JPH03148889A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH03148889A
JPH03148889A JP1287381A JP28738189A JPH03148889A JP H03148889 A JPH03148889 A JP H03148889A JP 1287381 A JP1287381 A JP 1287381A JP 28738189 A JP28738189 A JP 28738189A JP H03148889 A JPH03148889 A JP H03148889A
Authority
JP
Japan
Prior art keywords
layer
small
quantum
light
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287381A
Other languages
Japanese (ja)
Inventor
Yoshio Itaya
板屋 義夫
Norifumi Sato
憲史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1287381A priority Critical patent/JPH03148889A/en
Publication of JPH03148889A publication Critical patent/JPH03148889A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Abstract

PURPOSE:To enlarge the temperature range of single wavelength oscillation and an injection-quantity flow region, and to increase working speed by forming semiconductor small-gage wires in length and breadth of several nm while making a refractive index thereof higher than that of a region surrounding an active layer in the vertical direction to the progressive direction of light and shaping a diffraction grating in the progressive direction of light. CONSTITUTION:A rectangular laser base body is prepared by an InP substrate 1, an InP buffer layer 2, an InGaAaP optical guide layer 3 and an InGaAs active layer 4, a mask having a small-gage wire pattern, which is cyclic approximately at a pitch of 15nm and is 10nm wide, is shaped onto the laser base body, and only the layer 3 is etched selectively, thus forming quantum small-gage wires 5 composed of InGaAs. The structure of a quantum box 6 consisting of InGaAs small gage wires 5 in 10nm length and 10nm breadth is formed in two-dimensional structure, an InGaAsP optical guide layer 7 is grown on the quantum box 6, the small-gage wires 5 are buried completely, and the whole surface is covered with an lnGaAsP guide layer 8. An InP layer 10 and an InGaAsP layer 10 are laminated onto the layer 8 through a diffraction grating 9. The refractive index of the small-gage wires is increased and the grating is shaped in the progressive direction of light at that time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光強度直接変調特性の高速化を可能にすると
ともに、回折格子による波長選択性により、スペクトル
純度の高い発振光を得るための半導体レーザに関するも
のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention enables high-speed direct modulation of light intensity and obtains oscillated light with high spectral purity by wavelength selectivity using a diffraction grating. It relates to semiconductor lasers.

(従来の技術) 半導体レーザの直接変調速度は、レーザ構造に起因する
素子抵抗と寄生容量から決まる電気的な限界と、レーザ
に注入されたキャリヤの寿命時間と光子の寿命時間で決
まる共振状周波数から決定されている。現在、半導体レ
ーザの変調速度は素子の抵抗および寄生容量の低減によ
り、最高値で17 GHzが報告されている。10 G
Hz以上の高速変調では、変調の限界は共振状周波数に
よって決定される。共振状周波数f、は光子数と注入さ
れたキャリヤ数とのレート方程式より以下の式で表わさ
れる。
(Prior art) The direct modulation speed of a semiconductor laser is determined by the electrical limit determined by the element resistance and parasitic capacitance caused by the laser structure, and by the resonant frequency determined by the lifetime of carriers injected into the laser and the lifetime of photons. It has been determined from Currently, the maximum modulation speed of semiconductor lasers is reported to be 17 GHz due to the reduction of element resistance and parasitic capacitance. 10G
For high speed modulation above Hz, the limits of modulation are determined by the resonant frequency. The resonant frequency f is expressed by the following equation based on the rate equation of the number of photons and the number of injected carriers.

1   /cpξ   dg ここでCは光速、Pは光出力、ξは活性層への光閉じ込
め率、nは有効屈折率、■は活性層の体積、ηは微分量
子効率、d g/d Nは微分利得係数である。第8図
は、Asada、 etaj! (Gain andT
hreshold  of  Three−Dimen
sional  Quantus−BoxLasers
、IEEE  Journal  of  Quant
umElectronics。
1 /cpξ dg where C is the speed of light, P is the optical output, ξ is the optical confinement rate in the active layer, n is the effective refractive index, ■ is the volume of the active layer, η is the differential quantum efficiency, d g/d N is is the differential gain coefficient. Figure 8 shows Asada, etaj! (Gain andT
Threshold of Three-Dimens
sional Quantus-BoxLasers
, IEEE Journal of Quant
umElectronics.

Vo1. GE−22,No、91986.  ap1
915−1921 )によって計算された、注入キャリ
ヤ密度と最大利得の関係を示したもので、活性領域を量
子箱構造および量子綱線構造にすることにより、微分利
得は通常のバルク構造に比べて約50倍はど大きくなる
。この関係を式(1)に代入すると、共振状周波数は通
常のバルク形レーザに比べて量子箱および量子細線レー
ザは約7倍太きくなり、20 Gllz〜30 Gll
zの高速直接変調が可能となる。なお第8図において、
τi7はバンド内緩和時間、叶Fiβmは量子薄膜、B
OXは量子箱、BuIlにはバルクを示す。
Vol1. GE-22, No. 91986. ap1
915-1921), which shows the relationship between the injected carrier density and the maximum gain. By forming the active region into a quantum box structure and a quantum wire structure, the differential gain is approximately It's 50 times bigger. Substituting this relationship into equation (1), the resonant frequency of quantum box and quantum wire lasers becomes about 7 times wider than that of normal bulk lasers, which is 20 Gllz to 30 Gllz.
High-speed direct modulation of z becomes possible. In addition, in Figure 8,
τi7 is the in-band relaxation time, Fiβm is the quantum thin film, B
OX represents a quantum box, and BuIl represents a bulk.

(発明が解決しようとする課題) 本発明は、回折格子を有する先導波路層と量子細線構造
の活性領域とからなる、分布帰還形の高速で動作する半
導体レーザを提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a distributed feedback type semiconductor laser that operates at high speed and includes a guiding waveguide layer having a diffraction grating and an active region having a quantum wire structure.

(課題を解決するための手段) 本発明の半導体レーザは、光が進行する方向に対して垂
直に複数の縦・検数nmの半導体細線が、細線を構成す
る半導体より屈折率の小さい半導体によって囲まれた活
性領域に、光が進行する方向に回折格子を設けるか、ま
たは、光が進行する方向に対して垂直に複数の一辺が数
nmの箱構造を持つ光を発生する半導体が、箱構造を構
成する半導体より屈折率が小さい半導体によって囲まれ
た活性領域に、光が進行する方向に回折格子を設ける。
(Means for Solving the Problems) In the semiconductor laser of the present invention, a plurality of vertical semiconductor thin wires with a diameter of nm perpendicular to the direction in which light travels are made of a semiconductor having a smaller refractive index than the semiconductor constituting the thin wires. Either a diffraction grating is provided in the enclosed active region in the direction in which the light travels, or a semiconductor that generates light with a box structure of several nanometers on a side perpendicular to the direction in which the light travels is placed in a box. A diffraction grating is provided in the direction in which light travels in an active region surrounded by a semiconductor having a lower refractive index than the semiconductor constituting the structure.

(実施例) 以下、図面により本発明の実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第7図は本発明の半導体レーザの作製工程を示
す図であって、第1図に示すように、(100)面In
P基板1 (Snドープ、N=1×10”cm−)の上
に、nタイプInPバッファ層2を2μ構成長させた、
Cl pta 組成のInGaAsP光導波路層3を0
.51111成長させる。その後、活性層となるInG
aAs層4を約10 ns成長させる。
1 to 7 are diagrams showing the manufacturing process of the semiconductor laser of the present invention, and as shown in FIG. 1, the (100) plane In
An n-type InP buffer layer 2 having a length of 2μ was formed on a P substrate 1 (Sn-doped, N=1×10”cm−).
The InGaAsP optical waveguide layer 3 having a composition of Cl pta is 0.
.. 51111 Grow. After that, InG becomes the active layer.
The aAs layer 4 is grown for about 10 ns.

ここでは成長法としてMetal Organic−V
aporPhase Epitaxy (略してMO−
VPf? )法(有機金属気相成長法)を用いた。m族
用原料はトリエチルインシュウムとトリエチルガリユウ
ムを使用し、■族用原料はフォスヒン、アルシンを使用
する。
Here, Metal Organic-V is used as the growth method.
aporPhase Epitaxy (abbreviated as MO-
VPf? ) method (organometallic vapor phase epitaxy) was used. Triethylinsium and triethylgallium are used as the raw materials for the M group, and phosphin and arsine are used as the raw materials for the II group.

p形ドーパントはジエチルジンク、n形はセレン化水素
を使用した。成長温度は630℃であり、50 Tor
rの減圧状態で成長を行う。
Diethyl zinc was used as the p-type dopant, and hydrogen selenide was used as the n-type dopant. The growth temperature was 630°C and 50 Torr.
Growth is performed under reduced pressure of r.

次に第2図は電子ビーム露光法、干渉露光法、または電
子ビーム露光法により作製したタンクルマスクを用いた
X線露光法により周期約15 n−で10 nm幅の細
線のパターンを成長ウェハ面に形成し、I n(; a
 A s層のみを選択的にエッチングするエッチング液
により、rnGaAsの細線5を形成する。
Next, FIG. 2 shows a growth wafer in which a fine line pattern of 10 nm width with a period of about 15 n- is formed using an X-ray exposure method using an electron beam exposure method, an interference exposure method, or a tank mask made by an electron beam exposure method. I n(; a
A thin line 5 of rnGaAs is formed using an etching solution that selectively etches only the As layer.

その後、第3図に示すように、縦10 ns、横10r
umのInGaAsの量子箱6の構造を二次元状に形成
する。作製法は上記の細線を形成する方法と同じである
After that, as shown in Figure 3, 10 ns vertically and 10 r horizontally
A two-dimensional structure of an InGaAs quantum box 6 is formed. The manufacturing method is the same as the method for forming the thin wire described above.

次に第4図に示すように、1.1um Mi成のInG
aAsP光導波路層7を0.1μm成長させ、InGa
Asの量子箱6または量子細線5を完全に埋め込む。そ
の後1.3 trys tll成のInGaAsPガイ
ド層8を0.12 ova成長させる。
Next, as shown in Figure 4, 1.1 um Mi InG
The aAsP optical waveguide layer 7 is grown to a thickness of 0.1 μm, and the InGa
The As quantum box 6 or quantum wire 5 is completely embedded. Thereafter, an InGaAsP guide layer 8 of 0.12 ova is grown in 1.3 tries.

その後、第5図に示すように、波長組成1.3ミーのI
nGaAsP Nに干渉露光法を用いたホトリソグラフ
ィの技術とエッチングによって、周期約240 nmの
回折格子9を形成する。
After that, as shown in FIG. 5, I
A diffraction grating 9 with a period of about 240 nm is formed on nGaAsP N using a photolithography technique using an interference exposure method and etching.

その後、第6図に示すように、P形InP層IO(P 
= 5 X 10f′IC11−)を1.555 % 
P”形■nGaAsP層11 (P= 2×10”cm
−を約0.5gm成長させ、p側、n側それぞれにAu
Zn 、 AuGeを薄着して電極形成を施し、背量に
よりレーザ構造とする。発振波長は1.55 pta 
、発振閾値の低減、高効率、20 GHz程度の高速変
調が期待できる。
After that, as shown in FIG.
= 5 x 10f'IC11-) to 1.555%
P” type nGaAsP layer 11 (P= 2×10”cm
- was grown to a thickness of about 0.5 g, and Au was grown on each of the p side and n side.
Electrodes are formed by thinly depositing Zn and AuGe, and a laser structure is formed depending on the thickness. The oscillation wavelength is 1.55 pta
, reduced oscillation threshold, high efficiency, and high-speed modulation of about 20 GHz can be expected.

第7図はレーザ共振器中央部の回折格子に位相シフト1
2を付加したもので、第4図のrnGaAs−光ガイド
N8の上に回折格子を形成するとき、位相マスク(白幡
等、DFBレーザ用1/4波長位相シフト回折格子の形
成方法の提案°、電子通信学会研究技報、QQE 85
−60 )を用いて露光することにより、位相シフトを
形成できる。なお第7図において、矢印は光の進行方向
を示す。
Figure 7 shows a phase shift of 1 in the diffraction grating in the center of the laser cavity.
2 is added, and when forming a diffraction grating on the rnGaAs-light guide N8 in FIG. Institute of Electronics and Communication Engineers Research Technical Report, QQE 85
-60 ), a phase shift can be formed. Note that in FIG. 7, arrows indicate the traveling direction of light.

第9図は^sada etalによる波長に対する利得
スペクトルを示した図であって、Nは注入キャリヤ密度
を示す。
FIG. 9 is a diagram showing a gain spectrum with respect to wavelength according to ^sada etal, where N indicates the injection carrier density.

量子■または量子細線構造にすると、同じ注入電流に対
して利得スペクトルは大きく、またスペクトルの幅も狭
くなる。従ってレーザの発振条件から定まるモード間の
発振に必要な利得の差が太きくなり、単一波長発振の温
度範囲および注入電流領域を広くすることも可能である
When a quantum (2) or quantum wire structure is used, the gain spectrum becomes larger and the width of the spectrum becomes narrower for the same injection current. Therefore, the difference in gain required for oscillation between modes determined by the laser oscillation conditions increases, and it is also possible to widen the temperature range and injection current range for single wavelength oscillation.

これらの構造は他の結晶系、例えばGaAs −A I
 GaAs系またはGaAsSb −GaAsA I 
Sb系、InA I GaAs系などにも適用が可能で
あり、pとnを逆にした構造および活性層と先導波路層
を逆にし、基板結晶上に回折格子を形成し、その上に先
導波路層を介して活性層を成長した形も可能である。
These structures are similar to other crystal systems, e.g. GaAs-A I
GaAs-based or GaAsSb-GaAsA I
It can also be applied to Sb system, InA I GaAs system, etc., with a structure in which p and n are reversed, and an active layer and a guiding waveguide layer are reversed, and a diffraction grating is formed on the substrate crystal, and a guiding waveguide is formed on it. A form in which the active layer is grown through layers is also possible.

また、量子箱、量子細線を一層の半導体で形成した場合
を記したが、多重量子井戸構造、例えばInGaAs 
 を5 nm、 InGaAsP  (波長組成1.3
gm )を10 nmからなる4周期から5周期の多重
量子井戸構造によって形成した活性層で量子細線、また
は量子箱を構成してもよい。
In addition, although we have described the case where the quantum box and quantum wire are formed of a single layer of semiconductor, we have also described the case where the quantum box and quantum wire are formed with a single layer of semiconductor, but we have also
5 nm, InGaAsP (wavelength composition 1.3
A quantum wire or a quantum box may be constituted by an active layer formed by a multi-quantum well structure with 4 to 5 periods of 10 nm.

(発明の効果) 以上説明したように、本発明の半導体レーザは、単一波
長発振の温度範囲および注入電流領域が広くなり、従来
よりも高速で動作する利点がある。
(Effects of the Invention) As described above, the semiconductor laser of the present invention has the advantage that the temperature range of single wavelength oscillation and the injection current range are widened, and that it operates at higher speed than the conventional semiconductor laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の半導体レーザの作製工程を示
す図、 第8図はバルク、量子井戸薄膜、量子細線、量子箱にお
ける注入キャリヤ密度と利得の関係を示す図、 第9図はバルク、量子井戸薄膜、量子細線、量子箱にお
ける利得スペクトルを示す図である。 1・・・InP基板     2・・・InPバッファ
層3− 1nGaAsP光導波路N(波長組成1.1g
m )4・・・InGaAs活性層   5・・・量子
綱線6・・・量子箱 ?−−−InGaAsP光導波路層(波長組成1.17
711 )8 ・−rnGaAsPガイド層(波長組成
1.3.us )9・・・回折格子      10−
p形1nP層11−P”形1nGaAsPii   1
;”位相シフト。 第1図 〕 第2図 第3図 ≠ ≦ ≦ づ ド   i〜−1mF律 2−It+ P/イ、71層 1f   4−− k Gt As絽層、6  5−一
量子箱 8− I、+らAslκイト看 *t a瞥(c@−リ トJ 置大到イ専CCfII力
Figures 1 to 7 are diagrams showing the manufacturing process of the semiconductor laser of the present invention. Figure 8 is a diagram showing the relationship between the injected carrier density and gain in the bulk, quantum well thin film, quantum wire, and quantum box. Figure 9 is a diagram showing gain spectra in bulk, quantum well thin film, quantum wire, and quantum box. 1... InP substrate 2... InP buffer layer 3- 1nGaAsP optical waveguide N (wavelength composition 1.1g
m) 4...InGaAs active layer 5...Quantum wire 6...Quantum box? ---InGaAsP optical waveguide layer (wavelength composition 1.17
711 ) 8 ・-rnGaAsP guide layer (wavelength composition 1.3.us) 9... Diffraction grating 10-
p-type 1nP layer 11-P” type 1nGaAsPii 1
;”Phase shift. Fig. 1] Fig. 2 Fig. 3 ≠ ≦ ≦ Zudo i~-1mF law 2-It+ P/I, 71 layer 1f 4-- k Gt As layer, 6 5-one quantum box 8- I, + Aslκite view*t a glance (c@-RitoJ

Claims (2)

【特許請求の範囲】[Claims] 1.光が進行する方向に対して垂直に複数の縦・横数n
mの半導体細線が、細線を構成する半導体より屈折率の
小さい半導体によって囲まれた活性領域に、光が進行す
る方向に回折格子を設けたことを特徴とする半導体レー
ザ。
1. Multiple vertical and horizontal numbers n perpendicular to the direction in which the light travels
A semiconductor laser characterized in that a diffraction grating is provided in the direction in which light travels in an active region in which m semiconductor thin wires are surrounded by a semiconductor having a lower refractive index than the semiconductor constituting the thin wires.
2..光が進行する方向に対して垂直に複数の一辺が数
nmの箱構造を持つ光を発生する半導体が、箱構造を構
成する半導体より屈折率が小さい半導体によって囲まれ
た活性領域に、光が進行する方向に回折格子を設けたこ
とを特徴とする半導体レーザ。
2. .. A semiconductor that generates light has a plurality of box structures with sides of several nanometers perpendicular to the direction in which the light travels. A semiconductor laser characterized in that a diffraction grating is provided in the direction of propagation.
JP1287381A 1989-11-06 1989-11-06 Semiconductor laser Pending JPH03148889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287381A JPH03148889A (en) 1989-11-06 1989-11-06 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287381A JPH03148889A (en) 1989-11-06 1989-11-06 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03148889A true JPH03148889A (en) 1991-06-25

Family

ID=17716617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287381A Pending JPH03148889A (en) 1989-11-06 1989-11-06 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03148889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628691B2 (en) * 2000-11-22 2003-09-30 Fujitsu Limited Laser diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417487A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH01248586A (en) * 1988-03-29 1989-10-04 Nec Corp Manufacture of optical semiconductor device
JPH0391279A (en) * 1989-09-01 1991-04-16 Nec Corp Integrated optical semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417487A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH01248586A (en) * 1988-03-29 1989-10-04 Nec Corp Manufacture of optical semiconductor device
JPH0391279A (en) * 1989-09-01 1991-04-16 Nec Corp Integrated optical semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628691B2 (en) * 2000-11-22 2003-09-30 Fujitsu Limited Laser diode

Similar Documents

Publication Publication Date Title
US7440666B2 (en) Buried heterostucture device having integrated waveguide grating fabricated by single step MOCVD
US6541297B2 (en) Method for fabricating semiconductor device and semiconductor device
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JPH07235732A (en) Semiconductor laser
EP0177221B1 (en) Semiconductor laser
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
US4270096A (en) Semiconductor laser device
JPH06224512A (en) Semiconductor device and its manufacturing process
JPH04212489A (en) Optical element
US6639926B1 (en) Semiconductor light-emitting device
JP5096824B2 (en) Nanostructure and method for producing nanostructure
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2677232B2 (en) Long wavelength semiconductor laser and manufacturing method thereof
JP3414992B2 (en) Semiconductor optical device and method of manufacturing the same
JPH03148889A (en) Semiconductor laser
JPH04350988A (en) Light-emitting element of quantum well structure
JPH01248585A (en) Distributed feedback type semiconductor laser
WO2023012925A1 (en) Semiconductor optical device and method for producing same
JP2546381B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
JPS61220389A (en) Integrated type semiconductor laser
JPH0278290A (en) Semiconductor laser device
JPS6317586A (en) Semiconductor laser
JPH09186391A (en) Compound semiconductor device and manufacture thereof
JPH06283822A (en) Superlattice structure and semiconductor light emitting element
JPH03156989A (en) Semiconductor laser and its manufacture