされている状態を維持してもよいが、輸送用水柱11,11−1,11−2でのシールがされにくくなる危険を避け、より確実性を保つために、大気開放弁6を開状態から閉状態とし、空気注入弁15も閉状態とし、固液混合体9の吸引形成を開始して固液回収タンク3の真空度が吸引輸送管2内全体に作用するように、大気開放弁6の開閉タイミングを制御部20により制御してもよい。この開閉タイミングは、沈砂池1の沈砂の状態、すなわち固液混合体9の性状や輸送距離などにより異なるので、試運転によって最適な開閉タイミングや開閉時間などを決めることが好ましい。   Here, maintaining the state where the sealed portion is always maintained may maintain a state where at least a part of the suction transport pipe 2 is sealed by the transport water columns 11, 11-1, 11-2. In order to avoid the risk of being difficult to be sealed at the transport water columns 11, 11-1, 11-2 and to maintain more certainty, the air release valve 6 is changed from the open state to the closed state, and the air injection valve 15 is also closed. The controller 20 controls the opening / closing timing of the air release valve 6 so that the suction of the solid-liquid mixture 9 is started and the vacuum of the solid-liquid recovery tank 3 acts on the entire inside of the suction transport pipe 2. May be. Since the opening / closing timing varies depending on the state of sand settling in the sand basin 1, that is, the properties of the solid-liquid mixture 9, the transport distance, and the like, it is preferable to determine the optimum opening / closing timing, opening / closing time, etc. by trial operation.

このため、吸引輸送管2の口径は50Aから125A、好ましくは65Aから100Aとし、かつ、大気開放弁6の口径は吸引輸送管2の口径の1/2以上、吸引輸送管2の口径以下とし、空気注入管12の口径は32A〜50Aとし、かつ1秒以下、好ましくは0.5秒以下の急開急閉ができる弁であることが好ましい。また、大気開放弁6および空気注入弁15は、全開全閉のできる弁とし、全開時の開口面積は大気開放管7および空気注入管12とそれぞれ同等程度にすることが好ましい。さらに、大気開放管7および空気注入管12は、水平面に対して所定の角度、好ましくは50〜70度の角度を持って、吸引輸送管2に接続されていることも重要である。これは固液混合体の固体物、すなわち沈砂などが各管内に若干入り込んでも、その安息角によって容易に吸引輸送管2内に再吸引され、運転上の圧力損失が生じないようにし、スムーズな大気の吸引あるいは加圧空気の注入ができるようにするためである。   Therefore, the diameter of the suction transport pipe 2 is 50A to 125A, preferably 65A to 100A, and the diameter of the air release valve 6 is not less than 1/2 of the diameter of the suction transport pipe 2 and not more than the diameter of the suction transport pipe 2. The diameter of the air injection pipe 12 is 32A to 50A, and it is preferably a valve capable of rapid opening and closing for 1 second or less, preferably 0.5 seconds or less. Moreover, it is preferable that the atmosphere release valve 6 and the air injection valve 15 are valves that can be fully opened and closed, and that the opening area when fully opened is approximately equal to that of the atmosphere release pipe 7 and the air injection pipe 12. Furthermore, it is also important that the atmosphere release pipe 7 and the air injection pipe 12 are connected to the suction transport pipe 2 at a predetermined angle with respect to the horizontal plane, preferably 50 to 70 degrees. This is because even if a solid matter of a solid-liquid mixture, that is, sedimentation, slightly enters each pipe, it is easily re-sucked into the suction transport pipe 2 by its angle of repose so that no pressure loss in operation occurs. This is to enable atmospheric suction or pressurized air injection.

空気注入弁15を開とした時、吸引輸送管2に加圧空気がスムーズに、一気に注入され、大気開放管7の接続部7aまでピストン流的に固液混合体を押し上げてしまうことが、長い輸送用水柱を形成するのに好ましい。この場合、第1,第2の実施形態でも、真空ポンプ4により吸引輸送管2内に吸引される固液混合体の水位(高さ)は、同じ真空度が作用するのであれば同程度になる。しかし、第2の実施形態では、沈砂池1内に設けた空気注入管12からの加圧空気を数秒間以下の、極く短時間注入し、吸引されていた固液混合体をピストン流的に一気に押上げることで、より沈砂濃度の高い、長い輸送用水柱を形成させている。   When the air injection valve 15 is opened, the pressurized air is smoothly injected into the suction transport pipe 2 at a stretch, and the solid-liquid mixture is pushed up to the connection portion 7a of the air release pipe 7 in a piston flow. It is preferable for forming a long water column for transportation. In this case, also in the first and second embodiments, the water level (height) of the solid-liquid mixture sucked into the suction transport pipe 2 by the vacuum pump 4 is approximately the same as long as the same degree of vacuum acts. Become. However, in the second embodiment, pressurized air from an air injection pipe 12 provided in the sand basin 1 is injected for a very short time of several seconds or less, and the sucked solid-liquid mixture is piston-flowed. By pushing up at once, a long water column for transportation with higher sedimentation concentration is formed.

次いで空気注入弁15を閉とすると同時に、大気開放弁6を開とし、大気開放管7の接続部7aまで押し上げられた固液混合体の下部に、すなわち大気開放管7の接続部7aに、大気圧の空気がスムーズに、一気に吸引され、該接続部7aより上方の固液混合体をピストン流的に、固液回収タンク3の真空度の作用により吸引して、輸送用水柱を形成させる。これらの加圧空気の注入、および大気圧の空気吸引がスムーズに、短時間に、一気にピストン流的に行われることが遅れるほど、形成される輸送用水柱内には空気が入り込み易くなり、ピストン流的に輸送されにくくなり、輸送用水柱の形状の崩れ、すなわち、沈砂と液の分離が進むことになる。一方、該空気注入管12の接続部12aより下方の固液混合体部分は沈砂池の方に移動していく。   Next, at the same time as closing the air injection valve 15, the atmosphere release valve 6 is opened, and the lower part of the solid-liquid mixture pushed up to the connection part 7 a of the atmosphere release pipe 7, that is, the connection part 7 a of the atmosphere release pipe 7, Air at atmospheric pressure is sucked smoothly and all at once, and the solid-liquid mixture above the connection portion 7a is sucked in a piston flow by the action of the degree of vacuum of the solid-liquid recovery tank 3 to form a water column for transportation. . The longer the injection of pressurized air and the air suction at atmospheric pressure is smoothly performed in a short time in a single piston flow, the more easily air enters the transport water column that is formed. It becomes difficult to be transported in a fluid manner, and the shape of the water column for transportation collapses, that is, the sand and the liquid are separated. On the other hand, the solid-liquid mixture part below the connection part 12a of the air injection pipe 12 moves toward the sand basin.

大気開放弁6が全開から全閉までの時間は2〜10秒間、全閉から全開までの時間は1〜5秒間であり、空気注入弁15が全開である時間は1〜4秒間、全閉である時間は大気開放弁6が全開である時間と同程度である。図8に示す例では、大気開放弁6が全開である時間は5秒間、全閉である時間は3秒間であり、空気注入弁15が全開である時間は3秒間程度と極めて短時間に設定している。また、空気注入弁15を閉じるタイミングは大気開放弁6を全開とした直後から2秒以内が好ましい。このように、大気開放弁6および空気注入弁15の全開時間と全閉時間は短時間である。   The time from the fully open to fully closed air release valve 6 is 2 to 10 seconds, the time from fully closed to fully open is 1 to 5 seconds, and the time that the air injection valve 15 is fully open is 1 to 4 seconds. Is approximately the same as the time during which the air release valve 6 is fully open. In the example shown in FIG. 8, the time for which the air release valve 6 is fully open is 5 seconds, the time for which it is fully closed is 3 seconds, and the time for which the air injection valve 15 is fully open is set to an extremely short time of about 3 seconds. is doing. The timing for closing the air injection valve 15 is preferably within 2 seconds immediately after the atmospheric release valve 6 is fully opened. Thus, the fully open time and the fully closed time of the atmosphere release valve 6 and the air injection valve 15 are short.

図9では、空気注入弁15と大気開放弁6の開閉タイミングを、弁の急開および急閉に要する時間を含めて示している。したがって、空気注入弁15および大気開放弁6のいずれも、全開全閉できるものであって、全開および全閉に要する時間、すなわち急開および急閉に要する時間は極めて短く、圧力損失の少ない仕様のものを選択することが重要である。また、その開閉の信号発信のタイミングは弁の仕様によって適正に決めなければならない。そして、制御部20はこれらの弁を正確に制御することが重要である。   In FIG. 9, the opening / closing timing of the air injection valve 15 and the atmosphere release valve 6 is shown including the time required for the valve to be opened and closed quickly. Therefore, both the air injection valve 15 and the atmosphere release valve 6 can be fully opened and fully closed, and the time required for full opening and full closing, that is, the time required for rapid opening and sudden closing is extremely short, and the specification has little pressure loss. It is important to choose one. In addition, the timing of signal transmission for the opening / closing must be determined appropriately according to the valve specifications. And it is important for the control part 20 to control these valves correctly.

上述したように、輸送用水柱11の輸送時には大気開放弁6が開かれ大気が吸引される。このとき、輸送用水柱11は大気と固液回収タンク3との間にあるため、直接大気が固液回収タンク3に流入することはない。しかしながら、固液回収タンク3の手前では、輸送用水柱11はかなりの運動エネルギーを有しているため、大気開放弁6を閉じる前に、そのすべてが固液回収タンク3内へ輸送されてしまうおそれがある。そして、開かれた大気開放弁6と固液回収タンク3との間で空気が連通してしまうと、水に対して流動性の良い空気が短時間で固液回収タンク3へ流れ込み、その真空度を下げてしまう。これを避ける手段として、タイマーを用いた制御方法のみを採用してもよいが、輸送用水柱11の輸送速度は沈砂の濃度(比重)あるいはその長さにより変化が生じてしまうため、安定した運転のためには、固液回収タンク3自体の真空度センサ(図示せず)だけでなく、図13に示すように、固液回収タンク3の手前の吸引輸送管2に真空度センサ14を設置するのが好ましい。この場合には、輸送用水柱11が通り抜けて、大気圧になったことを真空度センサ14により確認し、これを大気開放弁6の閉動作を行うタイマー制御の補助とする。   As described above, when the transport water column 11 is transported, the air release valve 6 is opened to suck the air. At this time, since the transport water column 11 is between the atmosphere and the solid-liquid recovery tank 3, the air does not directly flow into the solid-liquid recovery tank 3. However, since the transport water column 11 has considerable kinetic energy before the solid-liquid recovery tank 3, all of it is transported into the solid-liquid recovery tank 3 before closing the air release valve 6. There is a fear. When air is communicated between the opened air release valve 6 and the solid-liquid recovery tank 3, air having good fluidity flows into the solid-liquid recovery tank 3 in a short time, and the vacuum Decrease the degree. As a means for avoiding this, only a control method using a timer may be employed. However, since the transport speed of the transport water column 11 varies depending on the concentration (specific gravity) of sedimentation or its length, stable operation is possible. For this purpose, not only the vacuum sensor (not shown) of the solid-liquid recovery tank 3 itself, but also a vacuum sensor 14 is installed in the suction transport pipe 2 in front of the solid-liquid recovery tank 3 as shown in FIG. It is preferable to do this. In this case, it is confirmed by the vacuum sensor 14 that the transport water column 11 has passed and the atmospheric pressure has been reached, and this is used as an auxiliary to the timer control for closing the atmosphere release valve 6.

図14は第2の実施形態における揚砂輸送装置の構成例を示す模式図であり、図15は図14に示す揚砂輸送装置を用いた実験から得られた真空度の測定値の一例を示すグラフである。図14に示す揚砂輸送装置では、真空度センサ14は第2の端部2bから延びる横引き配管の上面であって、第2の端部2bから10mの位置に配置されている。この真空度センサ14はモニタリング装置21に接続されており、真空度センサ14によって検出された吸引輸送管2内の真空度がモニタリング装置21によってモニタリングされるようになっている。   FIG. 14 is a schematic diagram showing a configuration example of the sand transporting device in the second embodiment, and FIG. 15 is an example of a measured value of the degree of vacuum obtained from an experiment using the sand transporting device shown in FIG. It is a graph to show. In the sand transporting apparatus shown in FIG. 14, the vacuum degree sensor 14 is disposed on the upper surface of the horizontal pipe extending from the second end 2 b and at a position 10 m from the second end 2 b. The vacuum degree sensor 14 is connected to a monitoring device 21, and the degree of vacuum in the suction transport pipe 2 detected by the vacuum degree sensor 14 is monitored by the monitoring device 21.

図15に示すように、揚砂輸送装置が正常に運転されている時は、全体として真空度が上下しながら、真空度の高い部分を有する山谷型曲線が連続していくグラフが得られる。このグラフを利用して、あるいは検出した真空度の値を直接利用することで、吸引輸送管2を通過する輸送用水柱を検知することができる。すなわち、図15のグラフにおいて、真空度が高いレベル(H)から低いレベル(L)に変化したことを検知することで、輸送用水柱11が通り抜けたことを検知することができる。また、真空度が低いレベル(L)から高いレベル(H)に変化することで、固液混合体が吸引され、輸送用水柱が沈砂池1の吸引輸送管2の下端部に形成されたことが検知される。このように、真空度の変化を示す山谷型曲線1つは、輸送用水柱の工程一回分、すなわち、輸送された水柱1回分に相当することがわかる。したがって、この真空度の変動の山の数によって、輸送用水柱の輸送数を判断できる。   As shown in FIG. 15, when the sand transporting apparatus is operating normally, a graph is obtained in which a mountain-shaped curve having a portion with a high degree of vacuum continues while the degree of vacuum rises and falls as a whole. By using this graph or by directly using the detected value of the degree of vacuum, the water column for transportation passing through the suction transportation pipe 2 can be detected. That is, in the graph of FIG. 15, by detecting that the degree of vacuum has changed from a high level (H) to a low level (L), it is possible to detect that the transport water column 11 has passed. In addition, when the degree of vacuum is changed from the low level (L) to the high level (H), the solid-liquid mixture is sucked, and the transport water column is formed at the lower end of the suction transport pipe 2 of the sand basin 1. Is detected. Thus, it can be seen that one Yamatani-shaped curve indicating the change in the degree of vacuum corresponds to one transport water column process, that is, one transported water column. Therefore, the number of transported water columns can be determined based on the number of peaks of the variation in the degree of vacuum.

真空度の変化を更に詳しくみると、通常、大気開放弁6の全開後半部から全閉になるまでは真空度が低下し、全閉後は真空度が高くなる。そして、ついには真空度が固液回収タンク3の運転繰返し時の設定値に到達する。その後、再び大気開放弁6の全開後半部から真空度が低下していく。このように変化する真空度の値は固液回収タンク3の初期設定真空度によって変わるが、例えば固液回収タンク3の初期設定真空度を−60kPaに設定した場合、真空度の低いレベル(L)として−0kPa〜−40kPa、高いレベル(H)として−40kPa〜−50kPaとなることがわかった。したがって、このような真空度の変化を示さない時、例えば、真空度の低い状態が一定時間以上、例えば5〜10数秒以上続いたら、大気開放管7と固液回収タンク3が連通している、すなわち、輸送用水柱の輸送が行われていない異常事態が生じていると判断される。   When the change in the degree of vacuum is examined in more detail, the degree of vacuum generally decreases until the air release valve 6 is fully closed from the fully opened second half part, and after the fully closed state, the degree of vacuum is increased. Finally, the degree of vacuum reaches a set value when the operation of the solid-liquid recovery tank 3 is repeated. Thereafter, the degree of vacuum decreases again from the fully opened second half of the air release valve 6. The value of the degree of vacuum that changes in this way varies depending on the initial set degree of vacuum of the solid-liquid recovery tank 3. For example, when the initial set degree of vacuum of the solid-liquid recovery tank 3 is set to −60 kPa, the level of low vacuum (L ) To −40 kPa to −40 kPa, and high level (H) to −40 kPa to −50 kPa. Therefore, when such a change in the degree of vacuum is not exhibited, for example, if the low degree of vacuum continues for a certain time or more, for example, 5 to 10 seconds or more, the atmosphere open pipe 7 and the solid-liquid recovery tank 3 are in communication. That is, it is determined that an abnormal situation has occurred in which the transport water column is not transported.

また、真空度の高い状態が一定時間以上、例えば5〜10数秒続いたら、吸引輸送管2の開口部2aから真空度センサ14の設置位置までの間で、何らかの原因で、吸引輸送管2に詰まりや、弁の動作不良などが発生し、固液回収タンク3の真空度が直接、真空度センサ14にかかる状態が続いている、すなわち、輸送用水柱が輸送されない異常事態が生じていると判断される。このような真空度センサ14の真空度変化と、タイマー設定された工程の状態を考慮することにより、揚砂輸送装置が正常に運転されているか否かが把握できる。すなわち、制御部20は真空度センサ14の真空度が異常な状態を示したら、警報を出すか、あるいは装置を停止する制御に利用できる。具体的には前述の如く、真空度センサ14で真空度を検出し、真空度変換機能と検出真空度変化のグラフ表示機能を有するモニタリング装置21で、表示したグラフから真空度低レベル(L)、高レベル(H)を検出し、制御部20に信号を送る方法、あるいはグラフ表示機能を有しないで、直接に真空度低レベル(L)、高レベル(H)信号を制御部20に送り、処理する方法などがある。   If the state of high vacuum continues for a certain time or more, for example, 5 to 10 several seconds, for example, the suction transport pipe 2 may be moved between the opening 2a of the suction transport pipe 2 and the installation position of the vacuum sensor 14 for some reason. When clogging, valve malfunction, etc. occur and the degree of vacuum of the solid-liquid recovery tank 3 is directly applied to the degree-of-vacuum sensor 14, that is, an abnormal situation occurs in which the transport water column is not transported. To be judged. By considering such a change in the degree of vacuum of the degree-of-vacuum sensor 14 and the state of the process set by the timer, it can be determined whether or not the sand transporting apparatus is operating normally. That is, if the degree of vacuum of the degree-of-vacuum sensor 14 indicates an abnormal state, the control unit 20 can issue an alarm or can be used for control to stop the apparatus. Specifically, as described above, the degree of vacuum is detected by the degree-of-vacuum sensor 14 and the monitoring device 21 having a function of converting the degree of vacuum and a graph display function of the detected degree of change in vacuum is used to display a low vacuum level (L) from the displayed graph. A method of detecting a high level (H) and sending a signal to the control unit 20 or without having a graph display function, directly sending a low vacuum level (L) and a high level (H) signal to the control unit 20 , There are ways to handle.

図8及び図9に示すように、固液混合体の吸引工程は大気開放弁6の全閉および空気注入弁15の全閉により開始し、空気注入弁15の開動作開始で終了とする。輸送用水柱形成工程は空気注入弁15の開動作開始で開始し、空気注入弁15の閉動作完了で終了とする。輸送工程は大気開放弁6の開動作開始で始まる。この時、空気注入弁15は閉動作中、または閉動作が完了している。このように、大気開放弁6および空気注入弁15の開閉動作は、図9の例に示すように行われ、輸送工程が開始され、そして終了する。これら各工程が最適に行われるように、図9の例に示すように、好適にタイマー設定される必要がある。空気注入弁15および大気開放弁6の制御状況は図9に示したとおりであり、タイマーが主体であるが、補助センサとして、モニタリング装置21により図14に示す真空度の変化を検出できる真空度センサ14を設けることが好ましい。なお、上述した第1の実施形態においても、吸引輸送管2に設けられた真空度センサ14(図6参照)により周期的に変化する真空度が検出される。したがって、第1の実施形態においても、第2の実施形態と同様に、真空度の変化から、輸送用水柱の数や装置の運転状況などを検知することができる。   As shown in FIGS. 8 and 9, the solid-liquid mixture suction step starts when the air release valve 6 is fully closed and the air injection valve 15 is fully closed, and ends when the air injection valve 15 starts to open. The transport water column forming process starts when the air injection valve 15 starts to open and ends when the air injection valve 15 closes. The transport process starts with the start of the opening operation of the atmosphere release valve 6. At this time, the air injection valve 15 is being closed or has been closed. As described above, the opening / closing operation of the atmosphere release valve 6 and the air injection valve 15 is performed as shown in the example of FIG. 9, and the transportation process is started and finished. As shown in the example of FIG. 9, it is necessary to set a timer appropriately so that each of these processes is performed optimally. The control status of the air injection valve 15 and the atmosphere release valve 6 is as shown in FIG. 9 and is mainly a timer, but the degree of vacuum at which the monitoring device 21 can detect the change in the degree of vacuum shown in FIG. 14 as an auxiliary sensor. A sensor 14 is preferably provided. In the first embodiment described above, the degree of vacuum that periodically changes is detected by the degree-of-vacuum sensor 14 (see FIG. 6) provided in the suction transport pipe 2. Therefore, also in the first embodiment, similarly to the second embodiment, it is possible to detect the number of water columns for transportation, the operation status of the apparatus, and the like from the change in the degree of vacuum.

吸引輸送弁18は固液回収タンク3の真空度が所定値になるまでは全閉状態であるが、その後は揚砂輸送工程が終了するまでは全開状態となっている。また、真空度がすばやく吸引輸送管2内に作用するように、吸引輸送弁18は急開急閉および全開全閉できるようになっていることが好ましい。また、吸引輸送弁18の設置位置は、大気開放管7の接続部7aから固液回収タンク3に接続される端部2bまでの間であればよいが、維持管理の容易な鉛直配管部に設けることが好ましい。   The suction transport valve 18 is in a fully closed state until the degree of vacuum in the solid-liquid recovery tank 3 reaches a predetermined value, but thereafter it is in a fully open state until the sand transporting process is completed. Further, it is preferable that the suction transport valve 18 can be rapidly opened and closed and fully opened and fully closed so that the degree of vacuum acts in the suction transport pipe 2 quickly. In addition, the installation position of the suction transport valve 18 may be between the connection portion 7a of the air release pipe 7 and the end portion 2b connected to the solid-liquid recovery tank 3, but the vertical piping portion is easy to maintain and manage. It is preferable to provide it.

また、吸引輸送弁18の全開時の口径を、吸引輸送管2と同一の口径程度にすることが好ましい。真空度が沈砂と水の固液混合体9および輸送用水柱11に損失なく速く作用するように、吸引輸送弁18を、沈砂などの噛み込みの生じない仕様の弁、例えばストレート型のダイヤフラム弁やボール弁などとすることが好ましい。   Further, it is preferable that the diameter of the suction transport valve 18 when fully opened is about the same diameter as the suction transport pipe 2. In order for the degree of vacuum to act quickly on the solid-liquid mixture 9 of sand and water and the water column 11 for transport without loss, the suction transport valve 18 is a valve of a specification that does not cause biting such as sand sediment, such as a straight diaphragm valve. Or a ball valve or the like.

そして、上述した輸送用水柱11の形成と輸送の繰り返しを50回から150回行うと、図12に示すように、固液回収タンク3は満水状態となる。なお、沈砂量、固液回収タンク容量が大きくなれば繰り返し回数も多くなる。固液回収タンク3が満水状態となると、制御部20は、大気開放弁6、空気注入弁15、吸引輸送弁18をはじめとする弁や真空ポンプ4、コンプレッサ16などの運転を停止する。   Then, when the formation and transportation of the transport water column 11 described above is repeated 50 to 150 times, the solid-liquid recovery tank 3 becomes full as shown in FIG. Note that the number of repetitions increases as the amount of sedimentation and the solid-liquid recovery tank capacity increase. When the solid-liquid recovery tank 3 becomes full, the control unit 20 stops the operation of the valves including the air release valve 6, the air injection valve 15, the suction transport valve 18, the vacuum pump 4, and the compressor 16.

固液回収タンク3の下部に沈砂が沈降した後、固液回収タンク3に取り付けられた上澄水排出弁21および換気弁22を開き、固液回収タンク3内の上澄水を排出する。その後、上澄水排出弁21を閉じ、固液回収タンク3の底部に設けられた空気洗浄弁23を開くことで、コンプレッサ16からの空気を固液回収タンク3の内部に送り込み、沈砂の空気洗浄を行う。次に、空気洗浄弁23を閉じ、水洗浄弁24を開き、沈砂の水洗浄を行う。水洗浄の終了後は水洗浄弁24を閉じる。そして、再度、上澄水排出弁21を開いた後、底部に設けられた沈砂排出弁5を開いて、固液回収タンク3内の砂を水とともに排出する。   After the settling of sand has settled in the lower part of the solid-liquid collection tank 3, the supernatant water discharge valve 21 and the ventilation valve 22 attached to the solid-liquid collection tank 3 are opened, and the supernatant water in the solid-liquid collection tank 3 is discharged. Thereafter, the supernatant water discharge valve 21 is closed, and the air washing valve 23 provided at the bottom of the solid-liquid recovery tank 3 is opened, so that the air from the compressor 16 is sent into the solid-liquid collection tank 3 and the sand is washed with air. I do. Next, the air washing valve 23 is closed, the water washing valve 24 is opened, and the sand is washed with water. After the water cleaning is completed, the water cleaning valve 24 is closed. Then, after opening the supernatant water discharge valve 21 again, the sand sediment discharge valve 5 provided at the bottom is opened, and the sand in the solid-liquid recovery tank 3 is discharged together with water.

例えば、固液回収タンク3の1杯分の有効容量(沈砂と水との全量)1.0m当たり、0.2〜0.35m、通常0.3m程度の沈砂を排出する。沈砂の排出が終了した後、必要に応じて再び揚砂輸送操作を開始する。 For example, one cup of effective capacity (sand and the total amount of water) 1.0 m 3 per solid-liquid recovery tank 3, 0.2~0.35m 3, to discharge the usual 0.3 m 3 approximately sand. After discharging the settling sand, start the sand transport operation again if necessary.

なお、制御部20が大気開放弁6を開くとともに空気注入弁15を閉じるときには、吸引輸送管2内の固液混合体9の水位は大気開放管7の接続部7aよりも上方にある必要がある。また、制御部20が大気開放弁6および空気注入弁15を開閉するタイミングは、通常、時間によって制御するが、固液回収タンク3の真空度を測定するセンサや吸引輸送管2の水位を測定するセンサの出力を用いて補助制御してもよい。   When the control unit 20 opens the atmosphere release valve 6 and closes the air injection valve 15, the water level of the solid-liquid mixture 9 in the suction transport pipe 2 needs to be above the connection part 7 a of the atmosphere release pipe 7. is there. The timing at which the control unit 20 opens and closes the atmosphere release valve 6 and the air injection valve 15 is usually controlled by time, but the sensor for measuring the degree of vacuum of the solid-liquid recovery tank 3 and the water level of the suction transport pipe 2 are measured. Auxiliary control may be performed using the output of the sensor.

制御部20は、空気注入弁15および大気開放弁6の開時間と閉時間の設定、そのタイミング、これら弁開閉の速度、全開全閉の確認、真空度センサ14からの信号、固液回収タンク3の真空度による真空ポンプ4の運転制御などを行うとともに、他の必要な制御機能を同時に有していてもよい。沈砂などのスラリーを対象とする場合は、実際の揚砂輸送管2は、材質がSUS304で、その肉厚としてSch40のような厚いものを使用し、耐摩耗性を保つようにしている。それ故、揚砂輸送配管2はその全体が不透明であり、輸送用水柱の形成およびその輸送状態を目視観測できるような透明管ではない。したがって、輸送用水柱の形成、その輸送工程が正常に行われているか否かの観測を大気開放弁6の開閉の発信信号、その開に要する時間、閉に要する時間、全開全閉状態の時間などのタイマー設定と共に、真空度センサ14の信号に基づいて行えることは、本発明の揚砂輸送装置を実施する上で非常に有効である。   The control unit 20 sets the opening time and closing time of the air injection valve 15 and the atmospheric release valve 6, the timing thereof, the speed of opening and closing of these valves, confirmation of full opening and closing, a signal from the vacuum sensor 14, a solid-liquid recovery tank The operation control of the vacuum pump 4 by the degree of vacuum of 3 may be performed, and other necessary control functions may be simultaneously provided. When a slurry such as sand settling is targeted, the actual sand transport pipe 2 is made of SUS304 and has a thick wall thickness such as Sch40 to maintain wear resistance. Therefore, the entire sand transporting pipe 2 is opaque and is not a transparent pipe that can visually observe the formation of the water column for transportation and the transportation state thereof. Therefore, the formation of the water column for transportation and the observation of whether or not the transportation process is normally performed are the transmission signals for opening and closing the atmosphere release valve 6, the time required for opening, the time required for closing, and the time for the fully open and fully closed state What can be performed based on the signal of the vacuum degree sensor 14 together with the timer setting such as the above is very effective in implementing the sand transporting apparatus of the present invention.

吸引輸送管2の端部2aの開口部の口径は、吸引輸送管2の口径の1/2以上とするのが好ましい。これは、口径が小さすぎると沈砂などで詰まることがあり、大きすぎると吸引流速が小さくなりすぎるからである。固液回収タンク3の真空度を−48.8kPa(−5mAq)、吸引輸送管2の口径を80Aとし、端部2aの開口部の口径を例えば1/2とする場合、吸引流速は吸引輸送管の通常値1.5〜2.5m/秒の4倍の6〜10m/秒と高くなり、小石等も吸引でき、詰まることはない。吸引輸送管2内の固体混合体9の輸送流速は3〜15m/秒、通常は6〜7m/秒以上を維持しており、吸引輸送管2の横引き配管部2c,2dに揚砂が残留することがない。   The diameter of the opening of the end portion 2 a of the suction transport pipe 2 is preferably set to be ½ or more of the diameter of the suction transport pipe 2. This is because if the caliber is too small, it may be clogged with sedimentation, and if it is too large, the suction flow rate will be too small. When the degree of vacuum of the solid-liquid recovery tank 3 is −48.8 kPa (−5 mAq), the diameter of the suction transport pipe 2 is 80 A, and the diameter of the opening of the end 2 a is, for example, ½, the suction flow rate is suction transport It becomes as high as 6 to 10 m / sec, which is four times the normal value of 1.5 to 2.5 m / sec, so that pebbles and the like can be sucked and not clogged. The transport velocity of the solid mixture 9 in the suction transport pipe 2 is maintained at 3 to 15 m / second, usually 6 to 7 m / second or more, and sand is drawn in the horizontal pulling pipe portions 2 c and 2 d of the suction transport pipe 2. There is no residue.

また、空気注入管12は、加圧空気を流通させるので、構造的に設置できる25A〜50Aの口径のものを用いることができる。また、使用する空気注入弁15は加圧空気用であるため、電磁弁でもよいが、圧力損失の少ない仕様のものが好ましい。   Moreover, since pressurized air distribute | circulates the air injection pipe | tube 12, the thing of the diameter of 25A-50A which can be installed structurally can be used. Further, since the air injection valve 15 to be used is for pressurized air, an electromagnetic valve may be used, but a specification with little pressure loss is preferable.

上述したように、本発明の第2の実施形態によれば、吸引輸送弁18を全閉とした状態で、空気注入管12から吸引輸送管2の端部2aの開口部に向かって加圧空気を送り込む操作により、必要に応じて吸引輸送管2の端部2aの開口部近傍の沈砂などを吹き払うことができ、開口部の目詰まりを防止することができる。   As described above, according to the second embodiment of the present invention, pressure is applied from the air injection pipe 12 toward the opening of the end 2a of the suction transport pipe 2 with the suction transport valve 18 fully closed. By the operation of sending in air, it is possible to blow away sand sediments in the vicinity of the opening portion of the end portion 2a of the suction transport pipe 2 as necessary, and the clogging of the opening portion can be prevented.

また、吸引輸送弁18、大気開放弁6、空気注入弁15を閉じ、運転開始前に、事前に真空ポンプ4を駆動し、固液回収タンク3と吸引輸送管2の吸引輸送弁18までの真空度を所定値にしておくことにより、図8に示す真空形成のための時間を省略することができ、直ちに本運転を行うことができる。   Further, the suction transport valve 18, the air release valve 6, and the air injection valve 15 are closed, and before starting the operation, the vacuum pump 4 is driven in advance to reach the solid-liquid recovery tank 3 and the suction transport valve 18 of the suction transport pipe 2. By setting the degree of vacuum to a predetermined value, the time for forming the vacuum shown in FIG. 8 can be omitted, and the main operation can be performed immediately.

また、図13に示すように、固液回収タンク3の手前の吸引輸送管2に真空度センサ14を設けてもよい。さらに、空気注入管12に、吸引輸送管2内に一気に空気を送り込むためにコンプレッサ16からの空気を貯留しておくための補助空気槽17を設けてもよい。この補助空気槽17は、吸引輸送管2の空気注入管12の接続部12aから大気開放管7の接続部7aまでの長さに対応する容量の1.0〜2.0倍の容積を有していることが好ましい。この補助空気槽17には、輸送用水柱11の輸送時間(2〜10秒間)の間に空気を溜めればよい。さらに、一定容量の補助空気槽17を設ければ、補助空気槽17に空気を注入するコンプレッサ16からの圧力を調整することにより、1回に注入する空気量を容易に制御することができる。   Further, as shown in FIG. 13, a vacuum degree sensor 14 may be provided in the suction transport pipe 2 in front of the solid-liquid recovery tank 3. Furthermore, an auxiliary air tank 17 may be provided in the air injection pipe 12 for storing air from the compressor 16 in order to send air into the suction transport pipe 2 at a stretch. This auxiliary air tank 17 has a volume of 1.0 to 2.0 times the capacity corresponding to the length from the connection part 12a of the air injection pipe 12 of the suction transport pipe 2 to the connection part 7a of the air release pipe 7. It is preferable. Air may be stored in the auxiliary air tank 17 during the transport time (2 to 10 seconds) of the transport water column 11. Furthermore, if the auxiliary air tank 17 having a certain capacity is provided, the amount of air injected at a time can be easily controlled by adjusting the pressure from the compressor 16 that injects air into the auxiliary air tank 17.

このように、第2の実施形態によれば、補助空気槽17から吸引輸送管2内に一気に空気を送り込むことによって、空気注入管12の接続部12aの上方の固液混合体9を、吸引輸送管2の空気注入管12の接続部12aから大気開放管7の接続部7aまでの長さ分程度、押し上げることができる。これにより、大気開放管7の接続部7aよりも上方に、第1の実施形態における輸送用水柱10よりも長い輸送用水柱11を形成させることができる。このように第2の実施形態においては、1回で輸送される輸送用水柱を、例えば前記の2.3mから3.3mに長くすることができるため、また、上述したように、その平均沈砂濃度を25%から30%にできるため、効率的な揚砂輸送を実現することができる。更に、従来の10〜15%の使用動力(高圧水ポンプまたは真空ポンプ)での運転が可能となる。   As described above, according to the second embodiment, the solid-liquid mixture 9 above the connection portion 12a of the air injection pipe 12 is sucked by sending air from the auxiliary air tank 17 into the suction transport pipe 2 at a stretch. It can be pushed up by the length from the connection part 12a of the air injection pipe 12 of the transport pipe 2 to the connection part 7a of the air release pipe 7. Thereby, the water column 11 for transport longer than the water column 10 for transport in 1st Embodiment can be formed above the connection part 7a of the air release pipe 7. FIG. As described above, in the second embodiment, the transport water column transported at one time can be increased from 2.3 m to 3.3 m, for example. Since the concentration can be reduced from 25% to 30%, efficient sand transport can be realized. Furthermore, it is possible to operate with a conventional power usage of 10 to 15% (high pressure water pump or vacuum pump).

図6に示す揚砂輸送装置を用いて、以下の条件下で実験を行った。この装置の主要機器の材質はSUS304とした。
・固液回収タンク3の初期真空度:−58.8kPa(−6mAq)
・固液回収タンク3の真空度の通常変動幅:−44.1kPa(−4.5mAq)〜−53.9kPa(−5.5mAq)
・吸引輸送管2:口径80A
・吸引輸送管2の端部2aの開口部:口径65A
・吸引輸送管2の屈曲部2f:屈曲半径0.8mのベンド管×3個
・固液回収タンク3:全容量1.5m、有効容量1.0m
・真空度センサ14:共和電業製、高精度小型圧力変換器(型式:PGM−H)
・真空ポンプ4:動力7.5kW
・大気開放弁6:口径50A、空圧作動ボール弁、急開速度および急閉速度1秒
・大気開放管7:口径50A
Experiments were conducted under the following conditions using the sand transporting apparatus shown in FIG. The material of the main equipment of this apparatus was SUS304.
-Initial vacuum degree of the solid-liquid recovery tank 3: -58.8 kPa (-6 mAq)
-Normal fluctuation range of the degree of vacuum of the solid-liquid recovery tank 3: -44.1 kPa (-4.5 mAq) to -53.9 kPa (-5.5 mAq)
・ Suction transport pipe 2: 80A diameter
-Opening at the end 2a of the suction transport pipe 2: aperture 65A
-Bending part 2f of suction transport pipe 2: Bend pipe x 3 pieces with a bending radius of 0.8 m-Solid-liquid recovery tank 3: Total capacity 1.5 m 3 , Effective capacity 1.0 m 3
・ Vacuum degree sensor 14: manufactured by Kyowa Denki Co., Ltd., high precision small pressure transducer (model: PGM-H)
・ Vacuum pump 4: Power 7.5kW
・ Air release valve 6: Diameter 50A, Pneumatically operated ball valve, rapid opening speed and rapid closing speed 1 second ・ Air release pipe 7: Diameter 50A

ここで、揚程(H)、吸引輸送管2の総輸送距離、吸引輸送管2の横引き配管部2c、2dの水平方向長さ(L)を変えて、それらの条件に見合う大気開放弁6の開閉時間と固液回収タンク3が満水になるまでに要した輸送回数を求めた。この結果を表1に示す。 Here, the lift (H 1 ), the total transport distance of the suction transport pipe 2, and the horizontal lengths (L 1 ) of the horizontal piping sections 2 c and 2 d of the suction transport pipe 2 are changed, and the atmosphere is released to meet these conditions. The opening / closing time of the valve 6 and the number of transportations required until the solid-liquid recovery tank 3 became full were obtained. The results are shown in Table 1.

Figure 0004782059
Figure 0004782059

表1に示すように、実験例1,2,3のいずれにおいても良好な結果が得られた。輸送された沈砂の濃度は20〜35%で変動したが、その平均は27%であった。また、吸引された固液混合体の平均比重は1.5であった。さらに、沈砂池1の最高水位(HWL)は0.8mであり、このときの輸送用水柱の長さは2.5〜3.1m(平均2.8m)であった。このときの輸送用水柱の輸送速度は、固液混合体の沈砂の濃度によって変動し、3〜15m/秒を示すが、表1に示した結果では、総輸送距離を大気開放弁の開かれている時間(輸送時間)で割った値であり、平均6〜7m/秒となった。また、このときの吸引速度は、同様に固液混合体の沈砂の濃度によって変動し、1.5〜2.5m/秒を示した。表1において大気開放弁の閉じられている時間(吸引時間)の設定値3秒は、固液混合体の高さが安定するまでの余裕を持たせた時間である。   As shown in Table 1, good results were obtained in any of Experimental Examples 1, 2, and 3. The transported sand concentration varied from 20-35%, with an average of 27%. The average specific gravity of the sucked solid-liquid mixture was 1.5. Furthermore, the highest water level (HWL) of the sand basin 1 was 0.8 m, and the length of the water column for transportation at this time was 2.5 to 3.1 m (average 2.8 m). At this time, the transportation speed of the water column for transportation fluctuates depending on the concentration of the sediment of the solid-liquid mixture and shows 3 to 15 m / sec. In the results shown in Table 1, the total transportation distance is set to open the air release valve. It was a value divided by the time (transportation time) during which it was 6 to 7 m / sec on average. Moreover, the suction speed at this time was similarly fluctuate | varied with the density | concentration of the sedimentation of a solid-liquid mixture, and showed 1.5-2.5 m / sec. In Table 1, the set value of 3 seconds for the time during which the air release valve is closed (suction time) is a time with a margin until the height of the solid-liquid mixture is stabilized.

図13に示す揚砂輸送弁18を設けた揚砂輸送装置を用いて、以下の条件下で実験を行った。この装置の主要機器の材質はSUS304とした。
・固液回収タンクから吸引輸送弁までの真空度の通常変動幅:−44.1kPa(−4.5mAq)〜−53.9kPa(−5.5mAq)
・吸引輸送管2:口径80A
・吸引輸送弁18:口径80A、空圧作動ストレート型ダイヤフラム弁
・吸引輸送管2の端部2aの開口部:口径65A
・吸引輸送管2の屈曲部2f:屈曲半径0.8mのベンド管×3個
・固液回収タンク3:全容量1.5m、有効容量1.0m
・真空度センサ14:共和電業製、高精度小型圧力変換器(型式:PGM−H)
・真空ポンプ4:動力7.5kW
・大気開放弁6:口径50A、空圧作動ボール弁、急開速度および急閉速度1秒
・大気開放管7:口径50A
・空気注入弁15:口径40A、空圧作動ボール弁、急開速度および急閉速度0.5秒
・空気注入管12:口径40A
An experiment was conducted under the following conditions using a sand transporting device provided with the sand transporting valve 18 shown in FIG. The material of the main equipment of this apparatus was SUS304.
-Normal fluctuation range of the degree of vacuum from the solid-liquid recovery tank to the suction transfer valve: -44.1 kPa (-4.5 mAq) to -53.9 kPa (-5.5 mAq)
・ Suction transport pipe 2: 80A diameter
Suction transport valve 18: aperture 80A, pneumatically actuated straight diaphragm valve. Opening of end 2a of suction transport tube 2: aperture 65A
-Bending part 2f of suction transport pipe 2: Bend pipe x 3 pieces with a bending radius of 0.8 m-Solid-liquid recovery tank 3: Total capacity 1.5 m 3 , Effective capacity 1.0 m 3
・ Vacuum degree sensor 14: manufactured by Kyowa Denki Co., Ltd., high precision small pressure transducer (model: PGM-H)
・ Vacuum pump 4: Power 7.5kW
・ Air release valve 6: Diameter 50A, Pneumatically operated ball valve, rapid opening speed and rapid closing speed 1 second ・ Air release pipe 7: Diameter 50A
Air injection valve 15: aperture 40A, pneumatically operated ball valve, rapid opening speed and rapid closing speed 0.5 sec. Air injection tube 12: aperture 40A

ここで、揚程(H)、吸引輸送管2の総輸送距離、吸引輸送管2の横引き配管部2c、2dの水平方向長さ(L)を変えて、それらの条件に見合う大気開放弁6の開閉時間と固液回収タンク3が満水になるまでに要した輸送回数を求めた。また、比較実験として、空気注入管12および空気注入弁15を使用しない場合についても同様の実験を行った。この結果を表2に示す。 Here, the lift (H 2 ), the total transport distance of the suction transport pipe 2, and the horizontal lengths (L 2 ) of the horizontal pulling pipe portions 2 c and 2 d of the suction transport pipe 2 are changed, and the atmosphere is opened to meet these conditions. The opening / closing time of the valve 6 and the number of transportations required until the solid-liquid recovery tank 3 became full were obtained. As a comparative experiment, the same experiment was also performed when the air injection pipe 12 and the air injection valve 15 were not used. The results are shown in Table 2.

Figure 0004782059
Figure 0004782059

表2に示すように、実験例4,5,6のいずれにおいても良好な結果が得られた。輸送された沈砂の濃度は20〜35%で変動したが、その平均は30%であった。また、吸引された固液混合体の平均比重は1.5であった。さらに、沈砂池1の最高水位(HWL)は2.3mであり、このときの輸送用水柱の長さは3.0〜3.6m(平均3.3m)であった。これに対して、空気注入弁を使用しない比較実験における輸送用水柱の長さは2.0〜2.6m(平均2.3m)と短かった。このときの輸送用水柱の輸送速度は、固液混合体の沈砂の濃度によって変動し、3〜15m/秒を示すが、表2に示した結果では、総輸送距離を大気開放弁の開かれている時間(輸送時間)で割った値であり、平均6〜7m/秒となった。また、このときの固液混合体の吸引速度は、同様に固液混合体の沈砂の濃度によって変動し、1.5〜2.5m/秒を示した。空気注入弁から40kPaの加圧空気を2.5秒間注入後、大気開放弁を開にすると同時に空気注入弁を閉とした。   As shown in Table 2, good results were obtained in any of Experimental Examples 4, 5, and 6. The transported sand concentration varied from 20-35%, with an average of 30%. The average specific gravity of the sucked solid-liquid mixture was 1.5. Furthermore, the highest water level (HWL) of the sand basin 1 was 2.3 m, and the length of the water column for transportation at this time was 3.0 to 3.6 m (average 3.3 m). On the other hand, the length of the water column for transport in the comparative experiment not using the air injection valve was as short as 2.0 to 2.6 m (average 2.3 m). At this time, the transportation speed of the water column for transportation fluctuates depending on the sediment concentration of the solid-liquid mixture and shows 3 to 15 m / sec. However, in the results shown in Table 2, the total transportation distance is set to open the air release valve. It was a value divided by the time (transportation time) during which it was 6 to 7 m / sec on average. Moreover, the suction speed of the solid-liquid mixture at this time was similarly fluctuate | varied with the density | concentration of the sedimentation of a solid-liquid mixture, and showed 1.5-2.5 m / sec. After injecting 40 kPa of pressurized air from the air injection valve for 2.5 seconds, the air release valve was opened and the air injection valve was closed at the same time.

図13に示す揚砂輸送装置を用いて、以下の条件下で実験を行った。吸引輸送管2の口径を100Aとしたが、吸引輸送管2の口径を100Aとすると、その開口面積は80Aの場合の約1.8倍となるため、真空ポンプ4として約1.8倍の性能を有する15kWの真空ポンプを用いた。
・固液回収タンクから吸引輸送弁までの真空度の通常変動幅:−44.1kPa(−4.5mAq)〜−53.9kPa(−5.5mAq)
・揚程(H):20m
・吸引輸送管の水平方向長さ(L):12m
・総輸送距離:32m
・吸引輸送弁18:口径100A、空圧作動ストレート型ダイヤフラム弁
・吸引輸送管2の端部2aの開口部:口径80A
・吸引輸送管2の屈曲部2f:屈曲半径1.0mのベンド管×3個
・固液回収タンク3:全容量1.5m、有効容量1.0m
・真空度センサ14:共和電業製、高精度小型圧力変換器(型式:PGM−H)
・大気開放弁6:口径65A、空圧作動ボール弁、急開速度および急閉速度1秒
・大気開放管7:口径65A
・空気注入弁15:口径50A、空圧作動ボール弁、急開速度および急閉速度0.5秒
・空気注入管12:口径50A
Experiments were conducted under the following conditions using the sand transporting apparatus shown in FIG. Although the suction transport pipe 2 has a diameter of 100A, if the suction transport pipe 2 has a diameter of 100A, the opening area is about 1.8 times that of 80A. A 15 kW vacuum pump with performance was used.
-Normal fluctuation range of the degree of vacuum from the solid-liquid recovery tank to the suction transfer valve: -44.1 kPa (-4.5 mAq) to -53.9 kPa (-5.5 mAq)
- lift (H 2): 20m
· Horizontal length of the suction transport tube (L 2): 12m
・ Total transport distance: 32m
Suction transport valve 18: aperture 100A, pneumatically actuated straight type diaphragm valve Opening of end 2a of suction transport tube 2: aperture 80A
-Bending part 2f of suction transport pipe 2: 3 bend pipes with a bending radius of 1.0 m * Solid-liquid recovery tank 3: Total capacity 1.5 m 3 , Effective capacity 1.0 m 3
・ Vacuum degree sensor 14: manufactured by Kyowa Denki Co., Ltd., high precision small pressure transducer (model: PGM-H)
-Atmospheric release valve 6: aperture 65A, pneumatically operated ball valve, rapid opening speed and rapid closing speed 1 second-Atmospheric release tube 7: aperture 65A
・ Air injection valve 15: Diameter 50A, Pneumatically operated ball valve, rapid opening speed and rapid closing speed 0.5 seconds ・ Air injection pipe 12: Diameter 50A

その結果、吸引輸送管2の口径を100Aと大きくしても、それに見合う真空ポンプ4を選定すれば、吸引輸送管2の口径が80Aのときと同様の良好な結果が得られることがわかった。輸送された沈砂の濃度は20〜35%で変動したが、その平均は30%であった。また、回収タンク3が満水になるまでに要した輸送回数は40回であった。さらに、輸送に要した時間は約6分間と短かった。   As a result, it was found that even if the diameter of the suction transport pipe 2 was increased to 100A, the same good result as that when the suction transport pipe 2 had a diameter of 80A could be obtained by selecting a vacuum pump 4 corresponding thereto. . The transported sand concentration varied from 20-35%, with an average of 30%. Further, the number of transportation required for the collection tank 3 to become full was 40 times. Furthermore, the time required for transportation was as short as about 6 minutes.

図14に示す揚砂輸送装置を用いて、真空度センサ14の真空度検知の実験を以下の条件下で行った。この装置の主要機器の材質はSUS304とした。
・固液回収タンクから吸引輸送弁までの真空度の通常変動幅
:−44.1kPa(−4.5mAq)〜−53.9kPa(−5.5mAq)
・吸引輸送管2:口径80A
・吸引輸送弁18:口径80A、空圧作動ストレート型ダイヤフラム弁
・吸引輸送管2の端部2aの開口部:口径65A
・吸引輸送管2の屈曲部2f:屈曲半径0.8mのベンド管×5個
・固液回収タンク3:全容量1.5m、有効容量1.0m
・真空度センサ14:共和電業製、高精度小型圧力変換器(型式:PGM−H)を横引き配管部に設置。
・真空ポンプ4 :動力7.5kW
・大気開放弁6 :口径50A、空圧作動ボール弁、急開速度および急閉速度1秒
・大気開放管 :口径50A
・空気注入弁15:口径40A、空圧作動ボール弁、急開速度および急閉速度0.5秒
・空気注入管 :口径40A
An experiment for detecting the degree of vacuum of the degree-of-vacuum sensor 14 was performed under the following conditions using the sand transporting apparatus shown in FIG. The material of the main equipment of this apparatus was SUS304.
-Normal fluctuation range of the degree of vacuum from the solid-liquid recovery tank to the suction transfer valve: -44.1 kPa (-4.5 mAq) to -53.9 kPa (-5.5 mAq)
・ Suction transport pipe 2: 80A diameter
Suction transport valve 18: aperture 80A, pneumatically actuated straight diaphragm valve. Opening of end 2a of suction transport tube 2: aperture 65A
-Bending part 2f of suction transport pipe 2: Bend pipe x 5 pieces with a bending radius of 0.8 m-Solid-liquid recovery tank 3: Total capacity 1.5 m 3 , Effective capacity 1.0 m 3
・ Vacuum degree sensor 14: A high-precision small pressure transducer (model: PGM-H) manufactured by Kyowa Denki Co., Ltd. is installed in the horizontal piping.
・ Vacuum pump 4: Power 7.5kW
・ Air release valve 6: Diameter 50A, Pneumatically operated ball valve, rapid opening speed and rapid closing speed 1 second ・ Air release pipe: Diameter 50A
・ Air injection valve 15: aperture 40A, pneumatically operated ball valve, rapid opening speed and rapid closing speed 0.5 seconds ・ Air injection tube: aperture 40A

吸引輸送管2と固液回収タンク3の接続端部2bから10m離れた横引き配管部上面に真空度センサ14を設置し、図9の如く大気開放弁6と空気注入弁15の開閉タイミングにより、沈砂の吸引・輸送を行った。真空度センサ14の検出値をケーブルにより、真空度変換機とグラフ表示機を有するモニタリング装置21に送り、そのときの真空度の変化グラフを求めた。図15はこの結果を示すものである。   A vacuum degree sensor 14 is installed on the upper surface of the horizontal pulling pipe section 10 m away from the connection end 2 b of the suction transport pipe 2 and the solid-liquid recovery tank 3, and depending on the opening / closing timing of the air release valve 6 and the air injection valve 15 as shown in FIG. Sedimentation and transportation of sand was carried out. The detection value of the vacuum degree sensor 14 was sent to a monitoring device 21 having a vacuum degree converter and a graph display by a cable, and a change graph of the vacuum degree at that time was obtained. FIG. 15 shows this result.

全体として真空度が上下しながら、真空度の高い山を有する山谷型曲線が連続して得られた。空気注入弁および大気開放弁が閉となり、水と沈砂の固液混合体が吸引輸送管に吸引され、輸送用水柱が形成されるまで、真空度は低レベル(L)の−20kPa〜−40kPaから高レベル(H)の−40kPa〜−50kPaに上昇し、大気開放弁が開となり輸送が始まると、前記の高レベル(H)から低レベル(L)に移行することがわかった。そしてこの繰返しにより、正常に揚砂・輸送できることがわかった。この山谷型1つは、輸送用水柱の吸引・輸送工程一回分、すなわち、輸送された水柱1回分に相当していた。図15では31回の吸引・輸送が行われ、終了した。   As a whole, a valley-shaped curve having a mountain with a high degree of vacuum was continuously obtained while the degree of vacuum increased and decreased. The degree of vacuum is -20 kPa to -40 kPa at a low level (L) until the air injection valve and the air release valve are closed and the solid-liquid mixture of water and sediment is sucked into the suction transport pipe and the water column for transport is formed. From -40 kPa to -50 kPa of high level (H), it was found that when the air release valve was opened and transportation started, the high level (H) shifted to the low level (L). And by repeating this, it was found that sanding and transportation could be done normally. One Yamaya type corresponds to one suction / transport process of the transport water column, that is, one transported water column. In FIG. 15, 31 suctions / transports were performed and the process was completed.

また、前記低レベル(L)の真空度が設定時間以上続く場合は、大気開放管と固液回収タンク連通し、輸送用水柱が輸送できない異常事態が生ずることがわかった。更に、前記高レベル(H)の真空度が設定時間以上続く場合は、吸引輸送管の開口部から真空度センサ設置位置までの間で、吸引輸送管に詰まりや弁の動作不良により固液回収タンクの高い真空度が直接にかかっているだけで、輸送用水柱が輸送されない異常事態が生ずることがわかった。そして、これらの異常事態をモニタリング装置21から制御部に送信すると共に、工程異常などの警報を出し、全体制御に適用できることが分った。   In addition, it was found that when the low level (L) degree of vacuum lasts for a set time or longer, an abnormal situation occurs in which the water column for transportation cannot be transported through communication between the open air pipe and the solid-liquid recovery tank. Furthermore, if the high level (H) degree of vacuum continues for a set time or longer, the liquid is recovered due to clogging or malfunction of the valve between the suction port and the vacuum sensor installation position. It was found that an abnormal situation occurred in which the water column for transportation was not transported only by the high vacuum of the tank directly applied. Then, it was found that these abnormal situations were transmitted from the monitoring device 21 to the control unit, and an alarm such as a process abnormality was issued, which can be applied to the overall control.

上述した本発明に係る揚砂輸送装置を従来の揚砂輸送装置(高圧水エゼクター式揚砂輸送装置、高圧水に空気を混合する混気ジェット式揚砂輸送装置)と比較した結果を表3に示す。   Table 3 shows the result of comparing the above-described sand-carrying device according to the present invention with a conventional sand-carrying device (high-pressure water ejector-type sand-carrying device, mixed-air jet-type sand-carrying device that mixes air with high-pressure water). Shown in

Figure 0004782059
Figure 0004782059

表3から、本発明に係る揚砂輸送装置は、従来の揚砂輸送装置に比べて省エネルギー化を図ることができ、揚程が高くかつ輸送距離の長いことなどがわかる。このように、本発明に係る揚砂輸送装置は極めて効率的である。   From Table 3, it can be seen that the sand transporting device according to the present invention can save energy compared to the conventional sand transporting device, has a high lift and a long transport distance. Thus, the sand transporting apparatus according to the present invention is extremely efficient.

表3に示すように、高圧水エゼクター式揚砂輸送装置では、75kW程度の容量の高圧水ポンプが必要であったが、本発明に係る揚砂輸送装置によれば、従来の10〜15%の使用動力(真空ポンプ)で運転可能となる。また、沈砂池から沈砂を引上げ、5m〜70mと高揚程のところまで輸送することができる。そして、揚砂輸送装置の主要機器を小さくでき、かつ、吸引輸送管の配置の自由度が高いため、装置全体に対する設置の自由度を向上させることができ、装置システム全体をコンパクトにできる。   As shown in Table 3, the high-pressure water ejector type sand transporting device required a high-pressure water pump with a capacity of about 75 kW, but according to the sand transporting device according to the present invention, the conventional 10-15% It becomes possible to operate with the power used (vacuum pump). In addition, it can lift the sand from the sand basin and transport it to a high lift of 5m to 70m. And since the main apparatus of a sand transporting apparatus can be made small and the freedom degree of arrangement | positioning of a suction transport pipe is high, the freedom degree of the installation with respect to the whole apparatus can be improved, and the whole apparatus system can be made compact.

これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and it goes without saying that the present invention may be implemented in various forms within the scope of the technical idea.

本発明の第1の実施形態における揚砂輸送装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the sand transporting apparatus in the 1st Embodiment of this invention. 図1の揚砂輸送装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the sand transporting apparatus of FIG. 図1の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図1の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図1の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図1の揚砂輸送装置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the sand transporting apparatus of FIG. 本発明の第2の実施形態における揚砂輸送装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the sand transporting apparatus in the 2nd Embodiment of this invention. 図7の揚砂輸送装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the sand transporting apparatus of FIG. 図7の揚砂輸送装置の空気注入弁および大気開放弁の開閉動作を示すタイミングチャートである。It is a timing chart which shows the opening / closing operation | movement of the air injection valve of the sand transporting apparatus of FIG. 図7の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図7の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図7の揚砂輸送装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the sand transport apparatus of FIG. 図7の揚砂輸送装置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the sand transporting apparatus of FIG. 第2の実施形態における揚砂輸送装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the sand transporting apparatus in 2nd Embodiment. 図14に示す揚砂輸送装置を用いた実験から得られた真空度の測定値の一例を示すグラフである。It is a graph which shows an example of the measured value of the vacuum degree obtained from the experiment using the sand transporting apparatus shown in FIG.

符号の説明Explanation of symbols

1 沈砂池
2 吸引輸送管
2a 第1の端部(開口部)
2b 第2の端部
2c,2d 横引き配管部
2e 鉛直配管部
2f 屈曲部
3 固液回収タンク
4 真空ポンプ(減圧装置)
6 大気開放弁
7 大気開放管
7a 接続部
8 制御部
9 固液混合体
10,11 輸送用水柱
12 空気注入管
12a 接続部
14 真空度センサ
15 空気注入弁
16 コンプレッサ(空気移送装置)
17 補助空気槽
18 吸引輸送弁
19 水噴射ノズル
20 制御部
21 モニタリング装置
22 換気弁
1 Sedimentation basin 2 Suction transport pipe 2a First end (opening)
2b 2nd end part 2c, 2d Horizontal pulling pipe part 2e Vertical piping part 2f Bending part 3 Solid-liquid recovery tank 4 Vacuum pump (pressure reduction device)
6 Atmospheric release valve 7 Atmospheric release pipe 7a Connection unit 8 Control unit 9 Solid-liquid mixture 10, 11 Water column 12 for transportation 12 Air injection tube 12a Connection unit 14 Vacuum degree sensor 15 Air injection valve 16 Compressor (air transfer device)
17 Auxiliary air tank 18 Suction transport valve 19 Water injection nozzle 20 Control unit 21 Monitoring device 22 Ventilation valve

Claims (11)

固液回収タンクと、
沈砂池の水中に没される第1の端部と、前記固液回収タンクに接続される第2の端部とを有する吸引輸送管と、
前記固液回収タンクおよび前記吸引輸送管の内部を減圧する減圧装置と、
前記沈砂池の最高水位よりも上方の位置で前記吸引輸送管に接続される大気開放管と、
前記大気開放管を通じて前記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁と、
前記大気開放弁を閉じて前記沈砂池に堆積した沈砂を水とともに固液混合体として前記吸引輸送管内に吸引し、その水位が前記大気開放管との接続部よりも上方に上昇したときに前記大気開放弁を開くことにより前記接続部よりも上方に輸送用水柱を形成し、前記輸送用水柱に作用する大気圧と前記固液回収タンクの真空度との差により前記輸送用水柱を前記固液回収タンクに輸送し、前記輸送用水柱の全体が前記固液回収タンクに入る直前に前記大気開放弁を閉じ、前記大気開放弁の開閉を繰り返すことにより前記輸送用水柱の形成と輸送とを繰り返す制御部と、
を備え、前記吸引輸送管の第1の端部は、50度から70度の傾斜を有するように内径が徐々に小さくなる形状を有し、その開口部の最小口径は該吸引輸送管の口径の1/2以上であることを特徴とする揚砂輸送装置。
A solid-liquid recovery tank;
A suction transport pipe having a first end immersed in the water of the sand basin and a second end connected to the solid-liquid recovery tank;
A decompression device for decompressing the interior of the solid-liquid recovery tank and the suction transport pipe;
An open air pipe connected to the suction transport pipe at a position above the highest water level of the sand basin;
An atmosphere release valve for releasing the connection between the suction transport pipe and the atmosphere release pipe through the atmosphere release pipe;
When the air release valve is closed and the sediment deposited in the sand basin is sucked into the suction transport pipe together with water as a solid-liquid mixture, the water level rises above the connection with the air release pipe. A water column for transportation is formed above the connection portion by opening the atmosphere release valve, and the water column for transportation is formed by the difference between the atmospheric pressure acting on the water column for transportation and the degree of vacuum of the solid-liquid recovery tank. The transport water column is formed and transported by closing the air release valve and repeating opening and closing of the air release valve immediately before the entire transport water column enters the solid-liquid recovery tank. A repeating control unit;
The suction transport pipe has a shape in which the inner diameter gradually decreases so as to have an inclination of 50 degrees to 70 degrees, and the minimum diameter of the opening is the diameter of the suction transport pipe A sand transporting device characterized by being at least 1/2 of the above .
固液回収タンクと、
沈砂池の水中に没される第1の端部と、前記固液回収タンクに接続される第2の端部とを有する吸引輸送管と、
前記固液回収タンクおよび前記吸引輸送管の内部を減圧する減圧装置と、
前記沈砂池の最高水位よりも上方の位置で前記吸引輸送管に接続される大気開放管と、
前記大気開放管を通じて前記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁と、
前記大気開放弁を閉じて前記沈砂池に堆積した沈砂を水とともに固液混合体として前記吸引輸送管内に吸引し、その水位が前記大気開放管との接続部よりも上方に上昇したときに前記大気開放弁を開くことにより前記接続部よりも上方に輸送用水柱を形成し、前記輸送用水柱に作用する大気圧と前記固液回収タンクの真空度との差により前記輸送用水柱を前記固液回収タンクに輸送し、前記輸送用水柱の全体が前記固液回収タンクに入る直前に前記大気開放弁を閉じ、前記大気開放弁の開閉を繰り返すことにより前記輸送用水柱の形成と輸送とを繰り返す制御部とを備え、
前記大気開放管は、水平面に対して50度から70度の角度を持って前記吸引輸送管に接続され、
前記大気開放管の内径は、前記吸引輸送管の口径の1/2以上であり、かつ前記吸引輸送管の口径以下であり、
前記大気開放弁の全開時の開口面積は、前記大気開放管の断面積と略同一であることを特徴とする揚砂輸送装置。
A solid-liquid recovery tank;
A suction transport pipe having a first end immersed in the water of the sand basin and a second end connected to the solid-liquid recovery tank;
A decompression device for decompressing the interior of the solid-liquid recovery tank and the suction transport pipe;
An open air pipe connected to the suction transport pipe at a position above the highest water level of the sand basin;
An atmosphere release valve for releasing the connection between the suction transport pipe and the atmosphere release pipe through the atmosphere release pipe;
When the air release valve is closed and the sediment deposited in the sand basin is sucked into the suction transport pipe together with water as a solid-liquid mixture, the water level rises above the connection with the air release pipe. A water column for transportation is formed above the connection portion by opening the atmosphere release valve, and the water column for transportation is formed by the difference between the atmospheric pressure acting on the water column for transportation and the degree of vacuum of the solid-liquid recovery tank. The transport water column is formed and transported by closing the air release valve and repeating opening and closing of the air release valve immediately before the entire transport water column enters the solid-liquid recovery tank. And a repeating control unit,
The atmosphere open pipe is connected to the suction transport pipe at an angle of 50 degrees to 70 degrees with respect to a horizontal plane;
The inner diameter of the atmosphere release pipe is ½ or more of the diameter of the suction transport pipe and is equal to or smaller than the diameter of the suction transport pipe,
The opening area in the fully open state of the atmosphere opening valve lifting sand transport device you wherein is substantially the same as the cross-sectional area of the air release tube.
前記吸引輸送管の第1の端部の近傍の沈砂を水の噴射により流動化させる水噴射ノズルをさらに備えたことを特徴とする請求項1または2に記載の揚砂輸送装置。 Agesuna The device according to claim 1 or 2, characterized in that the grit in the vicinity of the first end of the suction transport tube further comprising a water injection nozzle to fluidize the injection of water. 前記吸引輸送管の前記大気開放管の接続部より上方に設けられた吸引輸送弁をさらに備えたことを特徴とする請求項1または2に記載の揚砂輸送装置。 The sand transporting apparatus according to claim 1 or 2 , further comprising a suction transport valve provided above a connection portion of the air release pipe of the suction transport pipe. 前記吸引輸送管の第2の端部から3〜15m離れた位置に、該吸引輸送管内の真空度を検出する真空度センサを設け、
前記真空度センサにより検出された真空度をモニタリングするモニタリング装置をさらに設けたことを特徴とする請求項1または2に記載の揚砂輸送装置。
A vacuum degree sensor for detecting the degree of vacuum in the suction transport pipe is provided at a position 3 to 15 m away from the second end of the suction transport pipe,
The sand transporting apparatus according to claim 1 or 2, further comprising a monitoring device for monitoring the degree of vacuum detected by the degree of vacuum sensor.
固液回収タンクと、
沈砂池の水中に没される第1の端部と、前記固液回収タンクに接続される第2の端部とを有する吸引輸送管と、
前記固液回収タンクおよび前記吸引輸送管の内部を減圧する減圧装置と、
前記沈砂池の最高水位よりも上方の位置で前記吸引輸送管に接続される大気開放管と、
前記大気開放管を通じて前記吸引輸送管の大気開放管との接続部を大気開放するための大気開放弁と、
前記沈砂池の水中で前記吸引輸送管に接続される空気注入管と、
前記吸引輸送管の内部に空気を送り込む空気移送装置と、
前記空気注入管を通じて前記空気移送装置によって前記吸引輸送管の空気注入管との接続部から空気を前記吸引輸送管の内部に注入するための空気注入弁と、
前記大気開放弁および前記空気注入弁を閉じて前記沈砂池に堆積した沈砂を水とともに固液混合体として前記吸引輸送管内に吸引し、その水位が前記沈砂池の水位よりも上方に上昇したときに前記空気注入弁を開くことにより前記空気注入管との接続部より上方の固液混合体を上方に押し上げ、前記大気開放弁を開くとともに前記空気注入弁を閉じることにより前記大気開放管との接続部よりも上方に輸送用水柱を形成し、前記輸送用水柱に作用する大気圧と前記固液回収タンクの真空度との差により前記輸送用水柱を前記固液回収タンクに輸送し、前記輸送用水柱の全体が前記固液回収タンクに入る直前に前記大気開放弁を閉じ、前記大気開放弁および前記空気注入弁の開閉を繰り返すことにより前記輸送用水柱の形成と輸送とを繰り返す制御部と、
を備えたことを特徴とする揚砂輸送装置。
A solid-liquid recovery tank;
A suction transport pipe having a first end immersed in the water of the sand basin and a second end connected to the solid-liquid recovery tank;
A decompression device for decompressing the interior of the solid-liquid recovery tank and the suction transport pipe;
An open air pipe connected to the suction transport pipe at a position above the highest water level of the sand basin;
An atmosphere release valve for releasing the connection between the suction transport pipe and the atmosphere release pipe through the atmosphere release pipe;
An air injection pipe connected to the suction transport pipe in the water of the sand basin;
An air transfer device for sending air into the suction transport pipe;
An air injection valve for injecting air into the suction transport pipe from the connection with the air injection pipe of the suction transport pipe by the air transfer device through the air injection pipe;
When the air release valve and the air injection valve are closed and the sediment deposited in the sand basin is sucked into the suction transport pipe as a solid-liquid mixture together with water, and the water level rises above the water level of the sand basin By opening the air injection valve to push up the solid-liquid mixture above the connection with the air injection pipe, opening the atmosphere release valve and closing the air injection valve to A transport water column is formed above the connecting portion, and the transport water column is transported to the solid-liquid recovery tank by a difference between an atmospheric pressure acting on the transport water column and a vacuum degree of the solid-liquid recovery tank, Immediately before the entire water column for transportation enters the solid-liquid recovery tank, the air release valve is closed, and the formation and transportation of the transportation water column are repeated by repeatedly opening and closing the air release valve and the air injection valve. And a control unit,
A sand transporting device characterized by comprising:
前記空気注入管は、水平面に対して50度から70度の角度を持って前記吸引輸送管に接続され、
前記空気注入弁の全開時の開口面積は、前記空気注入管の断面積と略同一であることを特徴とする請求項に記載の揚砂輸送装置。
The air injection pipe is connected to the suction transport pipe at an angle of 50 degrees to 70 degrees with respect to a horizontal plane;
7. The sand transporting apparatus according to claim 6 , wherein an opening area of the air injection valve when fully opened is substantially the same as a cross-sectional area of the air injection pipe.
沈砂池の水中に吸引輸送管の第1の端部を没するとともに、前記吸引輸送管の第2の端部を固液回収タンクに接続し、
前記沈砂池の最高水位よりも上方の位置で大気開放管を前記吸引輸送管に接続し、
前記沈砂池の水中で空気注入管を前記吸引輸送管に接続し、
前記固液回収タンクおよび前記吸引輸送管の内部を減圧し、
前記大気開放管に設けられた大気開放弁と前記空気注入管に設けられた空気注入弁を閉じて前記沈砂池に堆積した沈砂を水とともに固液混合体として前記吸引輸送管内に吸引し、
その水位が前記沈砂池の水位よりも上方に上昇したときに、前記空気注入弁を開いて空気移送装置から空気を前記吸引輸送管の内部に注入して前記空気注入管との接続部より上方の固液混合体を上方に押し上げ、
前記大気開放弁を開くとともに前記空気注入弁を閉じて前記大気開放管との接続部を大気開放して前記大気開放管との接続部よりも上方に輸送用水柱を形成し、
前記輸送用水柱に作用する大気圧と前記固液回収タンクの真空度との差により、前記大気開放管を通じて大気を吸引しつつ、前記輸送用水柱を前記固液回収タンクに輸送し、
前記輸送用水柱の全体が前記固液回収タンクに入る直前に前記大気開放弁を閉じ、
前記大気開放弁および前記空気注入弁の開閉を繰り返すことにより前記輸送用水柱の形成と輸送とを繰り返すことを特徴とする揚砂輸送方法。
Submerging the first end of the suction transport pipe in the water of the sand basin and connecting the second end of the suction transport pipe to the solid-liquid recovery tank;
Connecting an open air pipe to the suction transport pipe at a position above the highest water level of the sand basin;
Connecting an air injection pipe to the suction transport pipe in the water of the sand basin;
Depressurizing the inside of the solid-liquid recovery tank and the suction transport pipe,
The air release valve provided in the air release pipe and the air injection valve provided in the air injection pipe are closed and the sediment deposited in the sand basin is sucked into the suction transport pipe together with water as a solid-liquid mixture,
When the water level rises above the water level of the sand basin, the air injection valve is opened to inject air from the air transfer device into the suction transport pipe and above the connection with the air injection pipe The solid-liquid mixture of
Opening the atmosphere release valve and closing the air injection valve to open the connection portion with the atmosphere release pipe to the atmosphere to form a transport water column above the connection portion with the atmosphere release pipe,
Due to the difference between the atmospheric pressure acting on the transport water column and the degree of vacuum of the solid-liquid recovery tank, the transport water column is transported to the solid-liquid recovery tank while sucking the atmosphere through the open air pipe,
Close the atmosphere release valve immediately before the entire water column for transportation enters the solid-liquid recovery tank,
A sand transporting method characterized by repeating the formation and transportation of the water column for transportation by repeatedly opening and closing the air release valve and the air injection valve.
初期起動時に、前記吸引輸送管の前記大気開放管との接続部と前記第2の端部との間に設けられた吸引輸送弁を閉じた状態で前記固液回収タンクから前記吸引輸送弁までの間を所定の真空度に減圧し、前記固液回収タンクの内部が前記所定の真空度になったときに前記吸引輸送弁を開いて、前記沈砂池に堆積した沈砂を水とともに固液混合体として前記吸引輸送管内に吸引することを特徴とする請求項に記載の揚砂輸送方法。 From the solid-liquid recovery tank to the suction transport valve in a state where the suction transport valve provided between the connection portion of the suction transport pipe with the atmosphere release pipe and the second end is closed at the time of initial startup The pressure is reduced to a predetermined degree of vacuum, and when the inside of the solid-liquid recovery tank reaches the predetermined degree of vacuum, the suction transport valve is opened, and the sediment deposited in the sand settling basin is solid-liquid mixed with water. 9. The sand transporting method according to claim 8 , wherein suction is performed as a body into the suction transport pipe. 前記吸引輸送管の第1の端部の開口部から沈砂と水とを固液混合体として吸引するように、前記第1の端部の近傍に配置した水噴射ノズルから水を噴射して前記吸引輸送管の第1の端部の開口部近傍に集砂することを特徴とする請求項に記載の揚砂輸送方法。 Injecting water from a water injection nozzle disposed in the vicinity of the first end so as to suck the sand and water as a solid-liquid mixture from the opening of the first end of the suction transport pipe, 9. The sand transporting method according to claim 8 , wherein sand is collected near the opening of the first end of the suction transport pipe. 前記吸引輸送管に設けられた真空度センサにより該吸引輸送管内の真空度を検出し、
検出された真空度をモニタリングして、輸送された水柱数および/または水柱の輸送が正常に行われているか否かを判断することを特徴とする請求項に記載の揚砂輸送方法。
Detecting the degree of vacuum in the suction transport pipe by a vacuum degree sensor provided in the suction transport pipe,
9. The method according to claim 8 , wherein the detected degree of vacuum is monitored to determine the number of transported water columns and / or whether the water columns are transported normally.
JP2007090410A 2006-07-05 2007-03-30 Pumping sand transport device and pumping sand transport method Active JP4782059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090410A JP4782059B2 (en) 2006-07-05 2007-03-30 Pumping sand transport device and pumping sand transport method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006185446 2006-07-05
JP2006185446 2006-07-05
JP2007090410A JP4782059B2 (en) 2006-07-05 2007-03-30 Pumping sand transport device and pumping sand transport method

Publications (2)

Publication Number Publication Date
JP2008030021A JP2008030021A (en) 2008-02-14
JP4782059B2 true JP4782059B2 (en) 2011-09-28

Family

ID=39119989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090410A Active JP4782059B2 (en) 2006-07-05 2007-03-30 Pumping sand transport device and pumping sand transport method

Country Status (1)

Country Link
JP (1) JP4782059B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803818B2 (en) * 2007-01-11 2011-10-26 株式会社タクマ Sedimentation treatment equipment and sedimentation treatment method
CN102091756A (en) * 2010-12-02 2011-06-15 苏州苏铸成套装备制造有限公司 Pneumatic conveying device
JP5767517B2 (en) * 2011-07-05 2015-08-19 株式会社東芝 Sludge treatment apparatus and treatment method thereof
JP5854822B2 (en) * 2011-12-26 2016-02-09 水ing株式会社 Sand transport equipment
JP6092571B2 (en) * 2012-10-24 2017-03-08 水ing株式会社 Sediment transport apparatus and sediment transport method
JP6196526B2 (en) * 2013-10-29 2017-09-13 水ing株式会社 Blocking prevention device for sand pipe and sand lifting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431202B2 (en) * 1973-06-25 1979-10-05
JPS5564200A (en) * 1978-11-06 1980-05-14 Nasu Kazuhito High-head suction device
JPS59119305A (en) * 1982-12-27 1984-07-10 Minolta Camera Co Ltd Focus detector
JP2701149B2 (en) * 1988-07-22 1998-01-21 株式会社鶴見製作所 Pump station sedimentation basin collection equipment
JP3416167B2 (en) * 1992-04-23 2003-06-16 株式会社鶴見製作所 Solid-liquid suction / lift device
JPH07103200A (en) * 1992-04-23 1995-04-18 Tsurumi Mfg Co Ltd Solid-liquid sucking and pumping device and its usage
JPH07103199A (en) * 1992-04-23 1995-04-18 Tsurumi Mfg Co Ltd Solid-liquid sucking and pumping device and its usage
JP3416166B2 (en) * 1992-04-23 2003-06-16 株式会社鶴見製作所 Solid-liquid suction / lift device and method of using same
JPH0942198A (en) * 1995-07-31 1997-02-10 Tsurumi Mfg Co Ltd Recovering device for solid-liquid mixture
JP3401608B2 (en) * 1995-12-04 2003-04-28 ▲たく▼夫 望月 Sand lifting equipment
JPH11193800A (en) * 1997-12-26 1999-07-21 Shimizu Corp Water pumping unit
JP3805920B2 (en) * 1999-02-19 2006-08-09 株式会社細野建設 Vacuum pumping device
JP2001280298A (en) * 2000-03-30 2001-10-10 Sumitomo Heavy Ind Ltd Earth and sand sucking device

Also Published As

Publication number Publication date
JP2008030021A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4782059B2 (en) Pumping sand transport device and pumping sand transport method
JP4754462B2 (en) Sand collection device for sand basin
JP6092571B2 (en) Sediment transport apparatus and sediment transport method
JP5854822B2 (en) Sand transport equipment
JP5575545B2 (en) Injection type sand pumping system
EP1879675A2 (en) Method and apparatus for treating lime slurry for grit removal
JP2023103340A (en) Solid-liquid separation system
CN107552252B (en) Mortar separation equipment for kitchen waste
JP5663188B2 (en) Scum removing device and scum removing method
CN105730843A (en) Sediment discharge device
EP1566498B1 (en) Method of pumping wastewater, and wastewater pump
JP2010242542A (en) Grit lifter and method of lifting
JP5883579B2 (en) Sanding device and method
JP2018158277A (en) Sand lifting and conveying method and sand lifting and conveying device
JP6196526B2 (en) Blocking prevention device for sand pipe and sand lifting device
CN203208740U (en) Unpowered clean water device of sewage tank
JP4869908B2 (en) Settlement cleaning equipment and settling method
JP5213438B2 (en) Dried sand transport device, transported sand transport method, and relay pot
CN107090902B (en) Pond mud-discharging dredging device
CN215906151U (en) Seabed heavy oil vacuum pumping device
JP2005193099A (en) Sludge solubilization apparatus
CN214808661U (en) Automatic sludge discharge equipment for sedimentation oil removal tank
JP5631766B2 (en) Sand lifting equipment
RU2254939C1 (en) Method of flushing fuel systems of flying vehicles
CN116292446B (en) Non-blocking high-lift lifting air stripping pump and use method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250