JPH0314867B2 - - Google Patents

Info

Publication number
JPH0314867B2
JPH0314867B2 JP60136350A JP13635085A JPH0314867B2 JP H0314867 B2 JPH0314867 B2 JP H0314867B2 JP 60136350 A JP60136350 A JP 60136350A JP 13635085 A JP13635085 A JP 13635085A JP H0314867 B2 JPH0314867 B2 JP H0314867B2
Authority
JP
Japan
Prior art keywords
water
absorbing resin
absorbing
resin
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60136350A
Other languages
Japanese (ja)
Other versions
JPS61293246A (en
Inventor
Katsuzo Tanioku
Nobuyuki Ooshima
Junichi Maeno
Kyoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP13635085A priority Critical patent/JPS61293246A/en
Publication of JPS61293246A publication Critical patent/JPS61293246A/en
Publication of JPH0314867B2 publication Critical patent/JPH0314867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、吸水性樹脂の改質方法、更に詳しく
は、カルボキシレート基を重合体の構成成分とし
て含有する吸水性樹脂を改質してその本来の吸水
能、吸水速度及び吸水時のゲル強度を低下させる
ことなく、殊に加圧保水性を改良する方法に関す
る。 従来の技術 吸水性樹脂は、生理用品、おむつ、使い捨て雑
巾等の衛生用品が保水剤等の農園芸用品として使
用されている他、汚泥の凝固、建材の結露防止、
油類の脱水等の用途にも用いられている。 この吸水性樹脂としては、カルボキシメチルセ
ルロース架橋物、ポリオキシエチレン部分架橋
物、澱粉−アクリロニトリルグラフト共重合体の
加水分解物、澱粉−アクリル酸グラフト共重合
体、アクリル酸もしくはメタクリル酸塩重合体の
部分架橋物、アクリル酸もしくはメタクリル酸塩
系共重合体の部分架橋物、ビニルアルコール−ア
クリル酸塩共重合体等が知られている。これらの
吸水性樹脂の性能は、特にそれらの製造方法によ
り大きく左右されるが、いずれも吸水能、吸水速
度、ゲル強度等の要求性能においてなお改善すべ
き余地がある。また近時、開発研究の結果、上記
要求性能をほぼ同時に満足しうる吸水性樹脂が上
市されつつあるが、この吸水性樹脂といえども加
圧時の保水性(wet back性)は決して満足でき
るものではなく、現在かかる加圧保水性に優れた
吸水樹脂は見い出されていない。しかして吸水性
樹脂は、パルプやスポンジに代表される吸収性物
質とは異なつて、一旦吸収した水を容易には放出
しないという一般的特長を有するものではある
が、総じて遠心力や加圧条件下では、わずかでは
あるが離水する傾向があり、この場合例えば紙カ
ムツ、生理用品などの衛生材料に使用されると、
尿や経血の戻りによる不快感を惹起するおそれが
あり、衛生材料としての用途には不適とする不利
がある。 発明が解決しようとする問題点 本発明者らは、上記の如き実状に鑑み、吸水性
樹脂本来の吸水能、吸水速度及び吸水時のゲル強
度を損なうことなく、しかも加圧保水性を改良す
る方法を提供することを目的として鋭意研究を行
つた。 その結果、カルボキシレート基を重合体の構成
成分として含有する従来公知の吸水性樹脂を原料
として利用し、該樹脂を微粒子状シリカと混合し
た後、カチオン性界面活性剤と混合処理するとき
には、前記問題点を解決して、本目的に合致する
優れた性能を有する吸水性樹脂を提供しうること
を見い出した。本発明はこの新しい知見に基づい
て完成されたものである。 問題点を解決するための手段 本発明は、カルボキシレート基を重合体の構成
成分として含有する吸水性樹脂を微粒子状シリカ
と混合した後、カチオン性界面活性剤と混合処理
することを特徴とする吸水性樹脂の加圧保水性の
改良方法に係わる。 本発明により加圧保水性を改良された吸水性樹
脂は、荷重または加圧条件下に、該吸水性樹脂が
一旦吸収した水分をほとんど放出することがな
く、その結果、例えば紙オムツ、生理用品などの
衛生材料に使用される場合に尿や経血の戻りによ
る不快感を確実に消失できる利点があり、一層優
れた衛生材料として利用できる。 本発明において、原料として用いる吸水性樹脂
は、カルボキシレート基を重合体の構成成分とし
て含有するものであればよく、これは例えば前記
した公知の各種樹脂の内から適宜選択して使用で
きる。尚、本発明においてカルボキシレート基と
はカルボキシル基を含む概念として定義される。 上記吸水性樹脂の内で、吸水性樹脂本来の諸特
性である吸水能、吸水速度及び吸水時のゲル強度
を考慮すれば、特に澱粉−アクリロニトリルグラ
フト共重合体の加水分解物、澱粉−アクリル酸グ
ラフト共重合体、アクリル酸もしくはメタクリル
酸塩重合合体の部分架橋物、アクリル酸もしくは
メタクリル酸塩系共重合体の部分架橋物(以下、
後二者を単に(メタ)アクリル酸系(共)重合体
の部分架橋物という)が好ましく用いられる。特
に好ましい上記(メタ)アクリル酸系(共)重合
体の部分架橋物は、例えば特開昭56−93716号公
報、特開昭56−131608号公報、特開昭56−147806
号公報、特開昭58−71907号公報、特開昭58−
117222号公報、特公昭54−30710号公報、特公昭
54−37994号公報、特公昭53−46200号公報、米国
特許第4041228号明細書等に示されている。之等
各文献に記載された吸水性樹脂、殊に(メタ)ア
クリル酸系(共)重合体の部分架橋物は、それぞ
れ採用される製法の相違に基づき、樹脂性能はあ
る程度異なるが、所望により該製造条件等を選択
して適宜樹脂性能を変化させることもできる。概
してそれらの吸水能は100〜1000、吸水速度は2
〜30秒、吸水時のゲル強度は1.0〜5.0×104ダイ
ン//cm2であり、いずれも本発明に好ましく利用
できる。 本発明者の研究によると、吸水性樹脂をカチオ
ン性界面活性剤で直接処理しても加圧保水性は十
分に改善されない。しかるに、界面活性剤処理に
先だつて吸水性樹脂を微粒子状シリカと混合して
おくことにより、加圧保水性が向上することが認
められた。これは、吸水性樹脂を微粒子状シリカ
と混合後、カチオン性界面活性剤で処理するとき
は、微粒子状シリカがカチオン性界面活性剤の吸
水性樹脂への均一な分散を可能にする分散剤とし
ての作用を果たし、その結果、吸水性樹脂がカチ
オン性界面活性剤により均一に処理され、樹脂の
表面近傍に界面活性剤が局在化し、吸水性樹脂の
吸水能、吸水速度及び吸水時のゲル強度を低下さ
せることなく、加圧保水性を大巾に向上すること
ができることによるものと推察される。 微粒子状シリカとしては、公知の微粒子状シリ
カを用いることができ、例えば、アエロジル(日
本アエロジル株式会社製微粒子状シリカ)等を代
表的なものとして例示できる。微粒子状シリカの
吸水性樹脂に対する配合量は、引続く界面活性剤
処理により界面活性剤処理が吸水性樹脂に均一に
分散できる限り広い範囲から選択できる。 本発明において用いられるカチオン性界面活性
剤としては、特に制限はされず公知の各種のもの
のいずれでもよいが、好ましくは高級アルキルア
ミン塩類及び第4級アンモニウム塩を用いること
ができ、特に加圧保水性の点で第4級アンモニウ
ム塩が好ましい。吸水性樹脂の加圧保水性を向上
せしめるためには、上記カチオン性界面活性剤、
殊に第4級アンモニウム塩の使用が必須の要件で
あり、これにより初めて本発明所期の効果が発現
できる。これに対し非イオン性界面活性剤や陰イ
オン性界面活性剤を用いたとしても本発明の目的
は到底達成できない。 上記カチオン性界面活性剤としての第4級アン
モニウム塩としては、より具体的には例えばアル
キル第4級アンモニウム塩、アルキルベンジル第
4級アンモニウム塩、窒素環を有する第4級アン
モニウム塩等が挙げられる。アルキル第4級アン
モニウム塩には、炭素数10〜18のアルキル基を有
するアルキルトリメチルアンモニウムハライド、
アルキルジメチルエチルアンモニウムハライド等
が包含される。アルキルベンジル第4級アンモニ
ウム塩には、炭素数10〜18のアルキル基を有する
アルキルジメチルベンジルアンモニウムハライド
等が包含される。また窒素環を有する第4級アン
モニウム塩には、炭素数10〜18のアルキル基を有
するアルキルピリジニウムハライドやアルキルピ
コリニウムハライド等が包含される。尚、上記ハ
ライドとしてはいずれも塩化物または臭化物が好
適に入手できる。 上記界面活性剤の使用量(固形分重量)は、得
られる吸水性樹脂の加圧保水性及び経済性を考慮
して決定され、通常は吸水性樹脂(固形分重量)
に対して0.01〜5%、好ましくは0.1〜2.0%とす
ればよい。 本発明において吸水性樹脂を微粒子状シリカと
混合し界面活性剤と混合処理する方法は、吸水性
樹脂原料の製造方法、製造段階等に応じて選択す
ればよい。例えば、特開昭56−131608号公報、特
開昭58−117222号公報等に示された、いわゆる逆
層懸濁重合法を採用して得られる吸水性樹脂の場
合には、得られたパール状重合物を、エチレング
リコールジグリシジルエーテルの如き架橋剤で後
架橋反応させる際に、予め微粒子状シリカと混合
し次いで該架橋剤水溶液に界面活性剤を混合して
添加存在させればよい。また市販のカルボキシレ
ート基を含有する吸水性樹脂(通常、樹脂形態と
しては粉末状の物が多い)を原料として用いる場
合は、微粒子状シリカと混合した後に界面活性剤
を単に吸水性樹脂粉末に撹拌混合するか又は界面
活性剤を少量の水に希釈したものを混合した後乾
燥させる方法を採用することができる。かかる方
法の実施に際しては、カチオン性界面活性剤を吸
水性樹脂粉末に対して実質的に均一に添加・分散
できる方法を採用するのがよく、該方法として
は、工業的見地からは、シヤワリング方式やスプ
レー方式による添加と同時に又はその後、通常の
撹拌装置を用いる均一分散法が好ましい。 上記操作に従えば、カチオン性界面活性剤は吸
水性樹脂に含有されるカルボキシレート基(特に
吸水性樹脂粉末の表面近傍に存在するもの)に対
してある程度速やかにかつ選択的にイオン性結合
を形成するため、比較的容易に吸水性樹脂の表面
近傍に局在化させることができる。 かくして、本発明によれば吸水性樹脂料、殊に
(メタ)アクリル酸系(共)重合体の部分架橋物
にカチオン性界面活性剤、殊に第4級アンモニウ
ム塩を添加存在させることができ、殊に該界面活
性剤を原料吸水性樹脂(粉末)の表面近傍に局在
化せしめることができ、これにより従来技術では
解決しえなかつた問題点、即ち吸水性樹脂本来の
吸水能、吸水速度及び吸水時のゲル強度を低下さ
せることなく、その加圧保水性を改良することが
できる。 本発明方法により得られる吸水性樹脂は、従来
用途にそのまま使用し得ることはもちろんのこ
と、とりわけ加圧保水性を厳しく要求される衛生
材料に好適に使用することができる。 実施例 以下、実施例を挙げて本発明方法を更に詳しく
説明するが、本発明がこれらに限定されないこと
はもとよりである。 実施例 1 アクリル酸72.1gを脱イオン水22.2gに加え、
更にこれに純度85%の水酸化カリウム49.5gと
N,N−メチレンビスアクリルアミド0.01gとを
順次添加し、混合単量体濃度70重量%のアクリル
酸カリウム水溶液(中和度75%)を調製した。 上記で調製された水溶液を70℃に保温し、これ
に過硫酸アンモニウムの18%水溶液2.9g(アク
リル酸カリウム、遊離アクリル酸及びN,N−メ
チレンビスアクリルアミドの合計重量に対し0.5
重量%)及び亜硫酸水素ナトリウムの30.6%水溶
液1.7g(0.5重量%)を混合し、混合液をエンド
レスの移動ベルト上に厚さ約10mmの層状に流下延
展させた。約30秒後、重合反応が開始され、該反
応は約1分間で完結した。その間の最高温度は約
120℃であつた。 かくして含水率11%、残存単量体濃度1200ppm
のポリアクリル酸カリウム架橋物の帯状乾燥固体
を得た。以下これを吸水性樹脂Aとする。これは
粉砕機により粉砕することにより粉末化され、得
られる粉末の吸水能は450であつた。尚この吸水
能は、後記する方法により評価されるものであ
る。 上記で得た吸水性樹脂A100gにアエロジル200
(平均粒子径約0.012μm、日本アエロジル(株)製の
微粒子状シリカ)1gを添加し、充分撹拌した。
更に撹拌下にトリメチルラウリルアンモニウムク
ロライドの30%水溶液2gを均一に添加し、つい
で70〜80℃で5分間保持した。得られた吸水性樹
脂の吸水能、吸水速度及び加圧保水性を各々下記
方法に従い測定した。 結果は第1表に示した。 (吸水能) 200mlのビーカーに脱イオン水150gと吸水性樹
脂試料0.12gとを加え、30分間放置した後、200
メツシユの金網で別し、流出してくる水の重量
を測定し、下式により吸水能を算出した。 吸水能=(始めに添加した水の重量)−(流出し
てきた水の重量)/吸水性樹脂試料の重量 (吸水速度) あらかじめ100mlビーカーに生理食塩水(0.9%
食塩水)50gと撹拌子とを入れ、マグネチツクス
ターラーにて600rpmの速度で撹拌しておき、こ
の中に吸水性樹脂試料2gを投入すると、吸水膨
潤作用にてゲル化が起り、流動性が減少して撹拌
中心の水流渦が消える。吸水性樹脂試料投入から
渦が消失するまでに要した時間を測定し、吸水速
度とする。 (ゲル強度) 生理食塩水60gと吸水性樹脂試料2.0gとを混
合してゲル(以下、30倍ゲルという)を作成し、
飯尾電機株式会社製のネオカードメーターにより
ゲルの硬さ(表面硬さ)を測定する。ここで表面
硬さとは、試料表面において感圧軸がゲルを押し
退けて進入することを阻止する抵抗力として表わ
される。 (加圧保水性) アルミ製受皿(直径5.5cm、深さ1cm)に吸水
性樹脂試料0.5gを入れ、ついで生理食塩水15g
を入れ2分間放置する。そののち直径5.5cmの
紙11枚を上部からかぶせ更に1Kg、10分間の条件
で荷重する。吸水性樹脂試料と直接接触する最下
段の紙を除いた残りの10枚分の紙の増加重量
(単位g)を測定し、これを加圧保水性の尺度と
する。 実施例 2 実施例1において、トリメチルラウリルアンモ
ニウムクロライドにかえて、ジメチルベンジルラ
ウリルアンモニウムクロライドの30%水溶液2g
を用いた他は同様にして目的とする吸水性樹脂を
得た。 得られた吸水性樹脂の各種測定結果を第1表に
示した。 実施例 3 実施例1において、トリメチルラウリルアンモ
ニウムクロライドにかえて、N−ラウリルピリジ
ニウムクロライドの10%水溶液6gを用いた他は
同様にして目的とする吸水性樹脂を得た。 得られた吸水性樹脂の各種測定結果を第1表に
示した。 実施例 4 純度99.8重量%のアクリル酸39.1gを100mlの
フラスコに取り、冷却しつつ撹拌下に22.6重量%
の水酸化ナトリウム水溶液765gを滴下して80モ
ル%の中和を行なつたのち、過硫酸カリウム0.13
gを添加し、撹拌を継続して室温にて溶解した。 あらかじめ系内を窒素置換した還流冷却器付き
500mlフラスコに、シクロヘキサン213gと
HLB8.6のソルビタンモノラウリレート1.9gを仕
込み、撹拌下室温にて界面活性剤を溶解させた
後、前述のアクリル酸部分中和塩水溶液を滴下し
懸濁せしめた。再び系内を窒素で充分に置換した
のち昇温を行ない、浴温を55〜60℃に保持して3
時間重合反応を行なつた。 生成した重合液を減圧下で蒸発乾固することに
よつて微顆粒状の乾燥重合体480gを得た。以下
これを吸水性樹脂Bとする。 実施例1において吸水性樹脂Aにかえて、上記
で得た吸水性樹脂Bを用いた他は同様にして、目
的とする吸水性樹脂を得た。 得られた吸水性樹脂の各種測定結果を第1表に
示した。 実施例 5 50gのトウモロコシデンプンと200mlの水と
1000gのメタノールとを撹拌棒、窒素吹き込み
管、温度計を備え付けた反応容器に仕込み、窒素
気流下55℃で1時間撹拌後30℃に冷却し、これに
20gのアクリル酸、80gのアクリル酸ナトリウ
ム、40gの硝酸第2セリウムアンモニウム溶液
(1N硝酸において1/10モルセリウムイオン)及
び1gのN,N−メチレンビスアクリルアミドを
添加し40℃で3時間撹拌して重合せしめたところ
白色懸濁液となつた。 その後この懸濁液を過し得られた粉末を、水
−メタノール混合溶液(水対メタノール比2:
10)で洗浄し、60℃3時間減圧乾燥後粉砕して
138gの粉末状の吸水性樹脂を得た。これを吸水
性樹脂Cとする。 実施例1において吸水性樹脂Aにかえて、上記
で得た吸水性樹脂Cを用いた他は同様にして目的
とする吸水性樹脂を得た。 得られた吸水性樹脂の各種測定結果を第1表に
示した。 比較例 1 実施例1において原料として使用した吸水性樹
脂Aを比較吸水性樹脂とした。その各種性能を評
価した結果を第1表に示した。 比較例 2 実施例4において原料として使用した吸水性樹
脂Bを比較吸水性樹脂とした。その各種性能を評
価した。結果を第1表に示した。 比較例 3 実施例5において原料として使用した吸水性樹
脂を比較吸水性樹脂とした。その各種性能を評価
した結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for modifying a water-absorbing resin, and more specifically, to modifying a water-absorbing resin containing carboxylate groups as a component of the polymer to improve its original properties. In particular, it relates to a method for improving the pressurized water retention property of the present invention without reducing the water absorption capacity, water absorption rate, and gel strength upon water absorption. Conventional technology Water-absorbing resins are used in sanitary products such as sanitary products, diapers, and disposable rags, as water-retaining agents, and in agricultural and gardening products, as well as in coagulation of sludge, prevention of condensation on building materials,
It is also used for purposes such as dehydrating oils. Examples of this water-absorbing resin include carboxymethylcellulose crosslinked products, polyoxyethylene partially crosslinked products, starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid graft copolymers, and parts of acrylic acid or methacrylate polymers. Crosslinked products, partially crosslinked products of acrylic acid or methacrylate copolymers, vinyl alcohol-acrylate copolymers, and the like are known. The performance of these water-absorbing resins is largely influenced by their manufacturing method, but there is still room for improvement in the required performances such as water-absorbing capacity, water-absorbing rate, and gel strength. Recently, as a result of research and development, water-absorbent resins that can almost simultaneously satisfy the above-mentioned performance requirements are being put on the market, but even with these water-absorbent resins, the water retention properties (wet back properties) when pressurized are by no means satisfactory. Currently, no water-absorbing resin has been found that has such excellent pressurized water retention properties. However, unlike absorbent substances such as pulp and sponge, water-absorbent resins have the general feature that they do not easily release water once they have been absorbed. There is a tendency for water to separate, albeit slightly, at the bottom.
This has the disadvantage that it may cause discomfort due to the return of urine or menstrual blood, making it unsuitable for use as a sanitary material. Problems to be Solved by the Invention In view of the above-mentioned actual situation, the present inventors have attempted to improve the water-absorbing resin's water-absorbing ability, water-absorbing speed, and gel strength during water absorption while improving the water-retaining property under pressure. We conducted extensive research with the aim of providing a method. As a result, when a conventionally known water-absorbing resin containing a carboxylate group as a component of the polymer is used as a raw material, and the resin is mixed with particulate silica and then mixed with a cationic surfactant, the above-mentioned It has been discovered that it is possible to solve the problems and provide a water-absorbing resin that meets the purpose and has excellent performance. The present invention was completed based on this new knowledge. Means for Solving the Problems The present invention is characterized in that a water-absorbing resin containing a carboxylate group as a polymer constituent is mixed with particulate silica and then mixed with a cationic surfactant. It relates to a method for improving the pressurized water retention properties of water-absorbing resins. The water-absorbing resin with improved pressurized water retention according to the present invention hardly releases the water once absorbed by the water-absorbing resin under load or pressurized conditions, and as a result, it can be used, for example, in disposable diapers, sanitary products, etc. It has the advantage of reliably eliminating the discomfort caused by the return of urine and menstrual blood when used in sanitary materials such as, and can be used as an even better sanitary material. In the present invention, the water-absorbing resin used as a raw material may be one containing a carboxylate group as a constituent component of the polymer, and can be appropriately selected from among the various known resins mentioned above. In the present invention, the carboxylate group is defined as a concept including a carboxyl group. Among the above-mentioned water-absorbing resins, considering the inherent properties of water-absorbing resins such as water-absorbing ability, water-absorbing rate, and gel strength at the time of water absorption, in particular starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid Graft copolymers, partially crosslinked acrylic acid or methacrylate polymers, partially crosslinked acrylic acid or methacrylate copolymers (hereinafter referred to as
The latter two are preferably used simply as partially crosslinked (meth)acrylic acid-based (co)polymers). Particularly preferred partially crosslinked products of the above (meth)acrylic acid-based (co)polymers are disclosed in, for example, JP-A-56-93716, JP-A-56-131608, and JP-A-56-147806.
Publication No. 1987-71907, Japanese Patent Publication No. 1983-71907
Publication No. 117222, Special Publication No. 54-30710, Special Publication No.
This is disclosed in Japanese Patent Publication No. 54-37994, Japanese Patent Publication No. 53-46200, and US Pat. No. 4,041,228. The water-absorbing resins described in these documents, especially the partially crosslinked products of (meth)acrylic acid-based (co)polymers, have different resin performances to some extent based on the differences in the manufacturing methods adopted. It is also possible to change the resin performance as appropriate by selecting the manufacturing conditions and the like. Generally, their water absorption capacity is 100-1000, and the water absorption rate is 2
The gel strength upon water absorption for ~30 seconds is 1.0 to 5.0×10 4 dyne//cm 2 , and both can be preferably used in the present invention. According to the research conducted by the present inventors, the pressurized water retention property is not sufficiently improved even if the water absorbent resin is directly treated with a cationic surfactant. However, it was found that the pressurized water retention property was improved by mixing the water-absorbing resin with the particulate silica prior to the surfactant treatment. This is because when a water-absorbent resin is mixed with particulate silica and then treated with a cationic surfactant, the particulate silica acts as a dispersant that enables uniform dispersion of the cationic surfactant into the water-absorbent resin. As a result, the water-absorbing resin is uniformly treated with the cationic surfactant, and the surfactant is localized near the surface of the resin, which improves the water-absorbing capacity, water absorption rate, and gel of the water-absorbing resin upon water absorption. This is presumed to be due to the ability to greatly improve pressurized water retention without reducing strength. As the particulate silica, known particulate silica can be used, and typical examples include Aerosil (particulate silica manufactured by Nippon Aerosil Co., Ltd.). The amount of particulate silica to be added to the water-absorbing resin can be selected from a wide range as long as the surfactant treatment can be uniformly dispersed in the water-absorbing resin by the subsequent surfactant treatment. The cationic surfactant used in the present invention is not particularly limited and may be any of a variety of known surfactants, but higher alkylamine salts and quaternary ammonium salts are preferably used, and in particular, pressurized water retention. Quaternary ammonium salts are preferred from the viewpoint of properties. In order to improve the pressurized water retention property of the water-absorbing resin, the above-mentioned cationic surfactant,
In particular, it is essential to use a quaternary ammonium salt, and only then can the desired effect of the present invention be manifested. On the other hand, even if a nonionic surfactant or an anionic surfactant is used, the object of the present invention cannot be achieved at all. More specific examples of the quaternary ammonium salt as the cationic surfactant include alkyl quaternary ammonium salts, alkylbenzyl quaternary ammonium salts, and quaternary ammonium salts having a nitrogen ring. . Alkyl quaternary ammonium salts include alkyltrimethylammonium halide having an alkyl group having 10 to 18 carbon atoms;
Included are alkyldimethylethylammonium halides and the like. Alkylbenzyl quaternary ammonium salts include alkyldimethylbenzyl ammonium halides having an alkyl group having 10 to 18 carbon atoms. Further, quaternary ammonium salts having a nitrogen ring include alkylpyridinium halides and alkylpicolinium halides having alkyl groups having 10 to 18 carbon atoms. In addition, as the above-mentioned halide, chloride or bromide can be obtained suitably. The amount of the surfactant used (solid weight) is determined by taking into consideration the pressurized water retention properties and economic efficiency of the resulting water absorbent resin, and is usually determined by the water absorbent resin (solid weight).
0.01 to 5%, preferably 0.1 to 2.0%. In the present invention, the method of mixing the water-absorbing resin with particulate silica and the surfactant may be selected depending on the method of manufacturing the water-absorbing resin raw material, the manufacturing stage, etc. For example, in the case of water-absorbing resins obtained by employing the so-called reverse phase suspension polymerization method disclosed in JP-A-56-131608 and JP-A-58-117222, the pearls obtained When post-crosslinking the polymerized product with a crosslinking agent such as ethylene glycol diglycidyl ether, it is sufficient to mix it with particulate silica in advance and then add a surfactant to the aqueous solution of the crosslinking agent. In addition, when using a commercially available water-absorbing resin containing carboxylate groups (usually in the form of powder) as a raw material, the surfactant is simply added to the water-absorbing resin powder after mixing with particulate silica. A method of stirring and mixing, or a method of mixing a surfactant diluted with a small amount of water and then drying can be adopted. When implementing such a method, it is best to adopt a method that allows the cationic surfactant to be added and dispersed substantially uniformly into the water-absorbing resin powder, and from an industrial standpoint, the shearing method A homogeneous dispersion method using a conventional stirring device at the same time as or after the addition by a spray method is preferred. According to the above procedure, the cationic surfactant quickly and selectively forms an ionic bond to the carboxylate groups contained in the water-absorbing resin (particularly those existing near the surface of the water-absorbing resin powder). Therefore, it can be relatively easily localized near the surface of the water absorbent resin. Thus, according to the present invention, a cationic surfactant, especially a quaternary ammonium salt, can be added to a water-absorbing resin material, especially a partially crosslinked product of a (meth)acrylic acid-based (co)polymer. In particular, the surfactant can be localized near the surface of the raw material water-absorbing resin (powder), which solves problems that could not be solved with conventional techniques, namely the inherent water-absorbing ability of the water-absorbing resin, Its pressurized water retention properties can be improved without reducing the speed and gel strength upon water absorption. The water-absorbing resin obtained by the method of the present invention can not only be used as it is for conventional purposes, but also particularly suitable for use in sanitary materials that are strictly required to have pressurized water retention properties. Examples Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited thereto. Example 1 Add 72.1 g of acrylic acid to 22.2 g of deionized water,
Furthermore, 49.5 g of potassium hydroxide with a purity of 85% and 0.01 g of N,N-methylenebisacrylamide were sequentially added to this to prepare a potassium acrylate aqueous solution (neutralization degree of 75%) with a mixed monomer concentration of 70% by weight. did. The aqueous solution prepared above was kept at 70°C, and 2.9 g of an 18% aqueous solution of ammonium persulfate was added (0.5 g based on the total weight of potassium acrylate, free acrylic acid, and N,N-methylenebisacrylamide).
(% by weight) and 1.7 g (0.5% by weight) of a 30.6% aqueous solution of sodium bisulfite were mixed, and the mixed solution was spread on an endless moving belt in a layer having a thickness of about 10 mm. After about 30 seconds, the polymerization reaction started and was completed in about 1 minute. The maximum temperature during that time is approximately
It was 120℃. Thus, the moisture content is 11% and the residual monomer concentration is 1200 ppm.
A band-shaped dry solid of crosslinked potassium polyacrylate was obtained. Hereinafter, this will be referred to as water absorbent resin A. This was pulverized by pulverization using a pulverizer, and the resulting powder had a water absorption capacity of 450. Note that this water absorption capacity is evaluated by the method described later. Add Aerosil 200 to 100g of water absorbent resin A obtained above.
1 g of fine particulate silica (average particle size: about 0.012 μm, manufactured by Nippon Aerosil Co., Ltd.) was added and thoroughly stirred.
Further, while stirring, 2 g of a 30% aqueous solution of trimethyl lauryl ammonium chloride was uniformly added, and the mixture was then maintained at 70 to 80°C for 5 minutes. The water absorption capacity, water absorption rate, and pressurized water retention of the obtained water absorbent resin were each measured according to the following methods. The results are shown in Table 1. (Water absorption capacity) Add 150 g of deionized water and 0.12 g of water absorbent resin sample to a 200 ml beaker, leave it for 30 minutes, and then
The water was separated with a mesh wire mesh, the weight of the flowing water was measured, and the water absorption capacity was calculated using the formula below. Water absorption capacity = (weight of water initially added) - (weight of water flowing out) / weight of water absorbent resin sample (water absorption rate) Physiological saline (0.9%) was placed in a 100ml beaker in advance.
Add 50g of saline solution and a stirrer, stir at a speed of 600rpm with a magnetic stirrer, and add 2g of a water-absorbing resin sample to the mixture, gelation occurs due to water absorption and swelling, and fluidity decreases. It decreases and the water vortex at the stirring center disappears. Measure the time required for the vortex to disappear after adding the water-absorbing resin sample, and use this as the water absorption rate. (Gel strength) A gel (hereinafter referred to as 30x gel) was created by mixing 60 g of physiological saline and 2.0 g of a water-absorbing resin sample.
The hardness (surface hardness) of the gel is measured using a Neocard meter manufactured by Iio Electric Co., Ltd. Here, the surface hardness is expressed as a resistance force that prevents the pressure-sensitive shaft from pushing away the gel and entering the sample surface. (Pressurized water retention) Place 0.5 g of water-absorbing resin sample in an aluminum saucer (diameter 5.5 cm, depth 1 cm), then add 15 g of physiological saline.
and leave it for 2 minutes. After that, 11 sheets of paper with a diameter of 5.5 cm were placed over the top and an additional 1 kg was applied for 10 minutes. The increased weight (unit: g) of the remaining 10 sheets of paper excluding the bottom paper that is in direct contact with the water-absorbing resin sample is measured, and this is used as a measure of pressurized water retention. Example 2 In Example 1, 2 g of a 30% aqueous solution of dimethylbenzyl lauryl ammonium chloride was used instead of trimethyl lauryl ammonium chloride.
The desired water absorbent resin was obtained in the same manner except that . Table 1 shows various measurement results of the obtained water absorbent resin. Example 3 A target water-absorbing resin was obtained in the same manner as in Example 1, except that 6 g of a 10% aqueous solution of N-laurylpyridinium chloride was used instead of trimethyllauryl ammonium chloride. Table 1 shows various measurement results of the obtained water absorbent resin. Example 4 39.1g of acrylic acid with a purity of 99.8% by weight was placed in a 100ml flask, and while cooling and stirring, 22.6% by weight of acrylic acid was added.
After 765 g of sodium hydroxide aqueous solution was added dropwise to neutralize 80 mol%, 0.13 g of potassium persulfate was added.
g and continued stirring to dissolve at room temperature. Equipped with a reflux condenser that replaces the system with nitrogen in advance.
In a 500ml flask, add 213g of cyclohexane.
After charging 1.9 g of sorbitan monolaurylate with HLB of 8.6 and dissolving the surfactant at room temperature with stirring, the above-mentioned aqueous solution of partially neutralized acrylic acid salt was added dropwise and suspended. After the system was sufficiently replaced with nitrogen again, the temperature was raised, and the bath temperature was maintained at 55 to 60℃ for 3
A time polymerization reaction was carried out. The produced polymer solution was evaporated to dryness under reduced pressure to obtain 480 g of a finely granular dry polymer. Hereinafter, this will be referred to as water absorbent resin B. A desired water-absorbing resin was obtained in the same manner as in Example 1, except that water-absorbing resin B obtained above was used instead of water-absorbing resin A. Table 1 shows various measurement results of the obtained water absorbent resin. Example 5 50g corn starch and 200ml water
1000g of methanol was placed in a reaction vessel equipped with a stirring bar, nitrogen blowing tube, and thermometer, stirred at 55℃ for 1 hour under a nitrogen stream, cooled to 30℃, and then
Add 20g of acrylic acid, 80g of sodium acrylate, 40g of ceric ammonium nitrate solution (1/10 mole cerium ion in 1N nitric acid) and 1g of N,N-methylenebisacrylamide and stir at 40°C for 3 hours. When polymerized, a white suspension was obtained. Thereafter, the powder obtained by filtering this suspension was added to a water-methanol mixed solution (water to methanol ratio of 2:
10), dried under reduced pressure at 60℃ for 3 hours, and crushed.
138g of powdered water absorbent resin was obtained. This is referred to as water absorbent resin C. A desired water-absorbing resin was obtained in the same manner as in Example 1, except that water-absorbing resin C obtained above was used instead of water-absorbing resin A. Table 1 shows various measurement results of the obtained water absorbent resin. Comparative Example 1 Water absorbent resin A used as a raw material in Example 1 was used as a comparative water absorbent resin. The results of evaluating various performances are shown in Table 1. Comparative Example 2 Water absorbent resin B used as a raw material in Example 4 was used as a comparative water absorbent resin. Its various performances were evaluated. The results are shown in Table 1. Comparative Example 3 The water absorbent resin used as a raw material in Example 5 was used as a comparative water absorbent resin. The results of evaluating various performances are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 カルボキシレート基を重合体の構成成分とし
て含有する吸水性樹脂を微粒子状シリカと混合し
た後、カチオン性界面活性剤と混合処理すること
を特徴とする吸水性樹脂の加圧保水性の改良方
法。 2 吸水性樹脂がアクリル酸もしくはメタクリル
酸系重合体の部分架橋物又はアクリル酸もしくは
メタクリル酸系共重合体の部分架橋物である特許
請求の範囲第1項に記載の方法。 3 カチオン性界面活性剤が第4級アンモニウム
塩である特許請求の範囲第1項又は第2項に記載
の方法。
[Scope of Claims] 1. Addition of a water-absorbing resin, which is characterized in that a water-absorbing resin containing a carboxylate group as a constituent component of a polymer is mixed with particulate silica, and then mixed with a cationic surfactant. Method for improving water pressure retention. 2. The method according to claim 1, wherein the water-absorbing resin is a partially crosslinked product of an acrylic acid or methacrylic acid polymer or a partially crosslinked product of an acrylic acid or methacrylic acid copolymer. 3. The method according to claim 1 or 2, wherein the cationic surfactant is a quaternary ammonium salt.
JP13635085A 1985-06-21 1985-06-21 Method for improving water retention of water-absorbing resin under pressure Granted JPS61293246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13635085A JPS61293246A (en) 1985-06-21 1985-06-21 Method for improving water retention of water-absorbing resin under pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13635085A JPS61293246A (en) 1985-06-21 1985-06-21 Method for improving water retention of water-absorbing resin under pressure

Publications (2)

Publication Number Publication Date
JPS61293246A JPS61293246A (en) 1986-12-24
JPH0314867B2 true JPH0314867B2 (en) 1991-02-27

Family

ID=15173134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13635085A Granted JPS61293246A (en) 1985-06-21 1985-06-21 Method for improving water retention of water-absorbing resin under pressure

Country Status (1)

Country Link
JP (1) JPS61293246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012455A (en) * 2010-06-30 2012-01-19 San-Dia Polymer Ltd Absorptive resin particle, and absorbent and absorptive article using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959794B2 (en) 2007-03-05 2016-08-02 株式会社日本触媒 Water absorbing agent and method for producing the same
JP6497613B2 (en) * 2014-01-30 2019-04-10 国立大学法人高知大学 Poly (meth) acrylate ion complex

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169854A (en) * 1984-09-14 1986-04-10 Lion Corp Water-absorbing resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169854A (en) * 1984-09-14 1986-04-10 Lion Corp Water-absorbing resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012455A (en) * 2010-06-30 2012-01-19 San-Dia Polymer Ltd Absorptive resin particle, and absorbent and absorptive article using the same

Also Published As

Publication number Publication date
JPS61293246A (en) 1986-12-24

Similar Documents

Publication Publication Date Title
TWI290155B (en) Hygiene article comprising an absorbent polymer
JPS61293228A (en) Production of water-absorptive resin
JPH0153974B2 (en)
JP2530668B2 (en) Method for producing improved water absorbent resin
JPS6025045B2 (en) Method for producing acrylic acid polymer with excellent salt water absorption ability
JP5015603B2 (en) Swellable hydrogel-forming polymer with low fine dust content
JPS5980459A (en) Water-absorbing powdery resin composition
JP2002539281A (en) Powdery crosslinked absorbent polymer for absorbing aqueous liquids and blood, process for its production and use
JPS648006B2 (en)
JPS58180233A (en) Absorbing agent
JPS6117542B2 (en)
JPH02308820A (en) Granulation of highly water absorbing resin
US20180282441A1 (en) Water-absorbent resin particles and method for producing same
JPH0710922B2 (en) Granulation method of super absorbent polymer
JPH1095810A (en) High water absorption resin and production thereof
JPS60147475A (en) Manufacture of water-absorptive resin
JP4550256B2 (en) Manufacturing method of water absorbent resin
JP2555159B2 (en) Method for producing water absorbent resin
JPH0314867B2 (en)
JPH06107846A (en) Water-absorptive resin composition
JPH0362745B2 (en)
JPH06298841A (en) Production of water-absorbing resin
JPH0848721A (en) Preparation of water-absorptive resin
JPH0248292B2 (en)
JPS60177004A (en) Preparation of water-absorbing resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term