JPH03151205A - Manufacture for ceramic superconductive body - Google Patents

Manufacture for ceramic superconductive body

Info

Publication number
JPH03151205A
JPH03151205A JP1290739A JP29073989A JPH03151205A JP H03151205 A JPH03151205 A JP H03151205A JP 1290739 A JP1290739 A JP 1290739A JP 29073989 A JP29073989 A JP 29073989A JP H03151205 A JPH03151205 A JP H03151205A
Authority
JP
Japan
Prior art keywords
ceramic
metal sheet
composite
heat
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1290739A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1290739A priority Critical patent/JPH03151205A/en
Publication of JPH03151205A publication Critical patent/JPH03151205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To enable formation of a long-sized ceramic superconductive body, by a method wherein a reinforced metallic sheet obtained by reinforcing a stabilized metal superior in thermal and electric conductivity with a heat- resistant high-strength metallic material is used for one metallic sheet out of the two metallic sheets constituting a composite. CONSTITUTION:A stabilized metallic sheet 1 is fed at a fixed speed through an uncoiler 5, over which a ceramic superconductive substance 4 is fed in a stratified state quantitatively through a hopper 6 arranged upward. Then the stratified ceramic superconductive substance 4 is made into a composite body 8 by feeding a reinforced metallic sheet 3 obtained by reinforcing a stabilized metal with a heat-resistant high-strength metallic material onto the stratified ceramic superconductive substance 4 from an uncoiler 15 through a guide roll 7. It is made into a composite material 10 by rolling with a rolling roll 9 and wound up round a coiler 11. Then sintering, feed of oxygen and regulation of crystalline structure are performed by heat-treating the same and the same is made into a ceramic superconductive body. With this construction, an excellent and long-sized ceramic superconductive body is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマグネット、コイル、電流リード、限流器、ケ
ーブル等の導体として用いて好適な機械的並びに電気的
性質に優れたセラミックス超電導々体の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a ceramic superconductor with excellent mechanical and electrical properties suitable for use as a conductor in magnets, coils, current leads, current limiters, cables, etc. Relating to a manufacturing method.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年液体窒素温度で超電導を示すLa−Ba−Cu−0
系、La−3r−Cu−0系、Y−Ba−Cu−0系、
B i −3r−Ca−Cu−0系、Tl−Ba−Ca
−Cu−0系等のセラミックス超電導体が見出され、マ
グネット等への応用が盛んに検討されている。
In recent years, La-Ba-Cu-0 has shown superconductivity at liquid nitrogen temperatures.
system, La-3r-Cu-0 system, Y-Ba-Cu-0 system,
B i -3r-Ca-Cu-0 system, Tl-Ba-Ca
Ceramic superconductors such as the -Cu-0 series have been discovered, and their application to magnets and the like is being actively studied.

ところで上記のセラミックス超電導体は脆い為これを線
材等に加工するにはセラミックス超電導体となし得る原
料物質を金属製チューブに充填して伸延加工する方法に
よりなされており、得られた線材は加熱処理することに
よりセラミックス超電導々体に製造される。
By the way, since the above-mentioned ceramic superconductor is brittle, in order to process it into a wire etc., a metal tube is filled with a raw material that can be made into a ceramic superconductor and stretched.The obtained wire is then heat-treated. By doing so, a ceramic superconductor is manufactured.

斯くのごとくして得られたセラミックス超電導々体はセ
ラミックス超電導体層の外周に金属層が被覆された導体
であるが、この金属層は内部のセラミックス超電導体層
を補強するとともに、使用中の冷却媒体としての作用及
びクエンチ事故における電流のバイパスとしての作用を
も果たすものである。
The ceramic superconductor thus obtained is a conductor in which the outer periphery of the ceramic superconductor layer is coated with a metal layer, and this metal layer not only reinforces the internal ceramic superconductor layer but also provides cooling during use. It also functions as a medium and as a current bypass in the event of a quench accident.

しかしながら前記の金属層にはAg等の熱及び電気伝導
性に優れた金属が用いられ、しかも加熱処理は800〜
1000℃の高温で長時間施す為、得られるセラミック
ス超電44体の上記金属層は軟化して補強作用が低下し
、例えばこのセラミックス超電44体をコイリングする
際にかかる張力等により金属層は簡単に伸び変形を起こ
して内部のセラミックス超電導体層に歪みやクラック等
が生じ、その結果臨界電流密度(Jc)等の特性が低下
してしまうという問題があった。
However, the metal layer used is a metal with excellent thermal and electrical conductivity such as Ag, and the heat treatment is
Because the process is carried out at a high temperature of 1000°C for a long period of time, the metal layer of the resulting 44 ceramic superelectric bodies softens and its reinforcing effect decreases. There is a problem in that the ceramic superconductor layer is easily stretched and deformed, causing distortion and cracks in the internal ceramic superconductor layer, resulting in a decrease in properties such as critical current density (Jc).

又前述の如くセラミックス超電導体となし得る原料物質
は金属チューブに充填したり、金属板で挟んで伸延加工
する為に長尺体の製造が困難で生産性に劣るものであっ
た。
Furthermore, as mentioned above, the raw material that can be used as a ceramic superconductor is filled into a metal tube or stretched between metal plates, making it difficult to manufacture a long body and resulting in poor productivity.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは機械的並びに電気的
性質に優れた長尺のセラミックス超電44体を製造する
方法を提供することにある即ち本発明は、走行する金属
シート上にセラミックス超電導体又はその前駆物質を層
状に連続的に供給し、更にその上に別の金属シートを被
せて複合体を形成し、当該複合体に、そのまま又は所望
の伸延加工を施したのち、所定の加熱処理を施してセラ
ミックス超電44体を製造する方法であって、前記複合
体を構成する2枚の金属シートのうち少なくとも1枚の
金属シートに熱及び電気伝導性に優れた安定化金属を耐
熱性高強度金属材料で強化した強化型金属シートを用い
ることを特徴とするものである。
The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a method for manufacturing 44 long ceramic superelectric bodies with excellent mechanical and electrical properties. Specifically, the present invention involves continuously supplying a ceramic superconductor or its precursor in a layered manner onto a traveling metal sheet, further covering it with another metal sheet to form a composite, and adding the following to the composite: A method for manufacturing a ceramic superelectric 44 body as it is or by subjecting it to a desired elongation process and then subjecting it to a predetermined heat treatment, the method comprising: at least one metal sheet of the two metal sheets constituting the composite body; The invention is characterized by the use of a reinforced metal sheet in which a stabilized metal with excellent thermal and electrical conductivity is reinforced with a heat-resistant, high-strength metal material.

本発明方法において用いられるセラミックス超電導体又
はその前駆物質(以下セラミックス超電導物質と略記)
としては前記したような種々系のセラミックス超電導体
が広く通用されるに加えて上記セラミックス超電導体の
前駆物質であるセラミックス超電導体となし得る原料物
質からセラミックス超電導体に合成されるまでの中間体
、例えばセラミックス超電導体構成元素の混合体又は共
沈混合物又は酸素欠損型複合酸化物又は上記構成元素の
合金等が使用可能でこれらの前駆物質は酸素含有雰囲気
中で加熱処理することによりセラミックス超電導体に反
応するものである。
Ceramic superconductor or its precursor used in the method of the present invention (hereinafter abbreviated as ceramic superconductor)
In addition to the various types of ceramic superconductors that are widely used as described above, intermediates from raw materials that can be made into ceramic superconductors, which are precursors of the above-mentioned ceramic superconductors, to synthesis into ceramic superconductors, For example, a mixture or coprecipitated mixture of the constituent elements of the ceramic superconductor, an oxygen-deficient composite oxide, or an alloy of the above constituent elements can be used, and these precursors can be converted into the ceramic superconductor by heat treatment in an oxygen-containing atmosphere. It is something that reacts.

本発明方法において、強化型金属シートを構成する安定
化金属シートには、Ag、Au、Cu。
In the method of the present invention, the stabilized metal sheet constituting the reinforced metal sheet includes Ag, Au, and Cu.

Ir%Pd、PL又はその合金が用いられるが、中でも
Ag又はAg合金は酸素透過性が良好なので加熱処理工
程においてセラミックス超電導体への酸素の供給が充分
になされて高いJcが得られる上、熱伝導性が高いので
耐クエンチ性に優れ、通電量を高めることができて好適
である。又安定化金属シートを強化する耐熱性高強度金
属材料には、Ni、Cr、Mo、W又はその合金等が適
しており、その形状はシート状、線状等任意の形状のも
のが用いられる。
Ir%Pd, PL, or their alloys are used. Among them, Ag or Ag alloys have good oxygen permeability, so oxygen can be sufficiently supplied to the ceramic superconductor in the heat treatment process, and a high Jc can be obtained. Since it has high conductivity, it has excellent quench resistance and is suitable because it can increase the amount of current applied. In addition, Ni, Cr, Mo, W, or their alloys are suitable as the heat-resistant, high-strength metal material for reinforcing the stabilizing metal sheet, and any shape such as sheet or linear can be used. .

次に上記強化型金属シートの構成例を図を参照して説明
する。
Next, an example of the structure of the reinforced metal sheet will be explained with reference to the drawings.

第1図イルへは強化型金属シートの横断面図であって、
lは安定化金属シート、2は耐熱性高強度金属材料であ
る。
FIG. 1 is a cross-sectional view of a reinforced metal sheet,
1 is a stabilized metal sheet, and 2 is a heat-resistant high-strength metal material.

図イ、口は安定化金属シート1内に薄い耐熱性高強度金
属シート2をそれぞれ1枚又は2枚複合したものである
。この場合は耐熱性高強度金属シート2に第2図イ〜ハ
に福示したような穴あきシート(図イ)やネット状のシ
ート(図口、)\)を用いると安定化金属シート内の酸
素透過性が阻害されず好ましいものである。又第1図/
%は安定化金属シー)1内に薄い幅狭の耐熱性高強度金
属シート2を間隔をあけて3枚横に並べて複合したもの
、第1図二〜へは棒状の耐熱性高強度金属材料2を複数
本長手方向に配置して複合、したもので、いずれも酸素
透過性が良好なものである。上記において、耐熱性高強
度金属材料にPt等の貴金属をメツキしておくと安定化
金属との密着性が改善されて好ましいものである。
The opening in Figure A is a composite of one or two thin, heat-resistant, high-strength metal sheets 2 inside a stabilizing metal sheet 1. In this case, if a perforated sheet (Fig. A) or a net-like sheet (Fig. This is preferable since the oxygen permeability of the material is not inhibited. Also, Figure 1/
% is a composite of three thin, narrow heat-resistant, high-strength metal sheets 2 placed side by side at intervals in 1 (stabilized metal sheet); 2 are arranged in the longitudinal direction in a composite manner, and both have good oxygen permeability. In the above, it is preferable to plate the heat-resistant, high-strength metal material with a noble metal such as Pt, as this improves the adhesion with the stabilizing metal.

而してかかる強化型金属シートはコンフォーム押出し法
や冷間又は熱間圧接等によって作製される。
Such reinforced metal sheets are manufactured by conform extrusion, cold or hot welding, or the like.

以下に本発明方法を図を参照して具体的に説明する。The method of the present invention will be specifically explained below with reference to the drawings.

第3図は本発明方法の一実施例を示す工程説明図である
。図において3は強化型金属シート、4はセラミックス
超電導物質である。
FIG. 3 is a process explanatory diagram showing one embodiment of the method of the present invention. In the figure, 3 is a reinforced metal sheet, and 4 is a ceramic superconducting material.

安定化金属シート1をアンフィラー5から一定の速度で
供給し、この安定化金属シート1上ム:(ごラミックス
超電導物質4を上方に配置したホッパー〇から定量的に
層状に供給した。次にこの層状のセラミックス超電導物
質4上に第1図に示したような断面構造の強化型金属シ
ート3をアンフィラー15からガイドロー・ルアを通し
て供給して被せて複合体8となし、次いでこの複合体8
を圧延ロール9にて圧延して複合材lOが製造されコイ
ラー11に巻取られる。
The stabilized metal sheet 1 was fed at a constant rate from the unfiller 5, and the laminated superconducting material 4 was quantitatively fed in a layered manner from the hopper 〇 placed above. A reinforced metal sheet 3 having a cross-sectional structure as shown in FIG. body 8
is rolled with a rolling roll 9 to produce a composite material IO, which is wound around a coiler 11.

上記において複合体の伸延加工には上記の圧延加工の他
押出し、圧延、引抜き、スェージング等の任意の加工方
法が適用される。
In addition to the above-mentioned rolling process, any processing method such as extrusion, rolling, drawing, swaging, etc. can be applied to the stretching process of the composite body.

而して上記伸延加工後の複合材は酸素含有雰囲気中で8
00〜1000°Cの温度にて加熱処理してセラミック
ス超電導物質のイとラミックス超電導体への反応並びに
焼結、上記焼結体への酸素補給及び結晶構造の調整等が
なされてセラミックス超電導々体に製造される。
Therefore, the composite material after the above-mentioned stretching process is
The ceramic superconducting material is heated at a temperature of 00 to 1000°C to react and sinter into a lamic superconductor, supplying oxygen to the sintered body, adjusting the crystal structure, etc., and making the ceramic superconductor. Manufactured in the body.

本発明方法の途中工程で作製される複合材の断面横14
例を第4図イル・二に例示した。図イに示したものはセ
ラミックス超電導体層を安定化金属シー+−iと安定化
金属シートlを耐熱性高強度金属シート2で強化した強
化型金属シート3て挟み圧延した構造のものである。又
回目に示したものはセラミックス超電導体層3を安定化
金属シート1を棒状の耐熱性高強度金属材料2で強化し
た2枚の強化型金属シート3により挟み圧延した構造の
ものである。又図ハ、二に示したものは強化型金属シー
ト3の上部に1個又は複数個の溝を設け、この溝内にセ
ラミックス超電導体を充填しその上に安定化金属シート
を被せ圧延したものである。
Cross section 14 of the composite material produced in the intermediate step of the method of the present invention
An example is shown in Figure 4, Ill. 2. The one shown in Figure A has a structure in which a ceramic superconductor layer is sandwiched and rolled between a reinforced metal sheet 3 made by reinforcing a stabilized metal sheet +-i and a stabilized metal sheet L with a heat-resistant high-strength metal sheet 2. . The structure shown in the second example has a structure in which a ceramic superconductor layer 3 is sandwiched and rolled between two reinforced metal sheets 3 in which a stabilized metal sheet 1 is reinforced with a rod-shaped heat-resistant high-strength metal material 2. Also, what is shown in Figures C and 2 is one in which one or more grooves are provided in the upper part of the reinforced metal sheet 3, the grooves are filled with ceramic superconductors, and a stabilizing metal sheet is placed over the grooves and rolled. It is.

上記において複数の溝を設けた強化型金属シー1−を用
いることにより多芯超電導線の製造が可能で、このシー
トを複数枚積層することにより更に多芯化が可能である
In the above, by using the reinforced metal sheet 1- provided with a plurality of grooves, it is possible to manufacture a multicore superconducting wire, and by laminating a plurality of sheets, it is possible to further increase the number of cores.

〔作用〕[Effect]

本発明方法においては、走行する金属シート1−にイご
ラミノクス超電導物質を連続的に供給し1、−のセラミ
ックス超電導物質上に金属シー・トを被せて複合体を形
成するので長尺の1ごラミンクツ。、紹電導々体が製造
可能である。
In the method of the present invention, the Igoraminox superconducting material is continuously supplied to the traveling metal sheet 1-, and the metal sheet is placed over the ceramic superconducting material 1,- to form a composite. Lamin shoes. , an inductive conductor can be manufactured.

又上記のセラミックス超電導物質をis”c” )2枚
の金属シートの少なくとも1枚の金属シー・トに安定化
金属シーl−を耐熱性高強度金属材料で強化した強化型
金属シートを用いるので、加熱処理後においてもセラミ
ックス超電導な体は高い強度が保持され、外部からの曲
げ歪、衝撃、張力等によって内層のセラミックス超電導
体が破損したりするようなことがなく又セラミックス超
電導体層と安定化金属シートとの熱膨張差も耐熱性高強
度金属シートによって緩和されて加熱処理時の熱歪みに
よる割れ発生が防止される。
In addition, since the above ceramic superconducting material is "c"), at least one of the two metal sheets is a reinforced metal sheet in which the stabilized metal sheet l- is reinforced with a heat-resistant high-strength metal material. Even after heat treatment, the ceramic superconducting body maintains high strength, and the inner ceramic superconductor layer is not damaged by external bending strain, impact, tension, etc., and is stable with the ceramic superconductor layer. The heat-resistant, high-strength metal sheet also alleviates the difference in thermal expansion between the heat-resistant and high-strength metal sheet, thereby preventing cracks from occurring due to thermal strain during heat treatment.

上記の強化型金属シートに用いられる耐熱性高強度金属
シートは穴をあける等して通気性を持たせておくと加熱
処理時に強化型金製シー1−内の酸素透過が良好になさ
れてJc等の特性が向上する〔実施例〕 以干に本発明を実だり例U゛より詳細に説明する。
If the heat-resistant high-strength metal sheet used for the above-mentioned reinforced metal sheet is made breathable by making holes, oxygen permeation inside the reinforced metal sheet 1- will be improved during heat treatment. [Example] The present invention will now be explained in more detail with reference to Example U.

実施例1 第3図乙゛例示し六二+1程に従ってセラミックス超電
専々体庖製jLH11−1た7、 〜定速度で走(−dる幅5−厚さ1.、、。のAg製安
定化金属ジートドにB 1xSrs CaCu5 O。
Embodiment 1 A ceramic superelectric body JLH11-1 was manufactured in accordance with the example shown in Fig. 3 (62+1). B1xSrs CaCu5O on stabilized metal substrate.

の組成の仮焼成粉体をホッパーから定量的に供給し、こ
の仮焼成粉体上に0.21≠の穴が占穴率30%であけ
た輻4IIIlllll厚さa 2 vl+=+のNi
lシートを、幅4.5 its厚さ0.5 mmの2枚
のAg製シートで挟んで圧接した強化型金属シートを連
続的に被せて複合体となした。次にこの複合体を圧延ロ
ールにて圧延して幅6゜2111111厚さ2.01の
第4図イに示した構造の複合材となし、IKgの張力を
掛けてコイラーに巻き取った。
A calcined powder having a composition of is quantitatively supplied from a hopper, and a hole of 0.21≠ is drilled on the calcined powder with a hole coverage ratio of 30%.
A composite was made by continuously covering the L sheet with a reinforced metal sheet which was sandwiched and pressed between two Ag sheets each having a width of 4.5 its and a thickness of 0.5 mm. Next, this composite was rolled with a rolling roll to form a composite material having a width of 6°21111111 and a thickness of 2.01 as shown in FIG.

しかるのら上記複合材を大気中で850”C2OH加熱
処理してセラミックス超電導々体を製造しプこ。
However, the above composite material was subjected to 850'' C2OH heat treatment in the atmosphere to produce a ceramic superconductor.

実施例2 実施例1において、強化型金属シートに用いたNi製シ
ートに無穴のNi製シートを用いた他は実施例1と同じ
方法によりセラミックス超電14体を製造した。
Example 2 Fourteen ceramic superelectric bodies were manufactured in the same manner as in Example 1 except that a non-perforated Ni sheet was used as the reinforced metal sheet.

実施例3 コンフォーム法により製造した、幅61厚さ1゜2−の
Ag製シート内にAuメツキした0、 2麟■φのSU
S線5本を等間隔に横に並べて強化した強化型金属シー
ト上に実施例1で用いたのと同じ仮焼成粉体を加熱溶融
して連続的に層状に供給して凝固せしめ、この溶融凝固
層上に上記のAg製シートをSUS線で強化した前記の
強化型金属シートを被せて複合体となし、この複合体を
実施例1と同じ方法により圧延、巻取り、加熱処理して
幅7.2−厚さ2−のセラミックス超電14体を製造し
た。
Example 3 SU of 0, 2 mm ■φ plated with Au in an Ag sheet with a width of 6 mm and a thickness of 1° and 2 mm manufactured by the conform method.
The same pre-fired powder used in Example 1 was heated and melted on a reinforced metal sheet reinforced by arranging five S wires horizontally at equal intervals, and the same pre-fired powder as used in Example 1 was continuously supplied in a layered manner to solidify. The above-mentioned reinforced metal sheet made by reinforcing the above-mentioned Ag sheet with SUS wire is placed on the solidified layer to form a composite, and this composite is rolled, wound, and heat-treated in the same manner as in Example 1 to obtain a width. 7.14 ceramic superelectric bodies having a thickness of 2-2 were manufactured.

実施例4 実施例1において、複合金属シートに第2図口に示した
と同じ形状の幅8Il■厚さ0.2m−のSUS製ネッ
トをAgシートで挟んで圧接し、この圧接体の片面のA
gシートに幅11Ill深さ0.5 wIwrの溝を4
本設けた第4図二に示したのと同じ形状の強化型金属シ
ートを用い、この強化型金属シートの溝内に実施例1で
用いたのと同じ仮焼成粉体を充填し、次いでこの仮焼成
粉体上に輻8層層厚さ2m+1のAg製安定化金属シー
トを被せ、圧延後の複合材の寸法を幅121III厚さ
2mmとなした他は実施例1と同じ方法によりセラミッ
クス超電14体を製造した。
Example 4 In Example 1, a SUS net having the same shape as shown in the opening of Figure 2 and having a width of 8 l and a thickness of 0.2 m was sandwiched between Ag sheets and pressure-bonded to the composite metal sheet, and one side of this pressure-welded body was A
4 grooves with a width of 11 Ill and a depth of 0.5 w Iwr on the g sheet.
A reinforced metal sheet having the same shape as shown in FIG. A ceramic superstructure was formed in the same manner as in Example 1, except that a stabilized metal sheet made of Ag with 8 layers and a thickness of 2 m + 1 was placed on the calcined powder, and the dimensions of the composite material after rolling were 121 III in width and 2 mm in thickness. 14 electric bodies were manufactured.

比較例1 実施例1において、強化型金属シートの代わりに輻4.
5 mm厚さhlのAg製の安定化金属シートを用いた
他は実施例1と同じ方法によりセラミックス超電44体
製造した。
Comparative Example 1 In Example 1, the reinforced metal sheet was replaced with radial 4.
44 ceramic superelectric bodies were manufactured in the same manner as in Example 1, except that a stabilized metal sheet made of Ag and having a thickness of 5 mm was used.

比較例2 実施例3において、強化型金属シートの代わりに幅6m
m厚さ1.2 m−のAg製安定化金属シートを用いた
他は実施例3と同じ方法によりセラミックス超電14体
を製造した。
Comparative Example 2 In Example 3, a width of 6 m was used instead of the reinforced metal sheet.
Fourteen ceramic superelectric bodies were manufactured in the same manner as in Example 3, except that a stabilized metal sheet made of Ag and having a thickness of 1.2 m was used.

斯くのごとくして得られた各々のセラミックス超電14
体について、Tc及びJcを測定した。
Each ceramic superelectric 14 obtained in this way
Tc and Jc were measured for the body.

上記において、Jcは液体N2中、無磁場下で測定した
。結果は第1表に示した。
In the above, Jc was measured in liquid N2 without a magnetic field. The results are shown in Table 1.

第1表 ※強化型金属シートの補強材。Table 1 *Reinforcement material for reinforced metal sheets.

第1表より明らかなように本発明方法品はTc、Jcが
高い値のものとなった。この中で実施例2のJcがやや
低い値となったのは、強化材のNiシートが無穴の為加
熱処理時に酸素の供給が充分なされなかった為である。
As is clear from Table 1, the products produced by the method of the present invention had high values of Tc and Jc. Among these, Jc of Example 2 was a slightly lower value because the Ni sheet of the reinforcing material had no holes, so oxygen was not sufficiently supplied during the heat treatment.

又実施例3のJcが高い値を示したのは、セラミックス
超電導物質を溶融して供給した為にセラミックス超電導
体層の密度が向上したことによるものである。
Furthermore, the reason why Jc of Example 3 showed a high value is because the density of the ceramic superconductor layer was improved because the ceramic superconductor material was supplied in a molten state.

これに対し比較方法品(比較例1.2)は、金属シート
に強化型金属シートを用いなかった為に、いずれもJc
が低い値のものとなった。
On the other hand, the comparative method product (Comparative Example 1.2) did not use a reinforced metal sheet, so both Jc
had a low value.

比較方法品のセラミックス超電導体層をSEM観察した
ところクラックやボイドが多数観察された。これは加熱
処理時における熱膨張差によりセラミックス超電導体層
に熱歪みが生じたり、又は加熱処理によって安定化金属
シートが軟化して取扱い時にセラミックス超電導体層に
張力がかかった為に生じたものである。特に比較例2は
セラミックス超電導物質を溶融して供給した為に安定化
金属シートが軟化して複合材を巻取る際にも内層のセラ
ミックス超電導物質に割れが入ったものと考えられる。
When the ceramic superconductor layer of the comparative method product was observed by SEM, many cracks and voids were observed. This is due to thermal distortion occurring in the ceramic superconductor layer due to the difference in thermal expansion during heat treatment, or because the stabilizing metal sheet is softened by heat treatment and tension is applied to the ceramic superconductor layer during handling. be. In particular, in Comparative Example 2, the stabilizing metal sheet was softened because the ceramic superconducting material was supplied in a molten state, and it is thought that the ceramic superconducting material in the inner layer also cracked when the composite material was wound up.

〔効果〕〔effect〕

以十述べたように、本発明方法によれば超電導特性並び
に機械的強度4こ優れた長尺のセラミックス超電導々体
が得られ、T梁上顕著な効果を奏する。
As described above, according to the method of the present invention, a long ceramic superconductor having excellent superconducting properties and mechanical strength can be obtained, and a remarkable effect can be achieved on the T-beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イルへは強化型金属シートの実施例を示す横断面
図、第2回イ〜ハは通気性を持たせメ;=耐熱性高強度
金属シートの実施例を示す平面図、第3図は本発明方法
の一実施例を示す工程説明図、第4図イル二は本発明方
法の途中工程で得られる判、3−強化型金属シー【・、
4−セラミックス超電導物質、8−・−複合体、1〇−
複合材。
Figure 1 is a cross-sectional view showing an example of a reinforced metal sheet, Part 2 A-C is a plan view showing an example of a heat-resistant high-strength metal sheet; The figure is a process explanatory diagram showing one embodiment of the method of the present invention.
4-Ceramic superconducting material, 8-・-composite, 10-
Composite material.

Claims (1)

【特許請求の範囲】[Claims] 走行する金属シート上にセラミックス超電導体又はその
前駆物質を層状に連続的に供給し、更にその上に別の金
属シートを被せて複合体を形成し、当該複合体に、その
まま又は所望の伸延加工を施したのち、所定の加熱処理
を施してセラミックス超電導々体を製造する方法であっ
て、前記複合体を構成する2枚の金属シートのうち少な
くとも1枚の金属シートに熱及び電気伝導性に優れた安
定化金属シートを耐熱性高強度金属材料で強化した強化
型金属シートを用いることを特徴とするセラミックス超
電導々体の製造方法。
A ceramic superconductor or its precursor is continuously supplied in a layer on a running metal sheet, and another metal sheet is placed on top of it to form a composite, and the composite is subjected to a stretching process as is or as desired. A method for producing a ceramic superconductor by subjecting at least one of the two metal sheets constituting the composite to thermal and electrical conductivity. A method for manufacturing a ceramic superconductor, characterized by using a reinforced metal sheet in which an excellent stabilized metal sheet is reinforced with a heat-resistant, high-strength metal material.
JP1290739A 1989-11-08 1989-11-08 Manufacture for ceramic superconductive body Pending JPH03151205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290739A JPH03151205A (en) 1989-11-08 1989-11-08 Manufacture for ceramic superconductive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290739A JPH03151205A (en) 1989-11-08 1989-11-08 Manufacture for ceramic superconductive body

Publications (1)

Publication Number Publication Date
JPH03151205A true JPH03151205A (en) 1991-06-27

Family

ID=17759900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290739A Pending JPH03151205A (en) 1989-11-08 1989-11-08 Manufacture for ceramic superconductive body

Country Status (1)

Country Link
JP (1) JPH03151205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites

Similar Documents

Publication Publication Date Title
EP0281444B1 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramic
JPH03151205A (en) Manufacture for ceramic superconductive body
JP3930163B2 (en) Method for manufacturing metal substrate for oxide superconductor
JP3187829B2 (en) Superconductor and manufacturing method
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JPH0589729A (en) Manufacture of high strength ceramic superconductive conductor
JPH03133010A (en) Ceramics superconductor manufacture
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH07114838A (en) Oxide superconducting cable
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JPH01164799A (en) Production of superconducting molded body
JPH0494014A (en) Ceramic superconductive conductor
JPH04342911A (en) Manufacture of tape-like ceramic superconductive conductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH0721856A (en) Method for manufacturing superconductive wire
JPH03134917A (en) Manufacture of ceramic superconductor
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JPH05114319A (en) Manufacture of oxide superconducting wire rod
JPH0432111A (en) Manufacture of compound superconductive wire
JPH0528857A (en) Manufacture of ceramic superconductor
JPH03158203A (en) Manufacture of ceramic superconductor
JPH01281612A (en) Manufacture of oxide superconducting wire material
JPH0397679A (en) Production of metal/ceramics composite