JPS648006B2 - - Google Patents

Info

Publication number
JPS648006B2
JPS648006B2 JP6626180A JP6626180A JPS648006B2 JP S648006 B2 JPS648006 B2 JP S648006B2 JP 6626180 A JP6626180 A JP 6626180A JP 6626180 A JP6626180 A JP 6626180A JP S648006 B2 JPS648006 B2 JP S648006B2
Authority
JP
Japan
Prior art keywords
water
polymer
absorbing resin
water absorption
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6626180A
Other languages
Japanese (ja)
Other versions
JPS56161408A (en
Inventor
Harumasa Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP6626180A priority Critical patent/JPS56161408A/en
Publication of JPS56161408A publication Critical patent/JPS56161408A/en
Publication of JPS648006B2 publication Critical patent/JPS648006B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水性液体を高度に吸収し、且つそれを
安定に保持することのできる吸水性樹脂の製造法
に関するものである。 従来、紙、パルプ、海綿等が吸水ないし保水材
料として生理用ナプキン、紙オシメ等の衛生材料
あるいは農業分野に使用されてきたが、これらの
材料はその吸水能力が低く、しかも一旦吸収され
た水も圧力が加わればそのかなりの部分がしぼり
出されてしまう。これらの材料に代わるものとし
て近年デンプン−ポリアクリロニトリルグラフト
重合体の加水分解物、変成セルロースエーテル並
びにポリエチレンオキシド変成物等、いくつかの
吸水材料が提案されてきている。しかしそれらは
吸水能が十分でなかつたり、たとえ吸水能が十分
であつても、製造工程が複雑であつたり、又は天
然物を原料としているため腐敗する可能性が有り
十分な吸水材料とは云い難いものである。 本発明者はこの様な目的に合致すべく吸水剤の
研究を行ない、先に安全性の高い、吸水材料を提
案した(特公昭54−30710)。この特公昭54−
30710号公報に開示された重合体は重合条件を最
適化することにより、しかも逆相懸濁重合法を採
用することによつて製造されるアクリル酸アルカ
リ金属塩ポリマーであり、大きな吸水能を有して
いる。しかし一般に吸水性ポリマーは従来の吸収
剤(パルプ、紙等)に較べて吸水性能において著
しく向上するが、その反面価格がかなり割高とな
る。このため、経済的観点からポリマーをより高
吸収性とし、ポリマーの使用量を少なくすること
のできる、より高吸水性のポリマーの出現が望ま
れている。そこで本発明者はこの目的を達成する
ため鋭意研究を重ねた結果、先の自己架橋型アク
リル酸アルカリ金属塩ポリマーをつくる際に2種
類の重合開始剤を組み合わせることによつて目的
とする粉末状で非常に大きな吸水能を有する吸水
剤が得られることを見いだし本発明を完成するに
到つた。 即ち、本発明は石油系脂肪族炭化水素溶媒中
に、過硫酸塩とヒドロパーオキサイドとの二種類
の水溶性ラジカル重合開始剤を含有した30重量%
以上飽和濃度までのアクリル酸アルカリ金属塩水
溶液を、HLB2〜9のソルビタン脂肪酸エステル
の存在下に分散、懸濁させた状態で重合すること
を特徴とする吸水性樹脂の製造法を提供するもの
である。 本発明に使用する逆相懸濁重合法の技術は特公
昭34−10644、特開昭48−1082、特開昭51−41090
及び特開昭51−47930号等各公報にアクリルアミ
ドポリマー及びアクリルアミドコポリマーの製造
を中心に開示されており、その技術をここでも応
用することができる。 本発明に係るアクリル酸アルカリ金属塩ポリマ
ーの製造工程においてアクリル酸の中和はポリマ
ー生成後ではポリマーの粉末化が困難であるから
必らず重合開始前にアクリル酸がポリマーになつ
たときに中性となるようにアルカリ金属水酸化物
によつて中和されなければならない。その中和度
は50〜95モル%、好ましくは65〜80モル%であ
る。又中和に用いられるアルカリ金属水酸化物と
しては水酸化ナトリウム、水酸化カリウム、水酸
化リチウム等を例示することができる。これらの
内で生体への安全性、経済性の観点から水酸化ナ
トリウムが最も好ましいと云える。 本発明に使用される有機溶媒は石油系脂肪族炭
化水素である事が必須であり、沸点が30〜200℃
の範囲に含まれるものである。例えばn−ヘキサ
ン、リグロイン等を挙げることができる。最も好
ましくはn−ヘキサンである。この様に逆相懸濁
重合が行われるためには使用する有機溶媒と油中
にアクリル酸塩モノマー水溶液を分散するための
界面活性剤が重要であり、芳香族系溶媒例えばベ
ンゼン、トルエン又はキシレンなどを溶媒として
用い、W/Oエマルジヨンを形成する助剤として
HLB2〜9のソルビタン脂肪酸エステル、例えば
ソルビタンモノステアレートを界面活性剤として
用いても重合後に得られるポリマーはゲル化し、
目的とする粉末状とはならない。 次にアクリル酸アルカリ金属塩水溶液の有機溶
剤への分散・懸濁のため使用される界面活性剤と
してはHLB2〜9の非イオン性界面活性剤であつ
て室温で固体であるものが好ましく、これはポリ
マーの表面状態、即ち得られるポリマー粒子が相
互に付着せず、凝塊を形成することがない性質を
有するために必要であり室温で固体であるソルビ
タン脂肪酸エステル、特にソルビタンモノステア
レートが好ましい。HLBが9より大きい界面活
性剤を用いては、W/Oエマルジヨンを安定に形
成することができず、又HLBが2未満のもので
はW/Oエマルジヨンを形成しても界面活性剤が
油状であるために重合後ポリマー粒子の表面に付
着し、粒子がベトベトし、扱い易いサラサラした
粒子とならないため何れも好ましくない。界面活
性剤の適当な添加量はモノマーに対して通常1〜
10wt%の範囲であるがその量によつて生成する
粒子径が左右される。 本発明者は重合に供されるアクリル酸アルカリ
金属塩水溶液の濃度が生成するポリマーの架橋度
或いは膨潤度ときわめて深い相関関係にある事を
見い出したが、ポリマーの膨潤度を大きいものに
するためにはアクリル酸アルカリ金属塩水溶液の
濃度は高い程良く、通常30wt%以上飽和濃度ま
でである。好ましくは飽和濃度である。因みに中
和度75%におけるアクリル酸ナトリウムの室温で
の飽和濃度は約45wt%である。かかる高濃度で
重合することにより通常架橋ポリマーを製造する
ために必要とされる架橋剤を用いずに特徴的に自
己架橋したポリマーが得られる。本発明におい
て、少量であれば架橋剤を使用してもよい。架橋
剤を使用すると、当然その使用量の増加とともに
ポリマーの吸水能は低下するが、吸水速度は増加
する。従つて0.2%程度以下の架橋剤の使用は許
容され、得られるポリマーは、架橋剤を使用しな
い場合に比して、吸水能は劣るが、吸水速度は優
れている。使用し得る架橋剤としてはN,N′−
メチレンビス(メタ)アクリルアミド、N−メチ
ロール(メタ)アクリルアミド、グリシジル(メ
タ)アクリレートなどが挙げられる。架橋剤を使
用した場合は、アクリル酸アルカリ金属塩水溶液
の濃度が幾分低くても、生成するポリマーは粉末
状で得られる。この水溶液の濃度は架橋剤の使用
量に応じて低下させることができ、30重量%程度
でも十分である。 本発明の実施に当つてこのモノマー水溶液と有
機溶剤の量の比は広い範囲にわたつて可変であ
る。一般に有機溶剤量が少ないと反応器1バツチ
当りのモノマー仕込み量を多くできる点が有利で
あるが、発熱の除去が困難となる。従つて反応器
の除熱能力からこの比が決定される。通常容量比
1:1から1:4の間が適当である。 本発明においては、水溶性ラジカル重合開始剤
として過硫酸塩とヒドロパーオキサイドの2種類
を組合わせて使用することにより非常に大きな吸
水能ポリマーを得ることができる。過硫酸塩とし
ては過硫酸ナトリウム、過硫酸カリウム、過硫酸
アンモニウム等を挙げることができ、ヒドロパー
オキサイドとしては過酸化水素、t−ブチルヒド
ロパーオキサイド、クメンヒドロパーオキサイド
等を挙げることができる。開始剤の使用量はモノ
マーに対して過硫酸塩が0.01〜1wt%、ヒドロパ
ーオキサイドが0.01〜1wt%の範囲であればいづ
れの組み合わせでも良い。しかし開始剤が過硫酸
塩のみの場合には最大でも吸水能が500g/g以
下である。又ヒドロパーオキサイドのみの場合に
は3〜5mm片に二次凝集し、しかもポリマーは可
溶化するため吸水能は測定できない。 重合は特公昭54−30710号公報に記載したのと
同様に行なう。すなわち、予め中和されたモノマ
ー水溶液に開始剤及び必要に応じて架橋剤を添加
溶解した溶液と界面活性剤を溶解した有機溶剤と
を混合し撹拌下に窒素ガスを導入して系内酸素を
追い出す。この間に反応系の水溶液部分は微小な
液滴となつて有機溶剤中に分散、懸濁する。つい
で所定温度に加熱して重合を開始させるが発熱の
状態によつて適宜冷却もしくは加熱を行なう。重
合反応は分散した微小液滴中で進行し、反応終了
後、撹拌を停止すると水で膨潤したポリマー粒子
が沈降するが、これを傾斜、過、遠心分離等の
手段によつて有機溶剤と分離後、乾燥してもよい
し、又直接有機溶剤と水を留去して乾燥してもよ
い。かくして得られたポリマーは界面活性剤の使
用量にもよるが、通常その直径が0.01〜0.1mm程
度で、表面が界面活性剤で覆われた真球状の一次
粒子又はそれらが一部二次凝集した二次粒子をわ
ずかに含む粒体である。この二次粒子もわずかな
機械力によつて容易に微粉砕することができる。
これはポリマーの製造面及び使用面に於いて大き
な利点がある。すなわち通常の水溶液重合によつ
てポリマーゲルを作り、これを乾燥した場合には
ポリマーは粉末化されていないため、極めて大き
な機械力で乾燥物を破砕する工程が必要であり、
微粉砕は極めて困難な工程である。 本発明における最も効果の大きい実施態様は次
のようである。即ち、n−ヘキサン中にモノマー
に対して0.01〜1wt%の過硫酸塩と0.01〜1wt%の
ヒドロパーオキサイドを含有し、且つ65〜80モル
%中和されたアクリル酸ナトリウムの40〜45wt
%水溶液をソルビタンモノステアレートの存在下
に分散懸濁させて重合し、ついでn−ヘキサン及
び水を留去することにより、粉末状でしかも吸水
能の非常に大きい(最大吸水能約1200g/g)ポ
リマーを得ることができる。 この様にして本発明は極めて大きい吸水能を有
することを可能にしたが、先の出願、特公昭54−
30710号公報に開示された発明と比較するならば
重合開始剤に過硫酸塩とヒドロパーオキサイドを
組み合わせて用いたことにその最大の特徴があ
る。しかもこの様に二種類の開始剤を組み合わせ
ることにより得られた超高吸水性の重合体を用い
ることにより、添加量が従来の吸水剤使用量の半
分の量で良いこととなり非常に経済的となり、使
用用途を更に拡げることが可能になつた。このよ
うに得られるポリマーの吸水能は非常に大きくな
るので、重合に際して少量の架橋剤を併用し、架
橋させた場合でも得られるポリマーはほゞ満足し
得る吸水能を有する。このように、少量の架橋剤
を併用して、若干架橋させたポリマーは架橋させ
ない場合に比して吸水能は低下するが、吸水速度
が著しく上昇し、例えば、紙オシメに添加して使
用した際に、多量の液体を短時間に吸収し、濡れ
による不快感を減少させる効果がある。 本発明において吸水能とは次の操作によつて求
められる値である。すなわちポリマー約1gを大
過剰のイオン交換水に分散、室温にて30分間放置
し、充分膨潤させ、次いで80メツシユの金網で
過した。得られた膨潤ポリマーの重量(W)を測
定し、この値を初めのポリマー重量(Wo)で割
つて得られる値、つまり吸水能(g/g)=W/
Woとした。また、吸水速度は室温、常圧下に0.5
gのポリマーに0.9%の食塩水を吸収させ5ml吸
収するのに要した時間で表わした。 以下実施例及び比較例によつて本発明を具体的
に説明する。 実施例 1 撹拌機、還流冷却器、滴下斗、窒素ガス導入
管を付した500mlの四つ口フラスコにヘキサン230
mlを取りソルビタンモノステアレート1.8gを添
加溶解した後、窒素ガスを吹き込んで溶存酸素を
追い出した。別にビーカー中でアクリル酸30gを
外部より氷冷しつつ、水40gに溶解した13.4gの
98%苛性ソーダでカルボキシル基の78%を中和し
た。この水溶液中のモノマー濃度は45wt%とな
つた。ついでこの水溶液に過硫酸カリウム0.1g
と30%過酸化水素0.04gを添加溶解したのち、減
圧にして溶液内に存在する酸素を除去した。ビー
カーの内容物を上記四つ口フラスコに加えて分散
させ、僅かに窒素ガスを導入しつつ水浴によりフ
ラスコの内温を60〜65℃に保持して3時間撹拌を
続けた。ヘキサンを減圧下に留去し残つた膨潤ポ
リマー部分を30〜80℃で減圧下に乾燥し、粉末状
ポリマーを得た。 実施例 2 実施例1における仕込み処方の内、重合開始剤
の部分で過硫酸カリウム0.3gと30%過酸化水素
0.12gとした以外、実施例1と同様にして粉末状
ポリマーを得た。 実施例 3 実施例1における仕込み処方の内、水相に関す
る部分で水50gすなわちモノマー濃度40%とした
以外実施例1と同様にして粉末状ポリマーを得
た。 実施例 4 実施例1の仕込み処方の内、重合開始剤の部分
で過硫酸カリウム0.1gと80%t−ブチルヒドロ
パーオキサイド0.04gとした以外、実施例1と同
様にして粉末状ポリマーを得た。 実施例 5 実施例1の仕込み処方の内、重合開始剤の部分
で過硫酸カリウム0.1gとクメンヒドロパーオキ
サイド0.06gとした以外、実施例1と同様にして
粉末状ポリマーを得た。 実施例 6 実施例1の仕込み処方の内、重合開始剤の部分
で過硫酸アンモニウム0.09gと30%過酸化水素
0.04gとした以外、実施例1と同様にして粉末状
ポリマーを得た。 比較例 1 特公昭54−30710と同様に合成した。即ち、実
施例1の仕込み処方の内、重合開始剤を過硫酸カ
リウム0.1gのみとした以外、実施例−1と同様
にして粉末状ポリマーを得た。 比較例 2 実施例1の仕込み処方の内、重合開始剤を80%
t−ブチルヒドロパーオキサイド0.04gとした以
外、実施例1と同様にして粉末状ポリマーを得
た。このポリマーは水にほとんど溶解し、吸水能
を測定することは不可能であつた。 比較例 3 実施例1における仕込み処方の内、重合開始剤
を過硫酸カリウム0.1gと過硫酸アンモニウム
0.09gとした以外、実施例1と同様にして粉末状
ポリマーを得た。 実施例1〜6及び比較例1〜3で得たポリマー
の吸水能を測定し、結果を表1に示した。
The present invention relates to a method for producing a water-absorbing resin that can highly absorb aqueous liquid and stably retain it. Traditionally, paper, pulp, sponge, etc. have been used as water-absorbing or water-retaining materials in sanitary materials such as sanitary napkins and paper diapers, or in the agricultural field. However, if pressure is applied, a large portion of it will be squeezed out. As alternatives to these materials, several water-absorbing materials have been proposed in recent years, such as hydrolysates of starch-polyacrylonitrile graft polymers, modified cellulose ethers, and modified polyethylene oxides. However, these materials do not have sufficient water absorption capacity, or even if they do have sufficient water absorption capacity, the manufacturing process is complicated, or they are made from natural materials, so there is a possibility of them spoiling, so they cannot be said to be sufficient water absorption materials. It's difficult. The present inventor conducted research on water-absorbing agents to meet these objectives, and previously proposed a highly safe water-absorbing material (Japanese Patent Publication No. 30710/1983). This special public service 1977-
The polymer disclosed in Publication No. 30710 is an acrylic acid alkali metal salt polymer produced by optimizing polymerization conditions and employing a reversed-phase suspension polymerization method, and has a large water absorption capacity. are doing. However, in general, water-absorbing polymers have significantly improved water-absorbing performance compared to conventional absorbents (pulp, paper, etc.), but on the other hand, they are considerably more expensive. Therefore, from an economical point of view, there is a desire for the emergence of a polymer with higher water absorption, which can make the polymer more absorbent and reduce the amount of polymer used. Therefore, as a result of extensive research in order to achieve this objective, the present inventors found that by combining two types of polymerization initiators when producing the self-crosslinking type acrylic acid alkali metal salt polymer, the desired powder form was obtained. The present inventors discovered that a water-absorbing agent having a very large water-absorbing capacity can be obtained by using the above methods, and completed the present invention. That is, the present invention provides a 30% by weight solution containing two types of water-soluble radical polymerization initiators, persulfate and hydroperoxide, in a petroleum-based aliphatic hydrocarbon solvent.
The present invention provides a method for producing a water-absorbing resin, which is characterized in that an aqueous solution of an alkali metal acrylate salt up to a saturated concentration is polymerized in a state in which it is dispersed and suspended in the presence of a sorbitan fatty acid ester of HLB 2 to 9. be. The technology of the reverse phase suspension polymerization method used in the present invention is disclosed in Japanese Patent Publication No. 34-10644, Japanese Patent Application Publication No. 48-1082, and Japanese Patent Application Publication No. 51-41090.
and JP-A-51-47930 and other publications mainly disclose the production of acrylamide polymers and acrylamide copolymers, and the techniques can be applied here as well. In the production process of the alkali metal acrylic salt polymer according to the present invention, neutralization of acrylic acid must be carried out before the start of polymerization, when the acrylic acid becomes a polymer, since it is difficult to powderize the polymer after it has been formed. It must be neutralized with an alkali metal hydroxide to give a Its degree of neutralization is 50-95 mol%, preferably 65-80 mol%. Examples of the alkali metal hydroxide used for neutralization include sodium hydroxide, potassium hydroxide, and lithium hydroxide. Among these, sodium hydroxide is said to be the most preferable from the viewpoint of safety to living organisms and economical efficiency. The organic solvent used in the present invention must be a petroleum-based aliphatic hydrocarbon with a boiling point of 30 to 200°C.
It is included in the scope of. Examples include n-hexane and ligroin. Most preferred is n-hexane. In order to carry out reverse phase suspension polymerization in this way, the organic solvent used and the surfactant for dispersing the acrylate monomer aqueous solution in the oil are important, and aromatic solvents such as benzene, toluene or xylene are important. as an auxiliary agent to form a W/O emulsion using
Even if sorbitan fatty acid esters of HLB 2 to 9, such as sorbitan monostearate, are used as a surfactant, the polymer obtained after polymerization will gel.
It does not turn into the desired powder form. Next, the surfactant used for dispersing/suspending the aqueous solution of alkali metal acrylate in an organic solvent is preferably a nonionic surfactant with HLB 2 to 9 that is solid at room temperature. is necessary for the surface state of the polymer, that is, the property that the obtained polymer particles do not stick to each other and do not form agglomerates, and sorbitan fatty acid esters, which are solid at room temperature, are particularly preferable, sorbitan monostearate. . If a surfactant with an HLB greater than 9 is used, a W/O emulsion cannot be stably formed, and if an HLB is less than 2, the surfactant will be oily even if a W/O emulsion is formed. Both of these are undesirable because they adhere to the surface of the polymer particles after polymerization, making the particles sticky and making them difficult to handle. The appropriate amount of surfactant to be added is usually 1 to 100% of the monomer.
The amount is in the range of 10wt%, but the particle size produced depends on the amount. The present inventor has found that the concentration of the aqueous acrylic acid salt aqueous solution used for polymerization has a very deep correlation with the degree of crosslinking or swelling of the resulting polymer; however, in order to increase the degree of swelling of the polymer, The higher the concentration of the aqueous solution of alkali metal acrylate, the better; it is usually 30 wt% or more up to saturation concentration. Preferably it is a saturation concentration. Incidentally, the saturation concentration of sodium acrylate at room temperature at a neutralization degree of 75% is approximately 45 wt%. Polymerization at such high concentrations provides characteristically self-crosslinked polymers without the use of crosslinking agents normally required to produce crosslinked polymers. In the present invention, a crosslinking agent may be used in a small amount. When a crosslinking agent is used, the water absorption capacity of the polymer naturally decreases as the amount used increases, but the water absorption rate increases. Therefore, the use of a crosslinking agent of about 0.2% or less is permissible, and the resulting polymer has a superior water absorption rate, although its water absorption ability is inferior to that obtained when no crosslinking agent is used. Crosslinking agents that can be used include N, N'-
Examples include methylenebis(meth)acrylamide, N-methylol(meth)acrylamide, and glycidyl(meth)acrylate. When a crosslinking agent is used, the resulting polymer can be obtained in powder form even if the concentration of the aqueous alkali metal acrylate solution is somewhat low. The concentration of this aqueous solution can be lowered depending on the amount of crosslinking agent used, and about 30% by weight is sufficient. In the practice of this invention, the ratio of the amounts of aqueous monomer solution to organic solvent can be varied over a wide range. Generally, when the amount of organic solvent is small, it is advantageous in that the amount of monomer charged per batch in the reactor can be increased, but it becomes difficult to eliminate heat generation. Therefore, this ratio is determined from the heat removal capacity of the reactor. A capacity ratio between 1:1 and 1:4 is usually suitable. In the present invention, by using a combination of two types of water-soluble radical polymerization initiators, persulfate and hydroperoxide, it is possible to obtain a polymer with extremely high water absorption capacity. Examples of the persulfate include sodium persulfate, potassium persulfate, and ammonium persulfate, and examples of the hydroperoxide include hydrogen peroxide, t-butyl hydroperoxide, and cumene hydroperoxide. Any combination of initiators may be used as long as the amount of persulfate is 0.01 to 1 wt% and the amount of hydroperoxide is 0.01 to 1 wt% based on the monomer. However, when the initiator is only a persulfate, the maximum water absorption capacity is 500 g/g or less. In addition, in the case of only hydroperoxide, the water absorption capacity cannot be measured because it aggregates into pieces of 3 to 5 mm and the polymer is solubilized. Polymerization is carried out in the same manner as described in Japanese Patent Publication No. 54-30710. That is, a solution in which an initiator and, if necessary, a crosslinking agent are added and dissolved in a monomer aqueous solution that has been neutralized in advance is mixed with an organic solvent in which a surfactant is dissolved, and nitrogen gas is introduced while stirring to eliminate oxygen in the system. kick out During this time, the aqueous solution portion of the reaction system becomes minute droplets and is dispersed and suspended in the organic solvent. Next, it is heated to a predetermined temperature to initiate polymerization, but depending on the state of heat generation, cooling or heating is performed as appropriate. The polymerization reaction proceeds in dispersed minute droplets, and when the stirring is stopped after the reaction is complete, the polymer particles swollen with water settle out, but these are separated from the organic solvent by means such as tilting, filtration, or centrifugation. After that, it may be dried, or it may be dried by directly distilling off the organic solvent and water. The polymer thus obtained usually has a diameter of about 0.01 to 0.1 mm, depending on the amount of surfactant used, and is composed of true spherical primary particles whose surface is covered with surfactant, or secondary aggregation of some of them. It is a granule containing a small amount of secondary particles. These secondary particles can also be easily pulverized by slight mechanical force.
This has great advantages in the production and use of polymers. In other words, when a polymer gel is made by ordinary aqueous polymerization and then dried, the polymer is not powdered, so a process of crushing the dried material with extremely large mechanical force is required.
Fine grinding is an extremely difficult process. The most effective embodiment of the present invention is as follows. That is, 40 to 45 wt of sodium acrylate containing 0.01 to 1 wt% of persulfate and 0.01 to 1 wt% of hydroperoxide based on monomer in n-hexane and neutralized to 65 to 80 mol%.
% aqueous solution in the presence of sorbitan monostearate and polymerize it, and then distill off n-hexane and water to form a powder with a very high water absorption capacity (maximum water absorption capacity of about 1200g/g). ) polymer can be obtained. In this way, the present invention has made it possible to have an extremely large water absorption capacity, but in the previous application,
When compared to the invention disclosed in Publication No. 30710, its greatest feature lies in the use of a combination of persulfate and hydroperoxide as a polymerization initiator. Moreover, by using the ultra-high water-absorbing polymer obtained by combining two types of initiators in this way, the amount added can be half of the amount of conventional water-absorbing agents, making it extremely economical. This makes it possible to further expand the range of uses. The water absorption capacity of the polymer thus obtained is very high, so even when a small amount of a crosslinking agent is used during polymerization and crosslinking is performed, the resulting polymer has a substantially satisfactory water absorption capacity. In this way, a polymer that is slightly cross-linked using a small amount of cross-linking agent has a lower water absorption capacity than a polymer that is not cross-linked, but the water absorption rate increases significantly, so that it can be used, for example, when added to paper diapers. It has the effect of absorbing a large amount of liquid in a short period of time and reducing the discomfort caused by getting wet. In the present invention, water absorption capacity is a value determined by the following operation. That is, about 1 g of polymer was dispersed in a large excess of ion-exchanged water, left to stand at room temperature for 30 minutes to sufficiently swell, and then passed through an 80-mesh wire mesh. The value obtained by measuring the weight (W) of the obtained swollen polymer and dividing this value by the initial polymer weight (Wo), that is, water absorption capacity (g/g) = W/
It was Wo. In addition, the water absorption rate is 0.5 at room temperature and normal pressure.
It is expressed as the time required to absorb 5 ml of 0.9% saline solution into 5 ml of polymer. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 Hexane 230 was placed in a 500 ml four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and nitrogen gas inlet tube.
After adding and dissolving 1.8 g of sorbitan monostearate, nitrogen gas was blown into the solution to drive out dissolved oxygen. Separately, in a beaker, 13.4 g of acrylic acid dissolved in 40 g of water was cooled with ice from the outside.
78% of the carboxyl groups were neutralized with 98% caustic soda. The monomer concentration in this aqueous solution was 45 wt%. Next, add 0.1g of potassium persulfate to this aqueous solution.
After adding and dissolving 0.04 g of 30% hydrogen peroxide, the pressure was reduced to remove oxygen present in the solution. The contents of the beaker were added to the four-necked flask and dispersed, and stirring was continued for 3 hours while the internal temperature of the flask was maintained at 60 to 65° C. with a water bath while introducing a slight amount of nitrogen gas. The hexane was distilled off under reduced pressure, and the remaining swollen polymer portion was dried under reduced pressure at 30 to 80°C to obtain a powdery polymer. Example 2 In the charging recipe in Example 1, 0.3 g of potassium persulfate and 30% hydrogen peroxide were added in the polymerization initiator part.
A powdered polymer was obtained in the same manner as in Example 1 except that the amount was 0.12 g. Example 3 A powdered polymer was obtained in the same manner as in Example 1, except that in the charging recipe in Example 1, 50 g of water, that is, the monomer concentration was 40%, was used in the part related to the aqueous phase. Example 4 A powdered polymer was obtained in the same manner as in Example 1, except that 0.1 g of potassium persulfate and 0.04 g of 80% t-butyl hydroperoxide were used as the polymerization initiator in the charging recipe of Example 1. Ta. Example 5 A powdered polymer was obtained in the same manner as in Example 1, except that 0.1 g of potassium persulfate and 0.06 g of cumene hydroperoxide were used as the polymerization initiator. Example 6 In the charging recipe of Example 1, 0.09 g of ammonium persulfate and 30% hydrogen peroxide were added in the polymerization initiator part.
A powdered polymer was obtained in the same manner as in Example 1 except that the amount was 0.04 g. Comparative Example 1 Synthesized in the same manner as in Japanese Patent Publication No. 54-30710. That is, a powdered polymer was obtained in the same manner as in Example 1, except that only 0.1 g of potassium persulfate was used as the polymerization initiator in the charging recipe of Example 1. Comparative Example 2 80% of the polymerization initiator in the formulation of Example 1
A powdered polymer was obtained in the same manner as in Example 1, except that 0.04 g of t-butyl hydroperoxide was used. This polymer was almost soluble in water and it was impossible to measure its water absorption capacity. Comparative Example 3 In the charging recipe in Example 1, the polymerization initiators were 0.1 g of potassium persulfate and ammonium persulfate.
A powdered polymer was obtained in the same manner as in Example 1 except that the amount was 0.09 g. The water absorption capacity of the polymers obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was measured, and the results are shown in Table 1.

【表】 表−1より本発明の製造法による吸水性ポリマ
ーの性能が著しく高いことが明らかである。 実施例 7 実施例1の仕込み処方の内、モノマー水溶液の
部分に架橋剤として更にN,N′−メチレンビス
アクリルアミド6mgを追加溶解した以外、実施例
1と同様にして粉末状ポリマーを得た。 実施例 8 実施例1の仕込み処方の内、モノマー水溶液の
部分に架橋剤として更にN,N′−メチレンビス
アクリルアミド15mgを追加溶解した以外、実施例
1と同様にして粉末状ポリマーを得た。 実施例7〜8及び前記比較例1で得たポリマー
の吸水速度を測定し、結果を表2に示した。
[Table] It is clear from Table 1 that the performance of the water-absorbing polymer produced by the production method of the present invention is extremely high. Example 7 A powdered polymer was obtained in the same manner as in Example 1, except that 6 mg of N,N'-methylenebisacrylamide was further dissolved as a crosslinking agent in the monomer aqueous solution portion of the charging recipe of Example 1. Example 8 A powdered polymer was obtained in the same manner as in Example 1, except that 15 mg of N,N'-methylenebisacrylamide was further dissolved as a crosslinking agent in the monomer aqueous solution portion of the charging recipe of Example 1. The water absorption rates of the polymers obtained in Examples 7 and 8 and Comparative Example 1 were measured, and the results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 石油系脂肪族炭化水素溶媒中に、過硫酸塩と
ヒドロパーオキサイドとの二種類の水溶性ラジカ
ル重合開始剤を含有した30重量%以上飽和濃度ま
でのアクリル酸アルカリ金属塩水溶液を、HLB2
〜9のソルビタン脂肪酸エステルの存在下に分
散、懸濁させた状態で重合することを特徴とする
吸水性樹脂の製造法。 2 アクリル酸アルカリ金属塩がアクリル酸の50
〜95モル%がアルカリ金属水酸化物により中和さ
れたものである特許請求の範囲第1項記載の吸水
性樹脂の製造法。 3 ソルビタン脂肪酸エステルがソルビタンモノ
ステアレートである特許請求の範囲第1項記載の
吸水性樹脂の製造法。 4 石油系脂肪族炭化水素がノルマルヘキサンで
ある特許請求の範囲第1項記載の吸水性樹脂の製
造法。
[Claims] 1. An alkali metal acrylate containing two types of water-soluble radical polymerization initiators, persulfate and hydroperoxide, in a petroleum-based aliphatic hydrocarbon solvent at a saturation concentration of 30% by weight or more. salt solution, HLB2
A method for producing a water-absorbing resin, characterized in that polymerization is carried out in a dispersed and suspended state in the presence of the sorbitan fatty acid ester of ~9. 2 Acrylic acid alkali metal salt is 50% of acrylic acid
The method for producing a water-absorbing resin according to claim 1, wherein ~95 mol% of the water-absorbing resin is neutralized with an alkali metal hydroxide. 3. The method for producing a water-absorbing resin according to claim 1, wherein the sorbitan fatty acid ester is sorbitan monostearate. 4. The method for producing a water-absorbing resin according to claim 1, wherein the petroleum-based aliphatic hydrocarbon is normal hexane.
JP6626180A 1980-05-19 1980-05-19 Production of water-absorbing resin Granted JPS56161408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6626180A JPS56161408A (en) 1980-05-19 1980-05-19 Production of water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6626180A JPS56161408A (en) 1980-05-19 1980-05-19 Production of water-absorbing resin

Publications (2)

Publication Number Publication Date
JPS56161408A JPS56161408A (en) 1981-12-11
JPS648006B2 true JPS648006B2 (en) 1989-02-10

Family

ID=13310729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6626180A Granted JPS56161408A (en) 1980-05-19 1980-05-19 Production of water-absorbing resin

Country Status (1)

Country Link
JP (1) JPS56161408A (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717679A (en) * 1981-05-18 1982-01-29 Tokyo Shibaura Electric Co Television game device
JPS57192416A (en) * 1981-05-20 1982-11-26 Sumitomo Chem Co Ltd Production of hydrogel
JPS57198714A (en) * 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
JPS601204A (en) * 1983-06-20 1985-01-07 Kao Corp Production of highly water-absorptive resin
JPS62282633A (en) * 1986-02-05 1987-12-08 Kyoritsu Yuki Co Ltd Highly water-absorptive resin emulsion and its production
JPS6390537A (en) * 1986-10-06 1988-04-21 Mitsui Saianamitsudo Kk Water-in-oil type water-swellable polymer emulsion
US4985514A (en) * 1987-08-10 1991-01-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of water absorbent resin
JP2682007B2 (en) * 1988-05-20 1997-11-26 三菱化学株式会社 Method for producing water absorbent resin
TW241279B (en) * 1991-02-01 1995-02-21 Catalyst co ltd
DE102004020647A1 (en) * 2004-04-22 2005-11-24 Coty B.V. Sweat-absorbing complex for cosmetic products
DE102004020646A1 (en) * 2004-04-22 2005-11-24 Coty B.V. Sweat-absorbing complex for cosmetic products
KR20110006771A (en) 2009-07-15 2011-01-21 주식회사 엘지화학 Preparation method of super absorbent polymer
JP5847170B2 (en) 2010-05-28 2016-01-20 エルジー・ケム・リミテッド Highly water-absorbent resin pulverizer and method for producing superabsorbent resin using the same
KR101126678B1 (en) 2010-06-22 2012-03-29 주식회사 엘지화학 Polymerization reactores for the preparation of super absorbent polymer and preparation method thereof using the same
KR101290740B1 (en) 2010-11-22 2013-07-29 주식회사 엘지화학 Preparation method of super absorbent polymer
KR101495779B1 (en) 2010-11-30 2015-02-25 주식회사 엘지화학 Preparation method of super absorbent polymer
US9656296B2 (en) 2012-04-13 2017-05-23 Lg Chem, Ltd. Preparation method of a super absorbent polymer
WO2013162255A2 (en) 2012-04-25 2013-10-31 주식회사 엘지화학 Super absorbent polymer and method for manufacturing same
EP2837641A4 (en) 2012-11-15 2015-10-07 Lg Chemical Ltd Super absorbent polymer
KR101559081B1 (en) 2012-11-15 2015-10-08 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR101595037B1 (en) 2013-01-15 2016-02-17 주식회사 엘지화학 Preparation method for super absorbent polymer
WO2014178588A1 (en) 2013-04-30 2014-11-06 주식회사 엘지화학 Highly absorbent resin
KR101604272B1 (en) 2013-05-09 2016-03-25 주식회사 엘지화학 Preparation method of super absorbent polymer
CN104284921B (en) 2013-05-09 2016-07-06 Lg化学株式会社 The method preparing high water absorbency polymer
KR20140134219A (en) 2013-05-13 2014-11-21 주식회사 엘지화학 Super absorbent polymer and preparation method of the same
KR20150016126A (en) 2013-08-01 2015-02-11 주식회사 엘지화학 Super absorbent polymer
KR20150024767A (en) 2013-08-27 2015-03-09 주식회사 엘지화학 Preparation method for super absorbent polymer
KR101495845B1 (en) 2013-09-30 2015-02-25 주식회사 엘지화학 Super absorbent polymer and preparation method for super absorbent polymer
KR101513146B1 (en) 2013-09-30 2015-04-17 주식회사 엘지화학 Preparation method for super absorbent polymer
KR20150050069A (en) 2013-10-31 2015-05-08 한화케미칼 주식회사 Apparatus for preparing super absorbent polymer and method for preparing super absorbent polymer using the same
KR101700907B1 (en) 2013-12-10 2017-01-31 주식회사 엘지화학 Method for preparing super absorbent polymer
WO2015088200A1 (en) 2013-12-10 2015-06-18 주식회사 엘지화학 Method for preparing super-absorbent resin
KR20150067998A (en) 2013-12-11 2015-06-19 한화케미칼 주식회사 Apparatus for preparing super absorbent polymer and method for preparing super absorbent polymer using the same
KR101719352B1 (en) 2013-12-13 2017-04-04 주식회사 엘지화학 Super absorbent polymer composition
US9724670B2 (en) 2013-12-20 2017-08-08 Reliance Industries Limited Water absorbent polymers and a process for their preparation
WO2015102457A1 (en) 2014-01-06 2015-07-09 한화케미칼 주식회사 Method for preparing superabsorbent polymer
WO2015102463A1 (en) 2014-01-06 2015-07-09 한화케미칼 주식회사 Method for preparing superabsorbent polymer
WO2015108350A1 (en) 2014-01-15 2015-07-23 한화케미칼 주식회사 Super absorbent resin cutting device and super absorbent resin manufacturing method using same
KR20150090620A (en) 2014-01-29 2015-08-06 한화케미칼 주식회사 Apparatus for cutting super absorbent polymer and method for preparing super absorbent polymer using the same
KR101684649B1 (en) 2014-06-13 2016-12-08 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
CN106574006B (en) 2014-10-08 2019-10-22 株式会社Lg化学 The manufacturing method of super absorbent resin
EP3165558B1 (en) 2014-10-08 2019-08-14 LG Chem, Ltd. Method for preparing super absorbent polymer granules
KR20160061743A (en) 2014-11-24 2016-06-01 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR101745679B1 (en) 2014-11-27 2017-06-09 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR101769100B1 (en) 2014-11-27 2017-08-30 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
KR101752384B1 (en) 2014-11-27 2017-06-30 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR101782501B1 (en) 2014-12-10 2017-09-27 주식회사 엘지화학 Preparation method for super absorbent polymer
KR102011926B1 (en) 2014-12-22 2019-08-20 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
WO2016104962A1 (en) 2014-12-22 2016-06-30 주식회사 엘지화학 Superabsorbent polymer and preparation method therefor
KR101841664B1 (en) 2015-01-06 2018-03-23 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
KR102009909B1 (en) 2015-10-07 2019-08-21 주식회사 엘지화학 Measuring method of rupture strength of a superabsorbent resin particle
KR101949994B1 (en) 2015-10-14 2019-02-19 주식회사 엘지화학 Super absorbent polymer granule and preparation method thereof
KR101960043B1 (en) 2015-11-03 2019-07-04 주식회사 엘지화학 Preparation method of super absorbent polymer
KR101880218B1 (en) 2015-11-06 2018-07-20 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR20170057705A (en) 2015-11-17 2017-05-25 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR101855352B1 (en) 2015-12-09 2018-05-08 주식회사 엘지화학 Preparation method of super absorbent polymer
WO2017099423A1 (en) 2015-12-09 2017-06-15 주식회사 엘지화학 Method for preparing super-absorbent resin
KR101921278B1 (en) 2015-12-23 2018-11-22 주식회사 엘지화학 Super absorbent polymer, and preparation method of the same
KR102119813B1 (en) 2015-12-23 2020-06-05 주식회사 엘지화학 Super absorbent polymer, and preparation method of the same
US11198768B2 (en) 2016-03-11 2021-12-14 Lg Chem, Ltd. Preparation method of super absorbent polymer
WO2018117413A1 (en) 2016-12-20 2018-06-28 주식회사 엘지화학 Superabsorbent polymer and method for producing same
WO2018117441A1 (en) 2016-12-20 2018-06-28 주식회사 엘지화학 Superabsorbent polymer and method for manufacturing same
KR102086050B1 (en) 2016-12-20 2020-03-06 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR102193459B1 (en) 2016-12-20 2020-12-21 주식회사 엘지화학 Super absorbent polymer and preparation method for the same
KR102487977B1 (en) 2017-07-28 2023-01-11 주식회사 엘지화학 Super absorbent polymer, and preparation method of the same
KR20190041308A (en) 2017-10-12 2019-04-22 주식회사 엘지화학 Chute type monomer dispenser
US20220203375A1 (en) 2019-09-19 2022-06-30 Lg Chem, Ltd. Super Absorbent Polymer Hydrogel Shredding Device
WO2021091240A1 (en) 2019-11-05 2021-05-14 주식회사 엘지화학 Method for preparing super absorbent polymer
KR20210062459A (en) 2019-11-21 2021-05-31 주식회사 엘지화학 Complex minute cutting apparatus for super absorbent polymer hydrous gel
CN114340859A (en) 2020-02-28 2022-04-12 株式会社Lg化学 Superabsorbent polymer hydrogel chopping device
KR20220049962A (en) 2020-10-15 2022-04-22 주식회사 엘지화학 Polymerization reactores for preparation of super absorbent polymer
KR20220054051A (en) 2020-10-23 2022-05-02 주식회사 엘지화학 Polymerization reactores for preparation of super absorbent polymer

Also Published As

Publication number Publication date
JPS56161408A (en) 1981-12-11

Similar Documents

Publication Publication Date Title
JPS648006B2 (en)
EP0312952B1 (en) Process for preparing absorbent polymers
JP5378790B2 (en) Method for producing water absorbent resin
US4093776A (en) Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
JP2530668B2 (en) Method for producing improved water absorbent resin
JP2945362B2 (en) Method for producing hydrophilic polymer having high dissolution or swelling rate in water
JPH0117482B2 (en)
JPH01207327A (en) Surface treating method of water absorbing resin
JPS6136763B2 (en)
WO2007116554A1 (en) Water-absorbing resin partilce agglomerates and process for produciton thereof
TWI530506B (en) Method for producing a water-absorbent resin
JPH0725810B2 (en) Super absorbent resin manufacturing method
JPH0310642B2 (en)
JPH03195713A (en) Production of polymer having high water absorption
JP2555159B2 (en) Method for producing water absorbent resin
JPH0848721A (en) Preparation of water-absorptive resin
JPH0311282B2 (en)
JPS63297408A (en) Production of improved highly water-absorbing polymer
JPS61157513A (en) Production of polymer having high water absorption property
JPS6352662B2 (en)
JPH05222107A (en) Production of water-absorbing fine polymer particle
JP2966539B2 (en) Method for producing hydrogel polymer
JPS6295308A (en) Production of highly water-absorbing polymer bead
JP2001002726A (en) Production of water-absorbing resin
JPH01178509A (en) Preparation of water-absorbing resin