JPH03147364A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03147364A
JPH03147364A JP1286822A JP28682289A JPH03147364A JP H03147364 A JPH03147364 A JP H03147364A JP 1286822 A JP1286822 A JP 1286822A JP 28682289 A JP28682289 A JP 28682289A JP H03147364 A JPH03147364 A JP H03147364A
Authority
JP
Japan
Prior art keywords
aluminum
insulating film
contact
layer
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286822A
Other languages
Japanese (ja)
Inventor
Koji Naito
康志 内藤
Hisashi Ogawa
久 小川
Kazuhiro Matsuyama
和弘 松山
Masanori Fukumoto
正紀 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1286822A priority Critical patent/JPH03147364A/en
Publication of JPH03147364A publication Critical patent/JPH03147364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an extremely fine aluminum contact stably and at high yield rate by covering an opposed electrode with an etching mask, and removing the insulating film between the bit line layer at a nonmemory cell part and the charge accumulated electrode layer, and then forming the insulating layer between an opposed electrode layer and a wiring layer and the aluminum contact. CONSTITUTION:An accumulated electrode-substrate contact 32, an accumulated electrode 9, and a capacity insulating layer 10 are made in this order, and after an opposed electrode 11 is formed, the opposed electrode 11 is cut out with an opposed electrode resist pattern 14. An unnecessary second interlayer insulating film 8 is removed only from a peripheral circuit part 30, where a deep aluminum contact exists, with a resist pattern 15 to cover a cell part 29, and the third interlayer insulating film 12 is accumulated anew, and a contact hole for aluminum wiring, that is, an opposed electrode-aluminum contact 34, an aluminum-substrate contact 35, an aluminum-gate electrode contact 36, and an aluminum-bit line contact 37 are opened, and an aluminum wiring 13 is made.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(友 高密度な半導体装置の製造方法に関するも
のであも 従来の技術 従来 ゲート電極を形成した後にポリシリコンを用いた
電荷蓄積電極を形成するスタック型と呼ばれるDRAM
の一例を第4図に示す。第4図において、シリコン基板
1上に素子分離酸化膜2を形成した後、素子形成領域に
ゲート酸化膜3、ソース・ドレイン領域4、ゲート電極
5からなるMOSトランジスタを形成し その上に第1
層間絶縁膜6、及びビットライン7をこの順に形成した
後、第2層間絶縁膜8、電荷蓄積電極9、容量絶縁膜1
0、対向電極11を形成する。さらに第3層間絶縁膜1
2を形成した後、コンタクト38〜41を形成し アル
ミ配線13を形成すも この場合、周辺回路部30のア
ルミコンタクトのうち対対向電極11、対ビツトライン
7を除いた対シリコン基板11  対ゲート電極5のコ
ンタクト力(第1層間絶縁膜6、第2層間絶縁膜8、第
3層間絶縁膜12の三層を貫く非常に深いコンタクトと
なっていtも 発明が解決しようとする課題 しかし このように非常に深いコンタクトホーを持つ構
成ではホール径の小さい場合、アルミの被覆性が不十分
でコンタクト特性が不安定になるという問題点を引き起
こしてい九 本発明は上述の問題点に鑑みて案出されたもので、スタ
ック型DRAMにおいて、極微細アルミコンタクトを安
定して高歩留まりに形成できる半導体装置の製造方法を
提供することを目的とすム課題を解決するための手段 本発明(よ 上述の課題を解決するために ゲ、−ト電
極及びビットラインをこの順に形成した後、電荷蓄積電
極 容量絶縁膜 対向電極を形成する構成をとるスタッ
ク型DRAMにおいて、前記対向電極形成後、この対向
電極部をエツチングマスクで覆い非メモリセル部におけ
るビットライン層と電荷蓄積電極層との間の絶縁膜をエ
ツチング除去し その後前記対向電極層と次の配線層と
の間の絶縁膜及びアルミコンタクトを形成するものであ
ム 作用 本発明(友 上述の構成によって、深いアルミコンタク
トが存在する周辺回路部の層間絶縁膜を一部取り除いて
薄くすることができも その結果アルミコンタクトを浅
くすることができアルミの被覆性が改善されコンタクト
の信頼性を安定化できる。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for manufacturing a high-density semiconductor device, but also relates to a method for manufacturing a high-density semiconductor device.Conventional technology After forming a gate electrode, a charge storage electrode using polysilicon is formed. DRAM called stack type
An example is shown in FIG. In FIG. 4, after forming an element isolation oxide film 2 on a silicon substrate 1, a MOS transistor consisting of a gate oxide film 3, a source/drain region 4, and a gate electrode 5 is formed in the element formation region, and a first
After forming the interlayer insulating film 6 and the bit line 7 in this order, the second interlayer insulating film 8, the charge storage electrode 9, and the capacitive insulating film 1 are formed.
0. Form the counter electrode 11. Furthermore, the third interlayer insulating film 1
After forming 2, contacts 38 to 41 are formed, and aluminum wiring 13 is formed. The contact force of 5 (a very deep contact that penetrates the three layers of the first interlayer insulating film 6, the second interlayer insulating film 8, and the third interlayer insulating film 12) is also a problem to be solved by the invention. In a configuration with a very deep contact hole, if the hole diameter is small, the aluminum coverage is insufficient and the contact characteristics become unstable.The present invention was devised in view of the above-mentioned problems. An object of the present invention is to provide a method for manufacturing a semiconductor device that can stably form ultra-fine aluminum contacts at a high yield in a stacked DRAM. In order to solve the problem, in a stacked DRAM that has a configuration in which a charge storage electrode, a capacitor insulating film, and a counter electrode are formed after forming the gate electrode, the bit line, and the bit line in this order, after forming the counter electrode, this counter electrode part is formed. The insulating film between the bit line layer and the charge storage electrode layer in the non-memory cell area is covered with an etching mask and removed by etching, and then the insulating film and aluminum contact are formed between the counter electrode layer and the next wiring layer. With the above-described structure, it is possible to partially remove and thin the interlayer insulating film in the peripheral circuit area where deep aluminum contacts exist.As a result, the aluminum contacts can be made shallower and the aluminum coating The reliability of the contact is improved and the reliability of the contact can be stabilized.

実施例 (実施例1) 第1図(上 本発明の第1の実施例における半導体装置
の製造方法を示す工程断面図であ翫 シリコン基板1に
LOCO5法で分離酸化膜2を形成した後、素子形成領
域にゲート酸化膜3、ソースドレイン領域4、ゲート電
極5からなるMOSトランジスタを形成し その上に第
1層間絶縁膜6を形成し ビットラインー基板コンタク
ト31及びビットラインーゲート電極コンタクト33、
ビットライン層配線6、第2層間絶縁膜8を形成すも 
蓄積電極一基板コンタクト32、蓄積電極9、容量絶縁
膜10をこの順に形成し 対向電極11を堆積した後、
対向電極レジストパターン14で対向電極11を切り出
す(第1図(a))。
Example (Example 1) FIG. 1 (above) is a process cross-sectional view showing a method for manufacturing a semiconductor device in the first example of the present invention. After forming an isolation oxide film 2 on a silicon substrate 1 by the LOCO5 method, A MOS transistor consisting of a gate oxide film 3, a source/drain region 4, and a gate electrode 5 is formed in the element formation region, a first interlayer insulating film 6 is formed thereon, a bit line-to-substrate contact 31, a bit line-to-gate electrode contact 33,
The bit line layer wiring 6 and the second interlayer insulating film 8 are formed.
After forming the storage electrode-substrate contact 32, storage electrode 9, and capacitive insulating film 10 in this order, and depositing the counter electrode 11,
The counter electrode 11 is cut out using the counter electrode resist pattern 14 (FIG. 1(a)).

次にセル部29を覆うレジストパターン15で深いアル
ミコンタクトが存在する周辺回路部30のみ不必要な第
2層間絶縁膜8を取り除き(第1図(b))、新たに第
3層間絶縁膜12を堆積しく第1図(C))、アルミ配
線用のコンタクトホー/l<  即ち対向電極−アルミ
コンタクト34、アルミ−基板コンタクト35、アルミ
−ゲート電極コンタクト36、アルミ−ビットラインコ
ンタクト37を開口しアルミ配線13を形成する(第1
図(d))。このようにすると各配線間のリークを抑え
つス (1)アルミコンタクト35、36、37を浅くでき、
コンタクト34〜37のうち深いもの(35,36)を
エツチングするとき浅いもの(34、37)に対するオ
ーバーエッチが少なくて済む、(2)コンタクトが浅い
たべ 同じホール径ならアルミの被覆性がよくなりコン
タクトの信頼性が増す、という二点の改善が得られも (実施例2) 第2図は 本発明の第2の実施例における半導体装置の
製造方法を示す工程断面図であム 第1の実施例と同様
にして対向電極まで形成した抵周辺回路部アルミコンタ
クト寸法の半径にして0〜5ミクロン拡大したレジスト
パターン16で第1、第2層間絶縁膜6、8を適当量エ
ツチングする(第2図(a))。その後第3層間絶縁膜
12を堆積し これをアルミコンタクトレジストバタン
17でエツチングして開口しく第2図(b))、実施例
1と同様にアルミ配線を形成すも このようにすれば 
層間絶縁膜をエツチングした非セル部とセル部の比較的
大きな段差がアルミコンタクトの周囲だけに限定されア
ルミのレジストパターン17の形成が容易になる。
Next, with the resist pattern 15 covering the cell part 29, the unnecessary second interlayer insulating film 8 is removed only in the peripheral circuit part 30 where a deep aluminum contact exists (FIG. 1(b)), and a new third interlayer insulating film 12 is removed. 1(C)), contact holes for aluminum wiring are opened, that is, counter electrode-aluminum contact 34, aluminum-substrate contact 35, aluminum-gate electrode contact 36, and aluminum-bit line contact 37. Forming aluminum wiring 13 (first
Figure (d)). By doing this, leakage between each wiring can be suppressed. (1) Aluminum contacts 35, 36, and 37 can be made shallow,
When etching the deep contacts (35, 36) among the contacts 34 to 37, there is less over-etching of the shallow ones (34, 37). (2) Shallow contacts If the hole diameter is the same, the aluminum coverage will be better. Although two improvements were obtained in that the reliability of the contact was increased (Embodiment 2), FIG. The first and second interlayer insulating films 6 and 8 are etched by an appropriate amount using a resist pattern 16 enlarged by 0 to 5 microns in radius of the resistor peripheral circuit aluminum contact dimension formed up to the counter electrode in the same manner as in the embodiment. Figure 2(a)). After that, a third interlayer insulating film 12 is deposited, and this is etched with an aluminum contact resist batten 17 to form an opening (FIG. 2(b)), and an aluminum wiring is formed in the same manner as in Example 1.
A relatively large step difference between the non-cell portion and the cell portion where the interlayer insulating film is etched is limited to only the periphery of the aluminum contact, making it easier to form the aluminum resist pattern 17.

(実施例3) 第3図(よ 本発明の第3の実施例における半導体装置
の製造方法を示す工程断面図であム 第1図(a>まで
の工程に引き続いて対向電極のレジストパターン14で
第2、第1層間絶縁膜8.6を適当量エツチングし こ
の後第1図(e)−(d)の工程を実施する。このよう
にすると第1の実施例の工程をマスク回数を1回減らし
 かつ同等の効果を得ることができる。また 非メモリ
セル部のビットライン層と電荷蓄積電極層との間の第2
の絶縁膜8をエツチング除去するマスクに、電荷蓄積電
極9そのものを用し\ 電荷蓄積電極9加工 電荷蓄積
電極9の加工に用いたフォトレジスト除去に引き続いて
非メモリセル部の第2の絶縁膜8をエツチング除去する
方法であっても同様の効果が得られも 発明の効果 以上の説明から明らかなよう(ξ 本発明によれば容易
な工程によりゲート電極及びビットラインをこの順に形
成した後、電荷蓄積電極 容量絶縁膜、 対向電極を形
成する構成をとるスタック型DRAMにおいて、周辺回
路のアルミコンタクトを浅くすることができアルミコン
タクトの信頼性を改善でき、実用的に極めて有用である
(Embodiment 3) FIG. 3 is a process sectional view showing a method for manufacturing a semiconductor device in a third embodiment of the present invention. Following the steps up to FIG. Then, the second and first interlayer insulating films 8.6 are etched by an appropriate amount, and the steps shown in FIGS. It is possible to reduce the number of times by one and obtain the same effect.Also, the second layer between the bit line layer and the charge storage electrode layer in the non-memory cell part
The charge storage electrode 9 itself is used as a mask for etching and removing the insulating film 8 of As is clear from the above explanation, the method of etching away the gate electrode and the bit line according to the present invention, In a stacked DRAM having a configuration in which a charge storage electrode, a capacitive insulating film, and a counter electrode are formed, the aluminum contact in the peripheral circuit can be made shallower, and the reliability of the aluminum contact can be improved, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における半導体装置の製造方
法を示す工程断面図 第2図は本発明の実施例2の工程
断面は 第3図は本発明の実施例3の工程断面図 第4
図は従来例を示すスタック型DRAMの構成断面図であ
FIG. 1 is a process cross-sectional view showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention. FIG. 2 is a process cross-section diagram of a second embodiment of the present invention. FIG. 4
The figure is a cross-sectional view of the configuration of a conventional stacked DRAM.

Claims (4)

【特許請求の範囲】[Claims] (1)ゲート電極を形成した後にポリシリコンを用いた
電荷蓄積電極を形成するスタック型DRAMのうち、ゲ
ート電極及びビットラインをこの順に形成した後、電荷
蓄積電極、容量絶縁膜、対向電極を形成する半導体装置
において、前記対向電極形成後、非メモリセル部におけ
る前記ビットライン層と電荷蓄積電極層との間の絶縁膜
をエッチングマスクによりエッチング除去し、その後前
記対向電極層と次の配線層との間の絶縁膜を形成するこ
とを特徴とする半導体装置の製造方法。
(1) In a stacked DRAM in which a charge storage electrode using polysilicon is formed after forming a gate electrode, the gate electrode and bit line are formed in this order, and then the charge storage electrode, capacitive insulating film, and counter electrode are formed. In the semiconductor device, after forming the counter electrode, the insulating film between the bit line layer and the charge storage electrode layer in the non-memory cell part is etched away using an etching mask, and then the counter electrode layer and the next wiring layer are removed. 1. A method of manufacturing a semiconductor device, comprising forming an insulating film between.
(2)非メモリセル部のビットライン層と電荷蓄積電極
層との間の絶縁膜をエッチング除去するマスクに、通常
のアルミコンタクトマスクからセル部のアルミコンタク
トを削除し非メモリセル部のアルミコンタクトホールを
拡大したレジストパターンを用いることを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(2) For the mask that etches and removes the insulating film between the bit line layer and charge storage electrode layer in the non-memory cell area, remove the aluminum contact in the cell area from a normal aluminum contact mask and contact the aluminum contact in the non-memory cell area. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a resist pattern with enlarged holes is used.
(3)非メモリセル部のビットライン層と電荷蓄積電極
層との間の絶縁膜をエッチング除去するマスクに、前記
電荷蓄積電極をパターン出ししたレジストマスクを用い
、前記電荷蓄積電極加工後、引き続いて非メモリセル部
のビットライン層と電荷蓄積電極層との間の絶縁膜をエ
ッチング除去することを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
(3) A resist mask with the charge storage electrode patterned thereon is used as a mask for etching and removing the insulating film between the bit line layer and the charge storage electrode layer in the non-memory cell part, and after the charge storage electrode is processed, Claim 1, characterized in that the insulating film between the bit line layer and the charge storage electrode layer in the non-memory cell portion is removed by etching.
A method for manufacturing a semiconductor device according to section 1.
(4)非メモリセル部のビットライン層と電荷蓄積電極
層との間の絶縁膜をエッチング除去するマスクに、電荷
蓄積電極そのものを用い、電荷蓄積電極加工、フォトレ
ジスト除去に引き続いて非メモリセル部のビットライン
層と電荷蓄積電極層との間の絶縁膜をエッチング除去す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
(4) Using the charge storage electrode itself as a mask for etching and removing the insulating film between the bit line layer and the charge storage electrode layer in the non-memory cell part, after processing the charge storage electrode and removing the photoresist, the non-memory cell 2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film between the bit line layer and the charge storage electrode layer is removed by etching.
JP1286822A 1989-11-01 1989-11-01 Manufacture of semiconductor device Pending JPH03147364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286822A JPH03147364A (en) 1989-11-01 1989-11-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286822A JPH03147364A (en) 1989-11-01 1989-11-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03147364A true JPH03147364A (en) 1991-06-24

Family

ID=17709486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286822A Pending JPH03147364A (en) 1989-11-01 1989-11-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03147364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230081A (en) * 1988-03-10 1989-09-13 Nec Corp Developing device
JPH0629487A (en) * 1992-03-25 1994-02-04 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0897384A (en) * 1994-09-28 1996-04-12 Nec Corp Semiconductor memory device and manufacture thereof
US6258708B1 (en) 1997-03-14 2001-07-10 Nec Corporation Method of fabricating gate contact pods, load lines and wiring structures using a minimum number of etching steps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230081A (en) * 1988-03-10 1989-09-13 Nec Corp Developing device
JPH0629487A (en) * 1992-03-25 1994-02-04 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0897384A (en) * 1994-09-28 1996-04-12 Nec Corp Semiconductor memory device and manufacture thereof
US6258708B1 (en) 1997-03-14 2001-07-10 Nec Corporation Method of fabricating gate contact pods, load lines and wiring structures using a minimum number of etching steps

Similar Documents

Publication Publication Date Title
US5500544A (en) Dynamic random access memory cell and method for fabricating the same
JPH11330245A (en) Method for contact formation of semiconductor device
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
KR960011652B1 (en) Stack capacitor and the method
US6211008B1 (en) Method for forming high-density high-capacity capacitor
JPH04264767A (en) Semiconductor device and manufacture thereof
JPH03147364A (en) Manufacture of semiconductor device
JPH0629463A (en) Manufacture of semiconductor element
JP2765133B2 (en) Method for manufacturing semiconductor device
JPH04336464A (en) Fabrication of semiconductor memory device
JPH08195436A (en) Contact hole formation of semiconductor element
JPH1197529A (en) Manufacture of semiconductor device
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
KR100192927B1 (en) Method for manufacturing capacitor of semiconductor device
JPH02122560A (en) Semiconductor storage device
JP2798532B2 (en) Method for manufacturing semiconductor device
KR100269608B1 (en) Capacitor Formation Method
KR100258863B1 (en) Manufacturing method for semiconductor memory
JP2527244B2 (en) Method for manufacturing semiconductor device
JPH03165558A (en) Semiconductor memory device and manufacture thereof
KR100218308B1 (en) Fabricating method for capacitor in high density semiconductor device
JP2694777B2 (en) Method for manufacturing semiconductor device
KR960013644B1 (en) Capacitor manufacture method
JP2827377B2 (en) Semiconductor integrated circuit
JPH10294439A (en) Semiconductor storage device and its manufacture