JPH03150148A - Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature - Google Patents

Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature

Info

Publication number
JPH03150148A
JPH03150148A JP28899189A JP28899189A JPH03150148A JP H03150148 A JPH03150148 A JP H03150148A JP 28899189 A JP28899189 A JP 28899189A JP 28899189 A JP28899189 A JP 28899189A JP H03150148 A JPH03150148 A JP H03150148A
Authority
JP
Japan
Prior art keywords
glass frit
steel
vibration
damping
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28899189A
Other languages
Japanese (ja)
Inventor
Masatoshi Shinozaki
正利 篠崎
Hiroshi Hosoda
博 細田
Toshihiro Sekine
稔弘 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28899189A priority Critical patent/JPH03150148A/en
Publication of JPH03150148A publication Critical patent/JPH03150148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To manufacture a weldable vibration-damping metal sheet to be used at the ultra-high temperature by interposing glass frit and conductive filler having speci fied value or more of thermal expansion factor or a face on which two metal sheets face each other, dissolving the glass frit by heating and fixing the metal sheets by pressure. CONSTITUTION:A mixture of glass frit 10 or glass slit and conductive filler is sprayed uniformly on a steel belt 1b by a glass frit spraying device 2 and overlapped with a steel belt 1a at the position of a deflector roll 3. Thermal expansion factor of the glass frit 10 to be used should be 8.5 X 10<-6>/ deg.C or over. When the factor is smaller than said number, release between the steel belt or warp of vibration-damping steel is generated, as shrinkage factor is different from that of the steel belts in the course of cooling process. The steel belts are heated in a heating oven 4 and the glass frit 10 is melted. Said heating is carried out in inactive gas such as N2 in order to prevent the steel belts from getting oxidized. The steel belts coming out of the heating oven 4 are passed through the pressure rolls 5, fixed by pressure and integrated to form a vibration-damping steel sheet 1c, and passed through between cooling nozzles 6 to be cooled down, wound on a coiler 8, and cut to manufacture a vibration-damping steel sheet coil.

Description

【発明の詳細な説明】 〔産業上の利川分野〕 この発明は、特に150℃以上の高温に曝される部品の
素材に適した可溶接性超高温用制振金属板の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to a method for manufacturing a weldable ultra-high temperature vibration damping metal plate, which is particularly suitable as a material for parts exposed to high temperatures of 150° C. or higher.

(従来の技術〕 2枚の金属板の間に導電性フィラーを含む接着材層を介
在させた可溶接性複合制振金属板としては、例えば特公
昭60−912号公報や特開昭62−234917号公
報等に開示されたものがある。
(Prior Art) Weldable composite vibration damping metal plates in which an adhesive layer containing a conductive filler is interposed between two metal plates are disclosed in, for example, Japanese Patent Publication No. 60-912 and Japanese Patent Application Laid-Open No. 62-234917. Some of them have been disclosed in official gazettes, etc.

前者は接着材として酢酸ビニル樹脂系やアクリル樹脂系
その他の熱可塑性樹脂、及びユリア樹脂、メラミン樹脂
、エポキシ樹脂その他の熱硬化性樹脂を使用している。
The former uses vinyl acetate resin, acrylic resin, and other thermoplastic resins, as well as urea resin, melamine resin, epoxy resin, and other thermosetting resins as adhesives.

後者は同様な樹脂を液状にし、これに導電性フィラーを
混入した混合体を噴射式ノズルにより均一に分散し、乾
燥後、2枚の金属板を加圧ロール等で圧着して再溶接性
複合金属板を形成している。
The latter is made by liquefying a similar resin, mixing it with a conductive filler, and uniformly dispersing the mixture using a spray nozzle. After drying, two metal plates are pressed together using a pressure roll or the like to create a re-weldable composite. It forms a metal plate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような従来の複合型制振金属板は
、金属板の間に熱可塑性樹脂又は熱硬化性樹脂等の粘弾
性樹脂を介装して積層接着したものであって、このよう
な樹脂を使用しているために、割振作用における損失係
数特性は第2図のグ ーラフ、■、■、■に示すように
温度依存性の高いものしか得られていない、すなわち、
■は常温用。
However, the conventional composite damping metal plates as described above are laminated and bonded with a viscoelastic resin such as a thermoplastic resin or a thermosetting resin interposed between the metal plates. Because of this, the loss coefficient characteristics in the allocation action are only highly temperature dependent, as shown in the graphs ■, ■, and ■ in Figure 2. In other words,
■ is for room temperature.

■は中温用、■は高温用として製造された制振鋼板の損
失係数特性を示したものであって、それぞれ使用目的に
適した温度に対応して良好な特性が得られるように樹脂
を選定している。しかし、グラフから明らかなように、
良好な特性の得られるそれぞれの温度範囲は極めて狭く
、さらに150℃以上の使用目的に耐えられるような制
振金属板は開発されていないため、適用範囲がほぼ15
0℃以下に限定されるという、大きい問題点があった。
■ indicates the loss coefficient characteristics of vibration damping steel plates manufactured for medium temperature use and ■ for high temperature use, and resins are selected to obtain good characteristics corresponding to the temperature suitable for the intended use. are doing. However, as is clear from the graph,
The temperature range in which good characteristics can be obtained is extremely narrow, and no vibration damping metal plate has been developed that can withstand temperatures above 150°C, so the applicable range is approximately 150°C.
There was a major problem in that it was limited to temperatures below 0°C.

この発明は、このような従来の問題点にかんがみてなさ
れたものであって、金属板の接着材としてガラスフリッ
トを使用することにより、上記課題を解決することを目
的としている。
The present invention has been made in view of these conventional problems, and aims to solve the above problems by using glass frit as an adhesive for metal plates.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、上記目的を達成するために、2枚の金属板
が対向する面に熱膨張係数が8.5X10− h / 
c以上のガラスフリット及び導電性フィラーを介在せし
め、加熱により前記ガラスフリットを溶解せしめるとと
もに前記2枚の金属板を圧着して可溶接性超高温用制振
金属板とする製造方法を提供するものである。
In order to achieve the above object, this invention has a thermal expansion coefficient of 8.5X10-h/2 on opposing surfaces of two metal plates.
Provided is a manufacturing method for producing a weldable ultra-high temperature vibration damping metal plate by interposing a glass frit of c or more and a conductive filler, melting the glass frit by heating, and pressing the two metal plates together. It is.

本発明は、上記のような構成となっていて、2枚の金属
板の接着材としてガラスフリットが使用されているため
、従来、高温用とされていた制振金属板の使川温度15
0°Cをはるかに超え、500℃程度においても常温時
と同様に損失係数の低下しない特性を有する超高温用制
振金属板として適用範囲を拡大できる。また、使用する
ガラスフリットの熱膨張率が8.5 X 10−6/℃
以上であるため、加熱溶着した後の冷却に際し、金属板
との収縮率が余り異ならないので、制振金属板に内部応
力を生ずることもなく、従って金属板間の!11 離あ
るいは金属板の反りといった不只合は発生しない。
The present invention has the above-described structure, and since glass frit is used as an adhesive between the two metal plates, the vibration-damping metal plate, which was conventionally used for high temperatures, can be used at a temperature of 15.
The range of application can be expanded as a vibration damping metal plate for ultra-high temperatures, which has the property that the loss coefficient does not decrease even at temperatures far exceeding 0°C and around 500°C, similar to those at room temperature. In addition, the coefficient of thermal expansion of the glass frit used is 8.5 x 10-6/℃
Because of the above, when cooling after heating and welding, the shrinkage rate is not much different from that of the metal plate, so no internal stress is generated in the vibration-damping metal plate, and therefore the gap between the metal plates is reduced. 11 No defects such as separation or warping of the metal plate occur.

〔実施例〕〔Example〕

以下、この発明を図面、グラフを参照して説明する。第
1図は本発明に係る金属板の52造ラインのe念図であ
って、金属板として銅帯を使用した実施例である。
The present invention will be described below with reference to drawings and graphs. FIG. 1 is a conceptual diagram of a 52-manufacturing line for metal plates according to the present invention, and is an embodiment in which a copper strip is used as the metal plate.

図において、la、lbはそれぞれ図外のアンコイラか
ら供給される鋼帯であって、これらの鋼帯の対向面には
、耐食性又は接着性向上の目的で、必要に応じめっき処
理を施される。まず、矢印方向に送られてきた調帯lb
上には、ガラスフリット散布装置2によって均一にガラ
スフリット10又はガラスフリットに導電性フィラーの
混入した混合体が散布され、別途送られてきた鋼帯1a
とデフレクタロール3位置において重ね合わされる。
In the figure, la and lb are steel strips supplied from an uncoiler not shown, and the opposing surfaces of these steel strips are plated as necessary to improve corrosion resistance or adhesion. . First, the tuning band lb sent in the direction of the arrow
A glass frit 10 or a mixture of glass frit and a conductive filler is uniformly sprinkled on top of the steel strip 1a, which is sent separately, by a glass frit scattering device 2.
and the deflector roll are overlapped at the 3rd position.

この際、鋼帯1a、lbとの間に挟装されるガラスフリ
ットlOの量は調帯の板厚や製品としての用途に応じて
l = 100 g / t+fであり、抵抗溶接性を
持たせるために混入される金属粉等の導電性フィラーの
量は、同様の理由で両銅帯間の隙間空間に対し、1〜9
0voj!%とされる。
At this time, the amount of glass frit lO sandwiched between the steel strips 1a and lb is l = 100 g / t + f, depending on the thickness of the strip and the intended use as a product, to provide resistance weldability. For the same reason, the amount of conductive filler such as metal powder mixed in is 1 to 9 for the gap space between both copper strips.
0voj! %.

次いで、重ね合わされた調帯は加熱炉4内において所要
温度で所要時間加熱されてガラスフリラ1−10は溶融
する。この炉内における加熱は調帯の酸化防止のためN
2等の不活性ガスの中で行われる。
Next, the superimposed strips are heated in the heating furnace 4 at a required temperature for a required time to melt the glass fliller 1-10. The heating in this furnace is N to prevent oxidation of the tuning belt.
It is carried out in a 2nd class inert gas.

加熱炉4から出た調帯は加圧ロール5を通って圧着され
、一体化して一枚の調帯、すなわち割振鋼板ICとなり
、冷却ノズル6の間を通って冷却され、ピンチロールツ
を経てコイラー8に巻取られ、適当な大きさに切断され
て制振鋼板コイル、となる。
The toning belt coming out of the heating furnace 4 is crimped through a pressure roll 5 and is integrated into a single toning belt, that is, a split steel plate IC, which is cooled by passing between cooling nozzles 6, passed through pinch rolls, and then sent to a coiler 8. The coil is wound into a damping steel plate coil and cut to an appropriate size.

ここで、使用されるガラスフリットlOが熱膨張係数8
.5 x lO−/”c以上のものとされる理由は、こ
れより該係数が小さいと加熱融着した後の冷却工程にお
いて、銅帯との収縮率が異なるので銅帯に内部応力が発
生し、銅帯間の剥離あるいは割振鋼板の反りが発生する
ためである。なお、現在製造される炭素鋼はその炭素含
有量が1.70%から0.08%以下までのものが殆ど
であって、それらの熱膨張係数は9.58〜11.6X
10−の範囲にあり、従ってガラスフリットの該係数の
上限は制振金属板に使用される鋼板の炭素含有量に対応
することにより限定される。
Here, the glass frit lO used has a thermal expansion coefficient of 8
.. The reason why it is set to be 5 x lO-/"c or more is that if the coefficient is smaller than this, internal stress will occur in the copper strip because the shrinkage rate will be different from that of the copper strip in the cooling process after heat fusion. This is because peeling between the copper strips or warping of the split steel plate occurs.In addition, most of the carbon steels currently manufactured have a carbon content ranging from 1.70% to 0.08% or less. , their thermal expansion coefficient is 9.58~11.6X
10-, and the upper limit of the coefficient of the glass frit is therefore limited by corresponding to the carbon content of the steel sheet used for the damping metal sheet.

以下に本発明による実施例を示す。Examples according to the present invention are shown below.

使用した金属板は板厚0.8IllIの軟鋼板で、この
軟鋼板上にガラスフリットlOを10 g/nfの割合
で塗布し、その上に鉄粉を5voj!%の割合で均−に
散布し、2枚の軟鋼板1a、lbを重ね合わせ、N、雰
囲気下の加熱炉4内で700℃X2min。
The metal plate used was a mild steel plate with a thickness of 0.8 IllI, on which glass frit lO was applied at a rate of 10 g/nf, and iron powder was applied on top of it at a rate of 5 voj! %, two mild steel plates 1a and 1b were stacked on top of each other, and heated at 700°C for 2 minutes in a heating furnace 4 under N atmosphere.

加熱し、加圧ロール5により0.5 kg/c艷で圧着
後、徐冷した結果、得られた制振鋼板の損失係数を第2
図において■のグラフで示す。このグラフから明らかな
ようにIil失係数は常温から約500℃にいたるまで
ほぼ一定の値を有し、通常の一枚の鋼板の損失係数5に
比べ、IO倍以上の数値を示している。
The loss coefficient of the vibration-damping steel plate obtained as a result of heating, crimping at 0.5 kg/c with a pressure roll 5, and slow cooling was determined by the second
In the figure, it is indicated by a graph of ■. As is clear from this graph, the Iil loss coefficient has a substantially constant value from room temperature to about 500° C., and is more than 10 times larger than the loss coefficient of 5 for a normal steel plate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、損失係数が常温
から約500℃に至るまでほぼ一定であるため、従来適
用できなかったエンジン周りの部品、排気系、マフラー
部品等、150 C以上の高温に曝される部品に使用で
きるようになり、且つ制振性も高く可溶接性も具えてい
るので用途範囲が大幅に拡大された。
As explained above, according to the present invention, the loss coefficient is almost constant from room temperature to about 500°C, so it can be applied to parts around the engine, exhaust system, muffler parts, etc. It can now be used for parts that are exposed to high temperatures, and has high vibration damping properties and weldability, so the range of applications has been greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超高温用制振金属板を製造するラ
インの概念図、第2図は本発明と従来例とを、その適用
温度範囲と制振性について比較したグラフである。 la、lb・・・−・・2枚の金属板、1c・・・・・
・制振金属板。
FIG. 1 is a conceptual diagram of a line for manufacturing a damping metal plate for ultra-high temperatures according to the present invention, and FIG. 2 is a graph comparing the present invention and a conventional example with respect to the applicable temperature range and damping properties. la, lb...--Two metal plates, 1c...
・Vibration damping metal plate.

Claims (1)

【特許請求の範囲】[Claims] (1)2枚の金属板が対向する面に熱膨張係数が8.5
×10^−^6/℃以上のガラスフリット及び導電性フ
ィラーを介在せしめ、加熱により前記ガラスフリットを
溶融せしめるとともに前記2枚の金属板を圧着して成る
可溶接性超高温用制振金属板の製造方法。
(1) The coefficient of thermal expansion is 8.5 on the opposing surfaces of the two metal plates.
×10^-^6/℃ or more glass frit and conductive filler are interposed, the glass frit is melted by heating, and the two metal plates are crimped together.Weldable ultra-high temperature vibration damping metal plate manufacturing method.
JP28899189A 1989-11-07 1989-11-07 Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature Pending JPH03150148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28899189A JPH03150148A (en) 1989-11-07 1989-11-07 Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28899189A JPH03150148A (en) 1989-11-07 1989-11-07 Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature

Publications (1)

Publication Number Publication Date
JPH03150148A true JPH03150148A (en) 1991-06-26

Family

ID=17737430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28899189A Pending JPH03150148A (en) 1989-11-07 1989-11-07 Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature

Country Status (1)

Country Link
JP (1) JPH03150148A (en)

Similar Documents

Publication Publication Date Title
JPS59179265A (en) Production of honeycomb core made of aluminum
US3267569A (en) Heat-insulating glass pane and method of making same
JPH03150148A (en) Manufacture of weldable vibration-damping metal sheet used at ultra-high temperature
CN114473385B (en) Pre-buried brazing flux composite board and preparation method and application thereof
JPH11284111A (en) Heat sink member, manufacture thereof and semiconductor package using the hear sink member
JPH03150149A (en) Manufacture of vibration-damping metal sheet used at ultra-high temperature
JP2004082667A (en) Composite lead plate and production method for the same
JP2004516946A (en) Titanium sheet, molded member thereof, and manufacturing method thereof
CN1045554A (en) The manufacture method of noncrystalline alloy thin layers
JP6808593B2 (en) Manufacturing method of coated coil
JPH02215008A (en) Manufacture of composite flat rectangular wire
SU1109293A1 (en) Process for manufacturing multilayer panels by diffusion welding
US4957821A (en) Composite aluminum molybdenum sheet
JPS63249621A (en) Manufacture of laminated metal sheet excellent in weldability
JPS60105533A (en) Vibration-damping composite steel plate and manufacture thereof
JP2003001302A (en) Production method for aluminum-dispersed reinforced copper strip
JPS60143934A (en) Heat welding of metallic strip material and synthetic resin film
JPH0255156B2 (en)
JPH0671780B2 (en) Method for manufacturing highly durable magnetic material laminate
JPH06134920A (en) Production of composite steel panel excellent in weldability and adhesiveness
JPH01258945A (en) Vibration regulating metal plate with resistance to high temperature and its manufacture
JPH0339829B2 (en)
JPH06297162A (en) Thick clad material
JPH05131606A (en) Manufacture and its manufacturing device for sandwhiched light-weight steel sheet
JPH02196650A (en) Production of weldable laminated metal plate