JPH03151023A - Photochemical treatment of gaseous harmful material - Google Patents

Photochemical treatment of gaseous harmful material

Info

Publication number
JPH03151023A
JPH03151023A JP1289280A JP28928089A JPH03151023A JP H03151023 A JPH03151023 A JP H03151023A JP 1289280 A JP1289280 A JP 1289280A JP 28928089 A JP28928089 A JP 28928089A JP H03151023 A JPH03151023 A JP H03151023A
Authority
JP
Japan
Prior art keywords
gas
irradiation
harmful gas
oxygen
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289280A
Other languages
Japanese (ja)
Inventor
Keiichi Tanaka
啓一 田中
Kenji Harada
賢二 原田
Teruaki Hisanaga
久永 輝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1289280A priority Critical patent/JPH03151023A/en
Publication of JPH03151023A publication Critical patent/JPH03151023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To photooxidize the harmful gas and to conveniently and efficiently treat the harmful gas by irradiating the harmful gas with vacuum UV rays in the presence of air or oxygen. CONSTITUTION:A gas contg. an organochlorine-based solvent such as trichloroethylene, dichloroethane, chloroform and carbon tetrachloride, fluorocarbons such as CFC-11 and CFC-113, benzene, methyl alcohol, diethyl ether, etc., is photooxidized and decomposed in the presence of gaseous oxygen, hydrogen peroxide or an aq. soln. of the peroxides such as periodate, perchlorate and chlorate. Synthetic quartz capable of transmitting the light of >= about 200nm wavelength is used as the material for the ordinary low-pressure mercury lamp as the vacuum UV source. Internal irradiation and external irradiation are used as the photoirradiation method. The irradiated acidic gas is passed through aq. alkali and removed. The harmful gas is conveniently and efficiently treated by this method.

Description

【発明の詳細な説明】 [従来技術] 本発明は処理困難な気体状有害物質に、空気あるいは酸
素の存在中で、真空紫外光を照射することにより、不安
定な励起状態を作り出し、同時に、共存する酸素よりオ
ゾンを生成させて、有害物質の分解を促進させる汚染空
気の浄化及び有害気体℃処理方法に関するものである。
[Detailed Description of the Invention] [Prior Art] The present invention creates an unstable excited state by irradiating a gaseous harmful substance that is difficult to treat with vacuum ultraviolet light in the presence of air or oxygen, and at the same time, The present invention relates to a method for purifying contaminated air and treating harmful gases by generating ozone from coexisting oxygen and promoting the decomposition of harmful substances.

有機溶剤等の低沸点の化合物や有害ガスを用いる工場及
び研究室等では、蒸気やガスの洩れにより室内の空気が
汚染されている。これらの有機溶剤やガスには毒性が大
きく、処理の困難なものが多い。例えば、トリクロロエ
チレン、テトラクロロエチレン、1,1.1−トリクロ
ロエタン等の有機塩素系溶剤は発ガン性が知られている
。また冷媒やスプレーに使われるフロン類、はオゾン層
を破壊することから、使用の規制が行なわれている。
In factories, laboratories, and the like that use low-boiling-point compounds such as organic solvents and harmful gases, indoor air is contaminated by leaks of steam and gas. Many of these organic solvents and gases are highly toxic and difficult to treat. For example, organic chlorine solvents such as trichlorethylene, tetrachlorethylene, and 1,1.1-trichloroethane are known to be carcinogenic. Furthermore, the use of fluorocarbons used in refrigerants and sprays is regulated because they destroy the ozone layer.

この他にも、各種の有害な有機溶剤や悪臭を出す気体が
知られている。
In addition, various harmful organic solvents and gases that emit bad odors are known.

[発明が解決しようとする問題点] 従来これらの空気汚染物質は吸着による除去が行なわれ
てきた。しかしこの方法は、吸着剤が高価であること、
吸着後の処理が困難であること、脱着により逆に汚染さ
れる場合が多いこと等の欠点を有していた。また適当な
吸着剤が見出されていない有害気体も多い。
[Problems to be Solved by the Invention] Conventionally, these air pollutants have been removed by adsorption. However, this method requires expensive adsorbents;
It has disadvantages such as difficulty in processing after adsorption and contamination due to desorption. Furthermore, there are many harmful gases for which suitable adsorbents have not been found.

[問題点を解決するための手段] 本発明者は、これらの欠点を克服できる気体状有害物質
の処理方法について鋭意研究を行なった結果、空気ある
いは酸素の存在する状態で、波長200nm以下の真空
紫外光を照射することによって、光酸化する、簡易で、
効率の大きい有害気体の処理方法を発明するに至った。
[Means for Solving the Problems] As a result of intensive research into a method for treating gaseous harmful substances that can overcome these drawbacks, the inventors of the present invention have found that, in the presence of air or oxygen, vacuum treatment with a wavelength of 200 nm or less A simple method that photooxidizes by irradiating it with ultraviolet light.
This led to the invention of a highly efficient method for treating harmful gases.

本発明に用いる真空紫外光源は、通常の低圧水銀灯のラ
ンプの材質に、200nm以下の波長の光を透過できる
合成石英を用いたものである。光源の容量は大きいほど
1分解力は強力であるが、通常の工場等の作業場からの
汚染空気には100W程度の光源で十分である。
The vacuum ultraviolet light source used in the present invention uses synthetic quartz, which can transmit light with a wavelength of 200 nm or less, as the material of a normal low-pressure mercury lamp. The larger the capacity of the light source, the stronger the one resolution power, but a light source of about 100 W is sufficient for contaminated air from a workplace such as a normal factory.

本方法は基本的には光酸化分解であり、光照射と同時に
酸素が存在することが必要である。空気中に存在する希
薄な有害物質の分解には、そのまま真空紫外光を照射す
るのみで十分である。しかし有害物質の濃度が大きくな
ると、酸素が不足となり、分解されずに高分子量の新し
い物質ができる場合が多い。このような場合は、完全分
解するために、酸素をあらかじめ加えるか、途中で追加
艙ることか必要である。酸素としては空気や市販の酸素
ガスのほかに、過酸化水素でもよい。また過酸化物塩、
例えば過ヨウ素酸塩、過塩素酸塩、塩素酸塩を用いるこ
ともできる。これらの過酸化物塩は水に溶解して用い、
その上面を有害気体が通るようにして用いる、過酸化物
塩水溶液の濃度は有害気体の量によって異なるが5通常
1〜10規定が適当である。
This method is basically a photooxidative decomposition and requires the presence of oxygen at the same time as the light irradiation. Irradiation with vacuum ultraviolet light is sufficient to decompose dilute harmful substances present in the air. However, when the concentration of harmful substances increases, oxygen becomes insufficient and new substances with high molecular weight are often formed without being decomposed. In such cases, it is necessary to add oxygen in advance or to add oxygen during the process to ensure complete decomposition. The oxygen may be air, commercially available oxygen gas, or hydrogen peroxide. Also peroxide salts,
For example, periodates, perchlorates, chlorates can also be used. These peroxide salts are dissolved in water and used.
The concentration of the aqueous peroxide salt solution used in such a way that harmful gases pass through its upper surface varies depending on the amount of harmful gases, but is usually 1 to 10 normal.

この方法で分解できる気体は、前記のトリクロロエチレ
ン、テトラクロロエチレン、1,1.1−トリクロロエ
タンの他に、ジクロロエタン、ジクロロエチレン、テト
ラクロロエタン、クロロホルム、四塩化炭素等の有機塩
素系溶剤、フロン11、フロン12、フロン113、フ
ロン114、フロン115等のフロン類、ベンゼン、ト
ルエン、クロロベンゼン、メチルコール、メチルアルコ
ール、プロピルアルコール、ブチルコール、アセトン、
ジエチルエーテル等であるが、これに限られるものでは
ない。
In addition to the above-mentioned trichlorethylene, tetrachlorethylene, and 1,1.1-trichloroethane, gases that can be decomposed by this method include dichloroethane, dichloroethylene, tetrachloroethane, chloroform, organic chlorine solvents such as carbon tetrachloride, Freon 11, Freon 12, Freon such as Freon 113, Freon 114, and Freon 115, benzene, toluene, chlorobenzene, methyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, acetone,
Examples include diethyl ether, but are not limited thereto.

光照射方法としては、内部照射と外部照射の両捌法があ
る。内部照射は汚染空気の通る管の中に光源を設置して
、直接照射する方法である。外部照射は管の外から管の
壁を通して照射する方法である。外部照射では、管の材
質は石英であれば真空紫外域の光も相当量通過できるが
、合成石英を用いると光の減衰が少ない。しかし内部照
射の方が管の材質の制限が少ないことや、光の強度の関
係で、外部照射より望ましい。
Light irradiation methods include both internal irradiation and external irradiation methods. Internal irradiation is a method in which a light source is installed inside a tube through which contaminated air passes and irradiates it directly. External irradiation is a method of irradiating light from outside the tube through the wall of the tube. For external irradiation, if the tube is made of quartz, a considerable amount of light in the vacuum ultraviolet region can pass through, but if synthetic quartz is used, there is less attenuation of the light. However, internal irradiation is preferable to external irradiation because there are fewer restrictions on tube material and light intensity.

光照射後の空気は、有機ハロゲン化合物では塩化水素や
フッ化水素を含み、また窒素化合物やイオウ化合物では
硝酸や亜硝酸及び硫酸や亜硫酸を含んでいる。これらの
酸性気体は、アルカリ性の水中に光照射処理した後の気
体を通すことにより、取り除くことができる。
The air after light irradiation contains organic halogen compounds such as hydrogen chloride and hydrogen fluoride, and nitrogen compounds and sulfur compounds such as nitric acid, nitrous acid, sulfuric acid, and sulfurous acid. These acidic gases can be removed by passing the light-irradiated gas through alkaline water.

[実施例] 次に本発明を実施例により、更に詳細に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 トリクロロエチレンの32,000ppmを含む空気を
4.3mflの石英ガラス製の容器に入れ、→ンプの管
が合成石英製である70Wの低圧水銀灯で、10,20
.30分間外部照射した。この時光源と容器の間に窒素
を流しながら照射を行なった。光照射前後の容器内の気
体をガスクロマトグラフで分析して、分解量を測定した
。その結果、それぞれの照射時間で84.94.98%
が分解していた。
Example 1 Air containing 32,000 ppm of trichlorethylene was put into a 4.3 mfl quartz glass container, and a 70 W low-pressure mercury lamp with a pump tube made of synthetic quartz was heated to 10,20 mfl.
.. External irradiation was performed for 30 minutes. At this time, irradiation was performed while flowing nitrogen between the light source and the container. The gas in the container before and after light irradiation was analyzed using a gas chromatograph to measure the amount of decomposition. As a result, 84.94.98% for each irradiation time
was decomposing.

実施例2 実施例1と同様にして、1,1.1−トリクロロエタン
の5,200ppmを含む空気を実施例1と同様の容器
に入れて、同様の光源で照射した。
Example 2 In the same manner as in Example 1, air containing 5,200 ppm of 1,1,1-trichloroethane was placed in the same container as in Example 1, and irradiated with the same light source.

20分及び50分照射後にそれぞれ68%及び85%が
分解した。
68% and 85% were degraded after 20 and 50 minutes of irradiation, respectively.

実施例3 フロン11の248.OOOppmを含む空気に35%
の過酸化水素水50μQを加え、実施例1と同様にして
、10,20.30分間照射した。
Example 3 Freon 11 248. 35% in air containing OOOppm
50 μQ of hydrogen peroxide solution was added, and irradiation was performed for 10, 20, and 30 minutes in the same manner as in Example 1.

それぞれの照射時間でフロン11の93.97゜98%
が分解した。更に40分間照射した後に、炭酸ガスの量
を分析した結果、10−5モルの炭酸ガスが生成してい
た。これは最初に加えたフロン11の全量が炭酸ガスに
変換されたことに相当し、中間生成物も完全分解してい
ることを示している。
93.97°98% of Freon 11 at each irradiation time
was decomposed. After irradiation for an additional 40 minutes, the amount of carbon dioxide gas was analyzed and it was found that 10-5 moles of carbon dioxide gas had been produced. This corresponds to the fact that the entire amount of Freon 11 added at the beginning was converted to carbon dioxide gas, indicating that the intermediate products were also completely decomposed.

実施例4 実施例1で用いた容器に酸素を満たし、フロン113を
34.OOOppmになるように加えた。
Example 4 The container used in Example 1 was filled with oxygen, and 34.5% of Freon 113 was added. It was added so that it became OOOppm.

これを実施例1と同様にして照射した。10分間の照射
で51%となり、1時間では15%に減少した。更に4
0分間照射した後に、この気体を0゜1規定の水酸化ナ
トリウム水溶液中に導き、水中の陰イオンを分析した結
果、3X10−@モルの塩素イオンとフッ素イオンが検
出された。これはフロン113の全量が分解して、塩素
イオンとフッ素イオンが遊離した場合に相当している。
This was irradiated in the same manner as in Example 1. It was 51% after 10 minutes of irradiation, and decreased to 15% after 1 hour. 4 more
After irradiation for 0 minutes, this gas was introduced into a 0°1N aqueous sodium hydroxide solution, and as a result of anion analysis in the water, 3×10 −@mol of chlorine ions and fluorine ions were detected. This corresponds to the case where the entire amount of Freon 113 is decomposed and chlorine ions and fluorine ions are liberated.

実施例5 実施例1と同様に容器に窒素を満たした後に、フロン1
1を28,800ppmになるように加えた。これを実
施例1と同様にして照射した。15分間の照射で11%
に減少したが、炭酸ガスはほとんど発生しなかった。こ
れはフロン11が分解せずに、他の物質に転換したこと
を示していると思われる。次に同様の試料に、6規定の
過塩素ナトリウム100μQを加え、同様にして15分
間照射した。フロン11は5.4%となり、2X10−
6モルの炭酸ガスが発生した。これはフロン全量の約半
分が炭酸ガスに変換したことを示している。
Example 5 After filling the container with nitrogen in the same manner as in Example 1,
1 was added at a concentration of 28,800 ppm. This was irradiated in the same manner as in Example 1. 11% after 15 minutes of irradiation
However, almost no carbon dioxide gas was generated. This seems to indicate that Freon 11 was converted into other substances without being decomposed. Next, 100 μQ of 6N sodium perchlorate was added to the same sample and irradiated for 15 minutes in the same manner. Freon 11 is 5.4%, 2X10-
6 moles of carbon dioxide gas was generated. This indicates that approximately half of the total amount of fluorocarbons was converted to carbon dioxide gas.

手続補正書 2化技研第1532号 ] 1、事件の表示   平成1年特許願第289280号
2、発明の名称  気体状有害物質の光化学的処理方法
3、補正をする者 事件との関係特許出願人 住所  東京都千代田区霞が関1丁目3番1号氏名(1
14)工業技術院長  杉油  賢4、指定代理人 斜 函 8、補正の内容 本願明細書中において、以下のとおり補正を行います。
Procedural Amendment 2 Kagiken No. 1532] 1. Indication of the case 1999 Patent Application No. 289280 2. Title of the invention Photochemical treatment method for gaseous hazardous substances 3. Person making the amendment Patent applicant related to the case Address: 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo Name (1
14) Director of the Agency of Industrial Science and Technology Ken Sugiyu 4, Designated Agent Slant Box 8, Contents of Amendment The following amendments will be made to the specification of this application.

(1)第4頁第16行から第17行の「・・・クロロベ
ンゼン、メチルコール、メチルアルコール、プロピルア
ルコール、ブチルコール、・・・」を、「・・・クロロ
ベンゼン、メチルアルコール、プロピルアルコール、ブ
チルアルコール、・・・」に訂正します。
(1) From page 4, line 16 to line 17, replace "...chlorobenzene, methyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol,..." with "...chlorobenzene, methyl alcohol, propyl alcohol,..." Corrected to "butyl alcohol..."

Claims (3)

【特許請求の範囲】[Claims] (1)空気中の有害物質を真空紫外光により分解する方
法。
(1) A method of decomposing harmful substances in the air using vacuum ultraviolet light.
(2)気体状有害物質に空気あるいは酸素を混合し、あ
るいは有害気体を過酸化水素水または過酸化物塩の水溶
液の上に通しながら、 真空紫外光を照射して分解する方法。
(2) A method of decomposing gaseous hazardous substances by mixing air or oxygen, or passing the hazardous gas over a hydrogen peroxide solution or an aqueous peroxide salt solution, and irradiating the substance with vacuum ultraviolet light.
(3)光分解処理後の気体をアルカリ性水溶液に通して
、生成無機物質を除く方法。
(3) A method in which the gas after photolysis treatment is passed through an alkaline aqueous solution to remove generated inorganic substances.
JP1289280A 1989-11-07 1989-11-07 Photochemical treatment of gaseous harmful material Pending JPH03151023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289280A JPH03151023A (en) 1989-11-07 1989-11-07 Photochemical treatment of gaseous harmful material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289280A JPH03151023A (en) 1989-11-07 1989-11-07 Photochemical treatment of gaseous harmful material

Publications (1)

Publication Number Publication Date
JPH03151023A true JPH03151023A (en) 1991-06-27

Family

ID=17741129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289280A Pending JPH03151023A (en) 1989-11-07 1989-11-07 Photochemical treatment of gaseous harmful material

Country Status (1)

Country Link
JP (1) JPH03151023A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317579A (en) * 1992-05-14 1993-12-03 Renzacci Spa Ind Lavatrici Method and device for removing from contact water chloride solvent residue formed at drying stage in cloth dry cleaning machine
US5309275A (en) * 1990-06-21 1994-05-03 Canon Kabushiki Kaisha Semiconductor optical amplifying apparatus
EP0642821A1 (en) * 1993-09-10 1995-03-15 Colt International Holdings A.G. Method and apparatus for removing odours from a gas stream
US8529831B1 (en) * 2010-12-17 2013-09-10 Nano And Advanced Materials Institute Limited System and method for air purification using an enhanced multi-functional coating based on in-situ photocatalytic oxidation and ozonation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163731A (en) * 1980-05-21 1981-12-16 Toshiba Corp Removing equipment for corrosive gas
JPS62191025A (en) * 1986-02-14 1987-08-21 Nec Corp Method for treating exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163731A (en) * 1980-05-21 1981-12-16 Toshiba Corp Removing equipment for corrosive gas
JPS62191025A (en) * 1986-02-14 1987-08-21 Nec Corp Method for treating exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309275A (en) * 1990-06-21 1994-05-03 Canon Kabushiki Kaisha Semiconductor optical amplifying apparatus
JPH05317579A (en) * 1992-05-14 1993-12-03 Renzacci Spa Ind Lavatrici Method and device for removing from contact water chloride solvent residue formed at drying stage in cloth dry cleaning machine
JP2572189B2 (en) * 1992-05-14 1997-01-16 レンザッシ ソシエタ ペル アチオニ − インダストリア ラバトリシ Method and apparatus for removing chloride solvent residues formed during a drying stage from contact water in a garment dry cleaning machine
EP0642821A1 (en) * 1993-09-10 1995-03-15 Colt International Holdings A.G. Method and apparatus for removing odours from a gas stream
US8529831B1 (en) * 2010-12-17 2013-09-10 Nano And Advanced Materials Institute Limited System and method for air purification using an enhanced multi-functional coating based on in-situ photocatalytic oxidation and ozonation

Similar Documents

Publication Publication Date Title
US4966665A (en) Method for photochemical decomposition of volatile organic chlorine compound in vent gas
US4913827A (en) Process for purifying and de-pyrogenating water
KR950006684B1 (en) Process and apparatus for the decomposition of organochlorine solvent contained in water
JPH08504666A (en) Contaminated water treatment method
US6051188A (en) Process and device for the disinfection of a medical apparatus
Kusakabe et al. Destruction rate of volatile organochlorine compounds in water by ozonation with ultraviolet radiation
JPH03151023A (en) Photochemical treatment of gaseous harmful material
JPH07144137A (en) Method for decomposing halogenated hydrocarbon
US20070170121A1 (en) Ultraviolet laser system for decomposing chemical pollutants
JPH09234338A (en) Photolysis of organochlorine compound
JPH08243351A (en) Decomposition method of organic chlorine compound
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JPH05269374A (en) Device for decomposing low boiling point organic halogen
JP2809367B2 (en) Exhaust gas treatment method
JP3739169B2 (en) Organochlorine compound decomposition equipment
JPH0194998A (en) Photochemical treatment of waste water
JPH11262780A (en) Decomposition treatment of organohalogen compound
JPS6216129B2 (en)
JPH09253447A (en) Method for photodecomposition of organic compound
JP2928976B2 (en) Detoxification method of harmful organic substances
JPH02184393A (en) Oxidation of organic compound in water
JP2005225785A (en) Method for decomposing difficultly decomposable fluorinated carboxylic acid
JPH09234339A (en) Photodecomposition of organochlorine compound
JP4824185B2 (en) Method for decomposing and removing trichloroethane
JP2003305362A (en) Fluid action apparatus and method for action on fluid