JPH0314692A - Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production - Google Patents

Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production

Info

Publication number
JPH0314692A
JPH0314692A JP1145198A JP14519889A JPH0314692A JP H0314692 A JPH0314692 A JP H0314692A JP 1145198 A JP1145198 A JP 1145198A JP 14519889 A JP14519889 A JP 14519889A JP H0314692 A JPH0314692 A JP H0314692A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
pulp
fiber
fluid
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145198A
Other languages
Japanese (ja)
Inventor
Tsukasa Shima
島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1145198A priority Critical patent/JPH0314692A/en
Publication of JPH0314692A publication Critical patent/JPH0314692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fluid-interlocked nonwoven fabric having excellent fluid-barrierness, surface smoothness, delamination resistance, etc., by laminating a sheet made of vegetable fiber with a sheet made of specific short fibers and subjecting the laminate to fluid interlocking treatment. CONSTITUTION:A vegetable fiber pulp such as wood pulp and hemp pulp is processed by conventional paper-making process to form a sheet. Separately, short fibers of viscose rayon, nylon, etc., having a fiber length of <=15mm and an L/D ratio of 0.6-2.5X10<3> [L is fiber length (mm) and D is single fiber diameter (mum)] is formed in the form of sheet by a paper-making process or an air-lay process. The above sheets are stacked and laminated and high-speed fluid streams ejected from a number of nozzles are made to collide with the laminate obtained above to cause three-dimensional interlocking of the pulps, short fibers or pulp and short fiber and obtain the objective fabric having a distance between the interlocked points of the short fibers of <=300mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は植物繊維パルプと人造繊維から製造した表面に
噴流軌跡を有さない無孔の流体交絡不織布及びその製造
方法に関するものである。更に詳しくは、主として植物
繊維パルプからなる不織布の層と主として人造繊維から
なる不織布の層とが積層状態で一体に交絡複合されてお
り、その結果液体バリアー性、表面平滑性、層間剥離性
等の性能に優れ、特に壁装材、手術衣の用途に適した複
合不織布に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-porous, fluid-entangled nonwoven fabric having no jet traces on its surface, produced from vegetable fiber pulp and artificial fibers, and a method for producing the same. More specifically, a layer of nonwoven fabric mainly made of vegetable fiber pulp and a layer of nonwoven fabric mainly made of artificial fiber are interlaced and composited together in a laminated state, resulting in improved liquid barrier properties, surface smoothness, delamination properties, etc. The present invention relates to a composite nonwoven fabric that has excellent performance and is particularly suitable for use as wall covering materials and surgical gowns.

〔従来の技術〕[Conventional technology]

不織布を壁装材として使用する事は、従来の不織布では
種々の問題があり、困難であった。
It has been difficult to use nonwoven fabrics as wall covering materials due to various problems with conventional nonwoven fabrics.

壁面に接着剤を塗布したのち、不織布の壁材を貼りつけ
ると、接着剤が不織布を浸透、透過して表面にまで浸み
出してくることが起る。即ち手織布の液体に対するバリ
アー性が不充分である。又、一度貼りつけられた不織布
の壁材を貼り替え等で剥がそうとすると、壁面自体が一
緒に剥れたり、あるいは不織布の繊維の一部が取られて
壁面に残ったりして、壁面の本来の平滑性を損ない、貼
り替えに困難を来たす。即ち再施工性に難点がある。
If an adhesive is applied to a wall and then a non-woven wall material is attached, the adhesive may permeate the non-woven fabric and seep out to the surface. That is, the barrier properties of the handwoven fabric against liquids are insufficient. In addition, if you try to remove the non-woven wall material that has been pasted to re-stick it, the wall surface itself may come off, or some of the fibers of the non-woven fabric may be taken off and remain on the wall surface, causing damage to the wall surface. It impairs the original smoothness and makes it difficult to reapply. In other words, there is a difficulty in re-construction.

液体バリアー性に優れた不織布として木材パルプーポリ
エステルスパンレースド不織布が特開昭59−9465
9号公報に開示されており、該公報実施例1に準拠して
試作したものを壁装材としてパルプ側を壁面(裏面)側
にして試験をしたところ、確かにバリアー性に優れてお
り、施工時の接着剤の浸み出しはみられなかった。しか
しながら、施工時の張力によって寸法の変化が起りやす
く目地のくるいを生じやすかった。再施工性をみるため
に壁面から引き剥がしたところ、パルプ面とポリエステ
ル面の境界部分から剥離して、パルプ面が壁面に残った
まま、比較的均一に剥すことができた。しかしながらポ
リエステル層の引張り強度は十分ではなく、一部壁面へ
の糸残りがみられた。又、表面にみられる筋状の噴流跡
のために壁装材としての外観が損われ、平滑性を欠き細
い模様の印刷や染色には適さないものであった。又、噴
流跡に沿って破れたり、糊剤の浸み出しがみられること
もあった。
A wood pulp polyester spunlaced nonwoven fabric as a nonwoven fabric with excellent liquid barrier properties was published in JP-A-59-9465.
It is disclosed in Publication No. 9, and when we tested it as a wall covering material using a prototype made according to Example 1 of the publication, with the pulp side facing the wall surface (back side), it was found that it certainly had excellent barrier properties. No adhesive seepage was observed during construction. However, dimensional changes were likely to occur due to tension during construction, and joints were likely to curl. When we peeled it off from the wall to see how easily it could be reapplied, we found that it peeled off from the boundary between the pulp surface and the polyester surface, and was able to be peeled off relatively uniformly with the pulp surface remaining on the wall. However, the tensile strength of the polyester layer was not sufficient, and some threads remained on the wall surface. In addition, the appearance of the material as a wall covering material was impaired due to the streaky jet traces seen on the surface, and it lacked smoothness, making it unsuitable for printing or dyeing thin patterns. In addition, tearing along the jet traces and oozing of glue were sometimes observed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、施工時の糊剤の浸み出しがなく、再施工の為
の壁からの引き剥がしが容易で糸残り等がなく、かつ表
面の噴流跡がなく平滑性に富んで、美観と印刷性、染色
性に優れた、壁装材に適した不織布を提供するものであ
る。
The present invention does not cause glue to seep out during construction, is easy to peel off from the wall for reinstallation, does not leave any threads, and has no jet traces on the surface, making it smooth and aesthetically pleasing. The present invention provides a nonwoven fabric that has excellent printability and dyeability and is suitable for wall covering materials.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、主として植物繊維パルプから成る三次元交絡
した不織布層(A)と繊維長が15mm以下の短繊維が
三次元交絡してなる不織布層(B)が積層されてなる複
合不織布であって、該手織布層(A)と不織布層(B)
とはその短繊維の一部同士がその接合部において混合し
あって交絡することによって一体に結合しており、不織
布層(B)を構成する短繊維の繊維交絡点間距離が30
0μm以下であることを特徴とする無孔の流体交絡不織
布である。
The present invention is a composite nonwoven fabric formed by laminating a three-dimensionally entangled nonwoven fabric layer (A) mainly made of vegetable fiber pulp and a nonwoven fabric layer (B) made of three-dimensionally entangled short fibers having a fiber length of 15 mm or less. , the hand-woven fabric layer (A) and the non-woven fabric layer (B)
is a part of the short fibers that are mixed and intertwined at the joint and are bonded together, and the distance between the fiber entanglement points of the short fibers constituting the nonwoven fabric layer (B) is 30
This is a non-porous, fluid-entangled nonwoven fabric characterized by a pore size of 0 μm or less.

本発明における不織布層(A)は、針葉樹パルプ、広葉
樹パルプ等の木材パルブ、コットリンターバルブ、麻パ
ルプなど公知の植物繊維パルブから選ばれた任意のパル
プの一種又は二種以上から戒っており、該パルプ繊維は
三次元に交絡している。不織布N (A)の好適な目付
量は5〜100g/m2、より好ましくは10〜50g
/m”である。不織布層(A)は主として植物由来パル
プから戒っているが、一部他種の化学繊維、合成繊維が
混入していてもよい。
The nonwoven fabric layer (A) in the present invention is made of one or more pulps selected from wood pulps such as softwood pulp and hardwood pulp, and known vegetable fiber pulps such as cotton linter pulp and hemp pulp. , the pulp fibers are three-dimensionally entangled. Suitable basis weight of nonwoven fabric N (A) is 5 to 100 g/m2, more preferably 10 to 50 g
/m''. The nonwoven fabric layer (A) is mainly made of plant-derived pulp, but some other types of chemical fibers or synthetic fibers may be mixed therein.

本発明における不織布1’i CB)は、ビスコースレ
ーヨン、キュプラ等の再生繊維、ナイロン、ポリエステ
ル、アクリル、ビニロン等の合!繊維などから選ばれた
任意の一種又は二種以上の繊維長15mm以下の短繊維
からなっており、該短繊維の単糸繊度は任意であるが、
好ましくは0.1〜3dである。不織布層(B)の好適
な目付量はl5〜2 0 0g/m”、より好ましくは
2 0 〜l O Og/m”である。不織布層(B)
を構成する繊維は相互に三次元に交絡しており、その交
絡の度合は、繊維交絡点間距離として300μm以下で
ある。
The nonwoven fabric 1'i CB) in the present invention is made of recycled fibers such as viscose rayon and cupro, nylon, polyester, acrylic, vinylon, etc. It consists of one or more types of short fibers selected from fibers, etc., with a fiber length of 15 mm or less, and the single fiber fineness of the short fibers is arbitrary, but
Preferably it is 0.1-3d. A suitable basis weight of the nonwoven fabric layer (B) is 15 to 200 g/m'', more preferably 20 to 100 g/m''. Nonwoven fabric layer (B)
The fibers constituting the fibers are three-dimensionally entangled with each other, and the degree of entanglement is 300 μm or less as a distance between fiber entangled points.

本発明における不織布1i (A)及び(B)は、いず
れも細孔より高速で噴出させた流体、好ましくは水によ
って交絡されたものである。本発明のパルプ及び15m
m以下のような短かい繊維は流体によって緊密に交絡す
ることが出来る。不織布層(B)においては交絡点間距
離が300μm以下迄に交絡が進むことにより、従来予
想されなかった高強度で寸法安定性に優れた不織布層と
なる。
The nonwoven fabrics 1i (A) and (B) in the present invention are both entangled with a fluid, preferably water, ejected from the pores at high speed. Pulp of the present invention and 15m
Short fibers, such as less than m, can be entangled tightly by fluid. In the nonwoven fabric layer (B), the intertwining progresses until the distance between the interlacing points is 300 μm or less, resulting in a nonwoven fabric layer with high strength and excellent dimensional stability, which was previously not expected.

本発明における不織布層(A)と不織布層(B)とは積
層されており、積層の境界面付近においては互いの層を
構或する繊維は混合しあって相互に交絡することにより
、(A)、(B)両層は一体に結合している。
The nonwoven fabric layer (A) and the nonwoven fabric layer (B) in the present invention are laminated, and near the interface between the laminations, the fibers constituting each layer mix and become entangled with each other. ), (B) both layers are bonded together.

本発明の積層不織布は流体交絡されている。本発明の不
織布を構或する不織布層(A)及び不織布r! (B)
は、予めそれぞれ別々に流体交絡されたのちに、積層さ
れて再度流体交絡処理を行うことによって一体に結合す
ることが出来る。又、より好ましくは、交絡前の不織布
層(A)及び不織布層(B)を積層したのち、積層体を
流体交絡処理を行うことによって、各々の不織布層の交
絡を行うと同時に両層の一体結合を行うことが出来る。
The laminated nonwoven fabric of the present invention is fluid entangled. The nonwoven fabric layer (A) constituting the nonwoven fabric of the present invention and the nonwoven fabric r! (B)
can be combined together by being fluid entangled separately in advance, then laminated and subjected to the fluid entangling process again. More preferably, after laminating the non-woven fabric layer (A) and the non-woven fabric layer (B) before entangling, the laminate is subjected to a fluid entangling treatment to intertwine each non-woven fabric layer and at the same time integrate both layers. You can perform joins.

交絡処理は表裏両層から噴流を当て行うことが出来る。The entangling process can be performed by applying jets from both the front and back layers.

本発明における噴流軌跡とは、ノズルから連続して噴出
される流体流が、ノズルと被処理不織布との相対的な位
置関係に対応して、被処理不織布表面に描く連続的な溝
状の模様をいう。例えばネットコンベアに載置されて移
動する不織布に対して、その上方に固定されたノズルか
ら噴出する柱状の水流は直線の噴流軌跡を、その表面に
与える。
In the present invention, the jet flow trajectory refers to a continuous groove-like pattern drawn on the surface of the nonwoven fabric to be treated by the fluid stream continuously ejected from the nozzle, corresponding to the relative positional relationship between the nozzle and the nonwoven fabric to be treated. means. For example, a columnar water stream ejected from a nozzle fixed above a nonwoven fabric placed on a net conveyor and moving gives a linear jet trajectory to the surface of the nonwoven fabric.

ノズルが平面上の周回運動する場合は例えばラセン状の
噴流軌跡を与える。本発明における表面に噴流軌跡を有
しない積層不織布においては、その表面の交絡の為の流
体の噴流による跡は短かくて浅い溝、点状のくぼみ、不
連続かつランダムな筋、ネットコンペアーメッシュパタ
ーンが転写された網目模様などとして観察され、上述し
た噴流軌跡としては認められない。
When the nozzle moves around on a plane, it gives a spiral jet trajectory, for example. In the laminated nonwoven fabric of the present invention that does not have a jet trajectory on its surface, the traces caused by the fluid jet for entanglement on the surface are short and shallow grooves, dot-like depressions, discontinuous and random streaks, and net comparison mesh. The pattern is observed as a transferred mesh pattern, and is not recognized as the jet trajectory described above.

本発明において不織布層(A)はバルブ繊維の交絡層で
あり、パルプの微細なフィブリルの効果により、高密度
の層となって液体に対するバリアー性を与える。又、高
密度に交絡はしているがパルプ自体は繊維強度が低く、
繊維長も一般には1mm以下と短かい為、パルプ層の強
度は低く、特に壁装材としたときの貼り替えの為の引き
剥がしの際には、パルプ層内での層間剥離が容易に起り
、良好な再施工性を与えることになる。又、液体バリャ
ー性の効果により糊剤の表面への浸み出しが防がれる。
In the present invention, the nonwoven fabric layer (A) is an entangled layer of valve fibers, and due to the effect of fine fibrils of pulp, it becomes a high-density layer and provides barrier properties against liquids. In addition, although the pulp is densely entangled, the fiber strength of the pulp itself is low;
Since the fiber length is generally short, 1 mm or less, the strength of the pulp layer is low, and delamination easily occurs within the pulp layer, especially when peeling off to reapply when used as a wall covering material. , giving good re-construction properties. In addition, the liquid barrier effect prevents the adhesive from seeping out onto the surface.

又、病院でのかけ布、手術着への利用も好適である。特
に撥水加工等をさらに行ってバクテリアバリア性を与え
ることが容易に可能である。
It is also suitable for use in hospital drapes and surgical gowns. In particular, it is easily possible to further provide water-repellent finishing to provide bacterial barrier properties.

本発明における不織布層 (B)は、交絡点間距離が3
00μm以下に及ぶ従来にない高度な交絡構造に由来し
て、短かい、特に抄造法によってシート形戒が行われる
ような短繊維を原料とする不織布では画期的な高強度を
有する。この高強度は、特に短繊維の単糸直径をD(μ
m)、繊維長をL(mm)とするとき式L/Dの値が0
. 6 〜2. 5 X103の間にあるときに好適に
発現する。ここに単糸径Dは、若し短繊維が異型断面の
糸である場合には、その繊度(デニール)を丸断面の糸
によるものと換算して単糸径Dとする。即ち不織布強度
の発現は、流体交絡の際の糸の動き易すさと、それによ
る交絡構造、及び繊維の接触面積等によってなされるも
のとみられ、繊維の形状が支配的要因の一つとなる。
The nonwoven fabric layer (B) in the present invention has a distance between intertwining points of 3
Due to its highly entangled structure, which is unprecedented in length and has a length of 00 μm or less, it has a revolutionary high strength for nonwoven fabrics made from short fibers, especially those that are formed into sheet shapes by papermaking methods. This high strength particularly reduces the single fiber diameter of short fibers to D(μ
m), when the fiber length is L (mm), the value of the formula L/D is 0
.. 6-2. It is preferably expressed when the amount is between 5 x 103. Here, when the staple fiber is a yarn with an irregular cross section, the single yarn diameter D is determined by converting the fineness (denier) of the short fiber to that of a yarn with a round cross section. That is, the development of the strength of a nonwoven fabric is thought to be caused by the ease of movement of the threads during fluid entanglement, the resulting entangled structure, the contact area of the fibers, etc., and the shape of the fibers is one of the dominant factors.

かくして本発明でいう不織布層(B)は、本発明の交絡
不織布に極めて好ましい機械的物性を付与する。例えば
、単糸デニール1.Od、繊維長12mmのポリエステ
ル短繊維を素材とする目付量60  g/m”の不織布
層(B)の引張強度は3. 0 Kg/cm , Ji
間剥離強度は2. 0 Kg/cII1ニも達する。こ
の層間剥離の強度レベルは従来の不織布(ノーバインダ
ー)においては達或困難のレベルであった。
Thus, the nonwoven fabric layer (B) as referred to in the present invention imparts extremely favorable mechanical properties to the entangled nonwoven fabric of the present invention. For example, single yarn denier 1. Od, the tensile strength of the nonwoven fabric layer (B) with a basis weight of 60 g/m'' made of short polyester fibers with a fiber length of 12 mm is 3.0 Kg/cm, Ji
The peel strength is 2. It reaches as much as 0 Kg/cII1. This level of delamination strength was difficult to achieve with conventional nonwoven fabrics (without binders).

本発明の交絡積層不織布を壁装材として、パルプ層側を
壁面に貼付し、次いで引き剥がすときに、パルプ層の眉
間から奇麗に剥がれ、短繊維層からの糸取られが起った
り、引き剥がしの際に短繊維層がちぎれて作業性が悪い
などのことは起らない。
When the interlaced laminated nonwoven fabric of the present invention is used as a wall covering material and the pulp layer side is attached to the wall surface and then peeled off, the pulp layer peels cleanly from between the eyebrows, and threads from the short fiber layer are removed or pulled. The short fiber layer does not tear during peeling, resulting in poor workability.

不織布を流体交絡法によって得るときは、一般に多数個
のノズルから噴出する流体例えば水を不織性シートに衝
突させて、該シートの繊維を移動させ交絡させる。十分
な交絡を進めるために、高いエネルギーをもつ、細い流
体流が常用される。
When a nonwoven fabric is obtained by the fluid entanglement method, generally a fluid such as water ejected from a plurality of nozzles impinges on a nonwoven sheet to move and entangle the fibers of the sheet. High energy, thin fluid streams are commonly used to promote sufficient entanglement.

その結果、ノズルの配列と揺動及び不織性シートの移動
によって特定のパターンの噴流軌跡が不織布表面に溝、
畝状に描かれる。又、そのパターンはノズルの詰りなど
によって乱された斑のあるものにもなる。不織布表面に
残る噴流軌跡は用途によっては特に問題なく許容される
。しかしながら、表面の美感、装飾性が要求される分野
、例えば、壁装材、衣類、包装材、被覆材など、特に染
色や印刷、プリント加工のなされる用途においては噴流
軌跡のないことが厳しく求められる。即ち、染色を行っ
た場合に噴流軌跡に沿った染色斑が起つたり、細かいプ
リント模様を置くことは困難であったり不都合がある。
As a result, the nozzle arrangement and rocking and the movement of the nonwoven sheet create a specific pattern of jet trajectory on the surface of the nonwoven fabric, creating grooves and
drawn in the form of ridges. Further, the pattern may be uneven due to clogging of the nozzle or the like. The jet trajectory remaining on the surface of the nonwoven fabric is acceptable depending on the application without any particular problem. However, in fields where aesthetic and decorative surfaces are required, such as wall covering materials, clothing, packaging materials, and covering materials, there is a strict requirement that there be no jet trajectory, especially in applications where dyeing, printing, or print processing is performed. It will be done. That is, when dyeing is performed, staining spots may occur along the trajectory of the jet, and it may be difficult or inconvenient to place fine printed patterns.

又、ノズル詰りが欠錘による筋斑があると著しく美観を
損う。又、強く深い噴流軌跡があるとそれに沿って裂け
易すかったり、又、極端な場合は噴流軌跡部のバリア性
が損われて全体としてバクテリアバリア性が十分に得ら
れない場合もある。本発明の噴流軌跡を有しない流体交
絡積層不織布はここに述べたような不都合がなく汎用性
に極めて冨んでいる。又、製造の際のノズル詰りに対す
る許容性も高い。
In addition, if there are streaks due to nozzle clogging or missing weight, the aesthetic appearance will be significantly impaired. In addition, if there is a strong and deep jet flow trajectory, it is easy to tear along it, and in extreme cases, the barrier properties of the jet flow trajectory portion may be impaired and a sufficient bacterial barrier property may not be obtained as a whole. The fluid-entangled laminated nonwoven fabric having no jet trajectory according to the present invention does not have the disadvantages mentioned above and is extremely versatile. It also has high tolerance to nozzle clogging during manufacturing.

次に本発明の流体交絡積層不織布の製造方法について説
明する。
Next, a method for manufacturing the fluid-entangled laminated nonwoven fabric of the present invention will be explained.

まず、針葉樹パルプ等のパルプを常法にて抄造しシート
とする。場合によっては公知のエアレイ法によってシー
トとしてもよい。
First, pulp such as softwood pulp is made into a sheet using a conventional method. In some cases, it may be formed into a sheet by a known airlay method.

次いで、繊維長が15mm以下の短繊維を、これも常法
にて抄造法もしくはエアレイ法等によってシート化する
Next, short fibers having a fiber length of 15 mm or less are formed into a sheet by a conventional method such as a papermaking method or an airlay method.

これらのシートは、次いで重ね合わされて積層シートさ
れる。2層式抄造機を用いるときは、抄造機中にて一挙
に積層シートが形或される。
These sheets are then overlapped to form a laminated sheet. When a two-layer paper making machine is used, the laminated sheet is formed all at once in the paper making machine.

次いでこの積層シートを高速流体流にて交絡させる。こ
こでいう流体とは、流体成るいは気体であるが、取り扱
いやすさ、コスト、流体としての衝突エネルギーの大き
さなどの点から水が最も好ましい。水を用いる場合、水
圧は用いる原糸の種類及び抄造シートの目付量によって
異なるが、繊維交絡点間距離300μmを得る為には5
〜200Kg/cm”、好ましくは1 0 〜8 0 
Kg7cm”の範囲で衝突させる。低目付程水圧は低く
、高日付になる程高水圧に設定すればよい。また、同一
目付の場合ヤング率の高い原糸の場合にはより高圧の水
流で処理することが本発明の目的とする高強度が得られ
る。水流を噴射するノズルの径は0.01〜1mmが好
ましい。水流は柱状流であることが望ましい。
This laminated sheet is then entangled with a high velocity fluid stream. The fluid here refers to fluid or gas, and water is most preferable in terms of ease of handling, cost, and high collision energy as a fluid. When using water, the water pressure varies depending on the type of yarn used and the basis weight of the paper sheet, but in order to obtain a distance between fiber entanglement points of 300 μm, it is necessary to
~200Kg/cm'', preferably 10~80
Collision is performed within the range of Kg7cm.The lower the basis weight, the lower the water pressure, and the higher the date, the higher the water pressure should be set.Also, for the same basis weight, if the raw yarn has a high Young's modulus, it will be treated with a higher pressure water stream. By doing so, the high strength that is the object of the present invention can be obtained.The diameter of the nozzle that sprays the water stream is preferably 0.01 to 1 mm.The water stream is preferably a columnar stream.

水流の軌跡形状は抄造シートの進行方向に対し平行な直
線状であっても良いし、ノズルを取り付けたヘッグーの
回転運動やシートの進行方向に直角に往復する振動運動
によって得られる曲線形状であっても良い。回転運動に
より得られる幾重にも重なった円形状の水流軌跡の交絡
は、ノズルl錘当たりのシートに対する水流の噴射面積
が大きくなり効率的であると同時に、用途によっては商
品価値を低下させる水流軌跡の斑が見えにくい、更には
不織布の経緯の強度比が小さい等の利点があり好ましい
。積層シートに対する高速水流の処理の仕方は、表・裏
交互に水流を噴射する方法でも良いし、片面だけを処理
するのも良い。また処理回数も目的に応じて最適条件を
選択すればよい。
The shape of the trajectory of the water stream may be a straight line parallel to the direction of travel of the paper-made sheet, or it may be a curved shape obtained by the rotational motion of a hegu with a nozzle attached or the vibration motion that reciprocates at right angles to the direction of travel of the sheet. It's okay. The intertwining of multiple circular water flow trajectories obtained by rotational motion increases the jetting area of the water jet against the sheet per nozzle weight, which is efficient, but at the same time, the water flow trajectories may reduce the commercial value depending on the application. It is preferable because it has advantages such as less visible spots and a small strength ratio of warp to warp of the nonwoven fabric. The method of treating the laminated sheet with high-speed water jets may be to spray the water jets alternately on the front and back sides, or to treat only one side. Moreover, the optimum conditions for the number of processing times may be selected depending on the purpose.

この交絡処理によって、積層ウエブの構成繊維は水流に
よって移動し、相互にからみ合って強固な結合を得るに
至る。積層ウエプ間を繊維は相互に移動はするが、両者
が完全に均一に混ざり合ってしまうことはない。積層面
の近傍においては、両層ウエブの繊維はほぼ均一に混ざ
りあうが、表裏面においては、上記の交絡条件の範囲内
においては、元のウエブの繊維の組戒をほとんど保もつ
ことが出来る。又、本発明においては、極めて強固な交
絡結合が起り、特に(B)層においては交絡点間距離3
00am以下、層間剥離強度500g/cm以上の不織
性シートが得られる。又、その引張強伸度も従来の不織
布のレベルを越えるものであり、又、柔軟性にも冨んで
いる。湿式法のような短かい繊維を原料とする不織布で
は従来高強度は望めないとされており、本発明の効果は
驚くべきものである。
Through this entangling process, the constituent fibers of the laminated web are moved by the water flow and become entangled with each other, resulting in a strong bond. Although the fibers mutually move between the laminated webs, they are not completely and uniformly mixed. In the vicinity of the laminated surface, the fibers of both web layers are mixed almost uniformly, but on the front and back sides, within the range of the above entangling conditions, the fiber composition of the original web can be almost maintained. . In addition, in the present invention, extremely strong interlacing bonds occur, especially in layer (B), where the distance between the interlacing points is 3.
00 am or less and a nonwoven sheet having an interlayer peel strength of 500 g/cm or more. Furthermore, its tensile strength and elongation exceed the level of conventional nonwoven fabrics, and it is also highly flexible. Conventionally, it has been thought that high strength cannot be expected from nonwoven fabrics made from short fibers such as those produced by wet-processing, and the effects of the present invention are surprising.

又、本発明の一l様である不織布表面に噴流軌跡のない
、あるいは目立たない交絡積層不織布を得るには特別な
水流処理条件を選ぶことが必要である。好ましくは、連
続した比較的圧力の弱い柱状水流、間歇的に衝突する高
い圧力の柱状水流、及び散水・琉を適宜組み合せて処理
する。又、水流のカバー率(水流噴射ノズルの処理布に
対する全投影面積を被処理布の面積で除した値)を10
0%以上とすることが好ましい。被処理布である積層シ
ートをコンベアネット上にて先ず比較的低い圧力の連続
した直径0.2m+nの柱状水流をラセン状パターンに
て、カバー率30%にて処理する。柱状水流の圧力は積
層シーl・の組成、目付及びコンベアネットの移動速度
に応して定められるが、次に処理するパルス流の圧力よ
りは低《することが好ましい。表裏交互に処理を行う。
In addition, in order to obtain an entangled laminated nonwoven fabric with no or inconspicuous jet flow trajectory on the surface of the nonwoven fabric, which is one feature of the present invention, it is necessary to select special water jet treatment conditions. Preferably, the treatment is performed by appropriately combining a continuous columnar water stream with relatively low pressure, a columnar water stream with high pressure that collides intermittently, and water sprinkling. In addition, the coverage ratio of the water stream (the value obtained by dividing the total projected area of the water jet nozzle on the treated fabric by the area of the treated fabric) is 10.
It is preferable to set it to 0% or more. A laminated sheet, which is a cloth to be treated, is first treated on a conveyor net with a continuous columnar water stream of 0.2 m+n in diameter under a relatively low pressure in a helical pattern at a coverage rate of 30%. The pressure of the columnar water stream is determined depending on the composition of the laminated seal, the basis weight, and the moving speed of the conveyor net, but it is preferably lower than the pressure of the pulse stream to be processed next. Process the front and back sides alternately.

次いで同様の処理を間歇的に衝突するパルス状の柱状水
流にて行なう。パルス水流はノズルから噴出する柱状の
水流を揺動するワイヤー、多孔板、金網などで間歇的に
遮ることにより発生させることが出来る。
Next, a similar process is performed using pulsed columnar water streams that collide intermittently. The pulsed water stream can be generated by intermittent interruption of the columnar water stream ejected from the nozzle with an oscillating wire, perforated plate, wire mesh, or the like.

パルス柱状流は不織布表面に断続した点線状の軌跡を描
く。この場合一つのパルスの軌跡の長さは、任意である
が、2mm以下、好ましくは1mm以下であることが好
適である。又、このパルス流の水圧は、交絡工程に使用
する交絡水流中最高の圧力とすることが望ましい。処理
は表裏面に対して交互に行い、そのカバー率はノズル面
積を基準に100〜200%とする。
The pulsed columnar flow draws an interrupted dotted line trajectory on the surface of the nonwoven fabric. In this case, the length of the locus of one pulse is arbitrary, but it is preferably 2 mm or less, preferably 1 mm or less. Further, it is desirable that the water pressure of this pulse flow be the highest pressure among the entangling water streams used in the entangling process. The treatment is performed alternately on the front and back surfaces, and the coverage is 100 to 200% based on the nozzle area.

次いで散水流による処理を行なう。散水流は散水ノズル
、あるいは柱状水流を細かいメッシュの金網に当てるこ
とにより得られる。散水流によって前工程迄に表面につ
けられた柱状流の跡が平滑化され、又、ネットコンベア
一の模様が不織布に転写されて水流軌跡が消される。散
水流処理も必要に応じて表裏両面に施す。以上の工程に
より本発明の噴流軌跡のない不織布を得ることが出来る
Then treatment is carried out using water spray. The water sprinkling stream is obtained by applying a water spray nozzle or a columnar water stream to a fine mesh wire gauze. The traces of the columnar flow left on the surface in the previous process are smoothed by the water spray, and the pattern of the net conveyor is transferred to the nonwoven fabric, erasing the water flow trajectory. Water spray treatment is also applied to both the front and back sides as necessary. Through the above steps, it is possible to obtain the nonwoven fabric without a jet trajectory according to the present invention.

もちろん、不織布の素材、組戒、目付量等によって、交
絡処理の条件、即ちノズル径、カバー率、軌跡パターン
、水流圧力、コンベアーネット速度、脱水条件、処理回
数、散水流の形状、パルス流の条件等の選択で本発明の
目的が達せられる。
Of course, depending on the material of the nonwoven fabric, the composition, the basis weight, etc., the conditions of the entangling treatment, such as nozzle diameter, coverage ratio, trajectory pattern, water flow pressure, conveyor net speed, dewatering conditions, number of treatments, shape of the water spray, pulse flow, etc. The purpose of the present invention can be achieved by selecting conditions and the like.

従来、流体交絡法による不織布においては、十分に高強
度の不織布を得るには高圧力の柱状流処理が必要であり
、その結果、強い噴流軌跡が不織布表面に残ることにな
ってしまい、噴流軌跡を表面に有しない不織布を得るこ
とは極めて困難であったが、本発明においては、原料繊
維として15問以下の短かい繊維長の短繊維を用いるこ
とにより、柱状流交絡における繊維の交絡性の最適化が
図ることが出来、比較的低い水圧によって十分高強度が
得られること、又、一旦表面につけられた軌跡も繊維の
再配列を進めることによって消すことが出来る。その結
果、強度、表面品位のいずれもが優れた不織布が得られ
る。
Conventionally, nonwoven fabrics produced using the fluid entanglement method require high-pressure columnar flow treatment to obtain sufficiently high-strength nonwoven fabrics, and as a result, strong jet trajectories remain on the surface of the nonwoven fabric. However, in the present invention, by using short fibers with a short fiber length of 15 fibers or less as raw material fibers, the entanglement of fibers in columnar flow entanglement can be reduced. Optimization can be achieved, sufficiently high strength can be obtained with relatively low water pressure, and traces once formed on the surface can be erased by proceeding with the rearrangement of the fibers. As a result, a nonwoven fabric with excellent strength and surface quality can be obtained.

本発明の製造方法の好ましい実施態様の1つであるラセ
ン状パターンで柱状水流処理して得られる、表面に噴流
軌跡を有しない本発明の不織布は、強度、表面品位に優
れていることに加えて、手術衣に特に要求されるリント
フリー性にも優れている。これは短繊維からなる不織布
としては驚くべきことであるが、本発明の不織布が繊維
長15mm以下の短かい短繊維を用いる点、及びカバー
率が100%以上の高密度の柱状水流交絡されることか
ら繊維交絡点間距離300μm以下という緻密な繊維の
交絡状態を有していることに因るものと思われる。
The nonwoven fabric of the present invention, which is obtained by columnar water jet treatment in a helical pattern, which is one of the preferred embodiments of the production method of the present invention, and which has no jet trajectory on the surface, has excellent strength and surface quality. It also has excellent lint-free properties, which is particularly required for surgical gowns. This is surprising for a nonwoven fabric made of short fibers, but the nonwoven fabric of the present invention uses short short fibers with a fiber length of 15 mm or less, and has a high-density columnar hydroentangled structure with a coverage of 100% or more. This seems to be due to the fact that the fibers are densely intertwined, with a distance between fiber entanglement points of 300 μm or less.

〔実施例〕 以下、実施例でもって本発明をさらに詳しく説明する。〔Example〕 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例中、測定値は以下の方法によって測定したもので
あり、%は全て重量%である。
In the Examples, the measured values were determined by the following method, and all percentages are by weight.

1) 引張強度: JISLl096  ストリップ法
2) 引裂強度: JISL1096  シングルタン
グ法3) 柔軟度 : JISL1096  4 5゜
カンチレバー法4)  m維交絡点間距離:走査型電子
顕微鏡で100倍の倍率で測定し、50個の平均値をと
った。
1) Tensile strength: JISL 1096 strip method 2) Tear strength: JISL 1096 single tongue method 3) Flexibility: JISL 1096 45° cantilever method 4) Distance between m fiber entanglement points: Measured with a scanning electron microscope at 100x magnification, The average value of 50 values was taken.

ここでいう繊維交絡点間距離とは、特開昭581912
80で公知のつぎの方法で測定した値のことであり、繊
維間相互の交絡密度を示すiつの尺度として値が小さい
はど交絡が緻密であることを示すものである。第1図は
、湿式不織布における構成繊維を平面方向に表面から観
察したときの構成繊維の拡大模式図である。構戊繊維を
fI,f2、f2、・・・とし、そのうちの任意の2本
の繊維f1、r2が交絡する点を81で上になっている
繊維f2が他の繊維の下になる形で交差する点までたど
っていき、その交差した点をa2とする。同様にa3、
a4、・・・とする。つぎにこのようにして求めた交絡
点の間の直線水平距離al  ag、ag  a=、・
・・を測定し、これら多数の測定値の平均値を求めこれ
を繊維交絡点間距離とする。
The distance between fiber entanglement points here refers to Japanese Patent Application Laid-open No. 581912.
80, which is a value measured by the following method known in the art, and is a measure of the intertwining density between fibers, and the smaller the value, the more dense the intertwining. FIG. 1 is an enlarged schematic diagram of the constituent fibers of a wet-laid nonwoven fabric when observed from the surface in a plane direction. The constituent fibers are fI, f2, f2,..., and the point where any two fibers f1 and r2 are intertwined is 81, with the fiber f2 above being below the other fibers. Follow the path to the point of intersection, and let the point of intersection be a2. Similarly a3,
Let it be a4,... Next, the linear horizontal distance between the intersecting points obtained in this way al ag, ag a=,・
..., and find the average value of these many measured values, and use this as the distance between fiber entanglement points.

5)N間剥離強度;不織布を中2. 5 cm、長さ1
3cmにカットする。このサンプルに接着テープ(ソニ
ーケミカル■製D3200)を接着させた後70g/c
m2の圧力で200’C,30秒間プレスし貼り合わせ
る。
5) N peel strength; 5 cm, length 1
Cut into 3cm pieces. After attaching adhesive tape (D3200 manufactured by Sony Chemical ■) to this sample, 70g/c
Press and bond together at 200'C with a pressure of m2 for 30 seconds.

この様にして得られた測定用サンプルの、接着テープと
不織布の間に切れ込みを入れ、両端をオートグラフのチ
ャックでつかみ測定を行なう。オートグラフの測定条件
は以下の様に設定する。
A slit is made between the adhesive tape and the nonwoven fabric of the sample for measurement thus obtained, and both ends are gripped with an autograph chuck and measured. The measurement conditions for the autograph are set as follows.

引張速度: 1 0cm/Illin チャート速度: 1 0cm/min 測定値は最高強度3点と最低強度3点を読み取りその平
均値でもって表示する。この様な測定を不織布のタテ方
向(MD)、ヨコ方向(CD)につき各々同様に行ない
、そのタテ/ヨコ平均値でもって不織布の層間剥離強度
とする。
Tensile speed: 10 cm/Illin Chart speed: 10 cm/min The measured value is displayed as the average value of the three highest strengths and the three lowest strengths. Such measurements are carried out in the same manner in the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, and the average value of the longitudinal and transverse directions is taken as the interlayer peel strength of the nonwoven fabric.

6)液体バリアー性:不織布に下記の撥水加工処理を施
した後、JIS  L−1092低水圧法による耐水度
測定試験により、耐水圧(mmHzO)を測定し液体バ
リアー性の評価値とした。
6) Liquid barrier property: After the nonwoven fabric was subjected to the water repellent treatment described below, the water pressure resistance (mmHzO) was measured by a water resistance measurement test according to the JIS L-1092 low water pressure method and was used as an evaluation value of liquid barrier property.

〈撥水加工処理条件〉 フッ素系撥水加工剤AG433(アサヒガラス■製)2
%水溶液(純分0.28%)に不織布をDip−Nip
  (絞り率150%)シテ、100″cで2分間乾燥
したのち、160″Cで30秒間キュアする。
<Water repellent treatment conditions> Fluorine water repellent agent AG433 (manufactured by Asahi Glass) 2
Dip-Nip the nonwoven fabric in % aqueous solution (purity 0.28%)
(Squeezing ratio: 150%) After drying at 100"C for 2 minutes, cure at 160"C for 30 seconds.

実施例1 針葉樹パルプをリファイナーにより十分に叩解し、1%
濃度のスラリー液に調整した。一方、ポリエチレンテレ
フタレート(以下PETと略記)繊維の1デニール、繊
維長12mmの短繊維を同じく1%濃度のスラリー液に
調整した。この二種類のスラリーを用い、2Nインレッ
ト式長網抄紙機にて同時に2層を抄造し、パルプ50g
/m”、PET50g / m 2からなる積層抄造シ
ートを得た。この抄造シートのPET短繊維層の面から
、ノズル直径0.2■、ノズル間の間隔5n+m、ノズ
ル列数3列のノズルを装着したノズルへッダーを1 0
 Or.p.mで周回運動させながら、3 0 Kg/
cm2の水圧の柱状水流をノズルから噴射させパルプを
交絡させた。ついでシートを裏返し、同様の条件でPE
T繊維面を交絡させた。ひきつづき、●ノズル直}10
.2mm、ノズル間の間隔4mm、ノズル列数15列の
ノズルを装着したノズルヘッダーを1 0−0’r.p
.mで周回運動させながら、4 5 Kg/cm”の水
圧の柱状水流をノズルから噴射させ、パルブ面、PET
面の順序で交絡処理をした。この時にノズルとシートの
間に、20メッシュの金網を挿入し、水流を間歇流とし
た。
Example 1 Softwood pulp was sufficiently beaten using a refiner to reduce the pulp to 1%
The concentration of the slurry was adjusted. On the other hand, short fibers of polyethylene terephthalate (hereinafter abbreviated as PET) fibers of 1 denier and fiber length of 12 mm were similarly prepared into a slurry liquid having a concentration of 1%. Using these two types of slurry, two layers were simultaneously made using a 2N inlet Fourdrinier paper machine, resulting in 50 g of pulp.
A laminated paper sheet made of 50 g/m2 of PET was obtained. From the surface of the PET short fiber layer of this paper sheet, a nozzle diameter of 0.2 cm, a distance between nozzles of 5 n+m, and a nozzle row of 3 nozzles was obtained. 1 0 of the installed nozzle header
Or. p. 30 Kg/ while rotating at m
A columnar water stream with a water pressure of cm2 was injected from a nozzle to entangle the pulp. Then turn the sheet over and apply PE under the same conditions.
The T fiber planes were interlaced. Continuing,●Nozzle direct}10
.. A nozzle header equipped with nozzles of 2mm, 4mm interval between nozzles, and 15 nozzle rows is installed at 10-0'r. p
.. A columnar water stream with a water pressure of 45 Kg/cm was injected from the nozzle while rotating at a speed of 4.5 kg/cm.
Confounding was performed in the order of the faces. At this time, a 20-mesh wire mesh was inserted between the nozzle and the sheet to make the water flow intermittent.

更に、ノズル直径0.2開、ノズル間の間隔10mm、
ノズル列数lO列のノズルを装置したノズルヘッダーを
3 0 Or.p.mで周回運動させながら、1 5 
Kg/cm”の水圧の柱状水流をノズルから噴射させ、
パルプ面、PET面の順序で処理した。この時にノズル
とシートの間に80メッシュの金網を挿入し、水流を散
水流とする事でシート表面に噴流軌跡の無い平滑なパル
プ/PET交絡積層不織布を得た。得られた不織布の諸
物性を以下に示す。
Furthermore, the nozzle diameter is 0.2 mm, the distance between the nozzles is 10 mm,
A nozzle header equipped with nozzles of 10 nozzle rows is arranged in a 30 Or. p. While moving around at m, 1 5
A columnar water stream with a water pressure of 100 kg/cm” is injected from a nozzle,
The pulp side and the PET side were treated in this order. At this time, an 80-mesh wire mesh was inserted between the nozzle and the sheet, and the water flow was made into a sprinkling flow to obtain a smooth pulp/PET entangled laminated nonwoven fabric with no jet trace on the sheet surface. The physical properties of the obtained nonwoven fabric are shown below.

目イ寸 (g/m2)         8 0厚み 
(mm)         o. 4 0引張強度(M
D/CD  Kg/cm)   2. 9 / 1. 
6引張伸度(MD/CD  %)     29/63
引裂強度(MD/CD  Kg )    , 1. 
5 / 1. 1柔軟度 (mm)        7
8眉間剥離強度(g)      5 7 0耐水圧(
a+mHzo)        3 2 0更に、この
不織布のPET繊維層の繊維交絡点間距離を測定すると
110l!mであった。又、このシートのPET層面に
常法によりグラビア印刷を実施したところ平滑で鮮明な
印刷模様を得ることが出来た。この印刷不織布を壁紙と
して、塗工性を試験したところ、接着剤のシミ出しは全
く見られず、再施工性の試験結果についても良好であっ
た。そして、壁面からはがしたところ、パルプ層面のみ
が均一に壁面に残った。一方、このバルブ/PET積層
不織布の撥水加工処理品の耐水圧が3 2 0 mml
hOという極めて高い液体バリアー性、バクテリヤバリ
アー性を示す事から、使い捨て医療用(ガウン、覆布)
にも好適に使用可能である。
Measuring size (g/m2) 8 0 thickness
(mm) o. 40 tensile strength (M
D/CD Kg/cm) 2. 9/1.
6 Tensile elongation (MD/CD %) 29/63
Tear strength (MD/CD Kg), 1.
5/1. 1 Flexibility (mm) 7
8 Glabella peel strength (g) 5 7 0 Water pressure resistance (
a+mHzo) 3 2 0 Furthermore, when the distance between the fiber entanglement points of the PET fiber layer of this nonwoven fabric was measured, it was 110 l! It was m. Further, when gravure printing was performed on the PET layer surface of this sheet by a conventional method, a smooth and clear printed pattern could be obtained. When this printed nonwoven fabric was used as wallpaper to test its applicability, no adhesive stains were observed, and the test results for reapplicability were also good. When it was peeled off from the wall surface, only the pulp layer surface remained uniformly on the wall surface. On the other hand, the water pressure resistance of this valve/PET laminated nonwoven fabric treated with water repellent treatment is 320 mml.
Disposable medical use (gowns, coverings) because it exhibits extremely high liquid and bacterial barrier properties called hO.
It can also be suitably used.

実施例2 針葉樹パルプをパルバーにより5分開離解処理し、1%
濃度のスラリー液に調整した。一方、PET繊維の1デ
ニール、繊維長IQmmの短繊維及びPET繊維の0.
15デニール、繊維長5mmの短繊維を重量比l:lの
割合で混合された1%濃度のスラリー液を調整した。こ
の二種類のスラリーを用い、実施例1と同様に抄造し、
パルブ60g/I12、PET (1デニール+0.1
5デニール1:1混合)60g/m2からなる積層抄造
シートを得た。
Example 2 Softwood pulp was subjected to decomposition treatment using a pulper for 5 minutes, and 1%
The concentration of the slurry was adjusted. On the other hand, short fibers of PET fiber with 1 denier and fiber length IQ mm and 0.
A slurry liquid having a concentration of 1% was prepared by mixing short fibers of 15 denier and a fiber length of 5 mm at a weight ratio of 1:1. Using these two types of slurries, papermaking was carried out in the same manner as in Example 1,
Pulbu 60g/I12, PET (1 denier + 0.1
A laminated paper sheet consisting of 60 g/m2 of 5 denier (1:1 mixture) was obtained.

この抄造シートを実施例1と全く同様に柱状水流による
処理を行ない、シート表面に噴流軌跡の無い平滑なパル
プ/PET交絡積層不織布を得た。
This paper sheet was treated with columnar water jets in exactly the same manner as in Example 1 to obtain a smooth pulp/PET intertwined laminated nonwoven fabric with no jet traces on the sheet surface.

この不織布の諸物性を以下に示す。又、この不織布のP
ET繊維層の繊維交絡点間距離は90amであり、PE
T繊維層面への細い柄のプリント印刷も極めて鮮明に得
られ、壁面への塗工性も良好で寸法変化による目地のく
るいは生じなかった。
The physical properties of this nonwoven fabric are shown below. In addition, the P of this nonwoven fabric
The distance between the fiber entanglement points of the ET fiber layer is 90 am, and the PE
A thin pattern was printed very clearly on the T fiber layer surface, and the coating property on the wall surface was also good, and there was no wrinkling of the joints due to dimensional changes.

この不織布の印刷性、塗工性、液体バリアー性一層の向
上はPET極細繊維0.15デニールを混合する事によ
る平滑化、目詰めによる相加効果と考えられる。
Further improvements in printability, coatability, and liquid barrier properties of this nonwoven fabric are thought to be due to the additive effect of smoothing and packing by mixing 0.15 denier PET ultrafine fibers.

目イ寸 (g/mJ         1 0 5厚み
 (n++n)          0.52引張強度
(MO/CD  Kg/cm)・  3. 6 /2.
 0引張伸度(MD/CD%)      2 9/4
 9柔軟度 (mm)         8 2眉間剥
離強度(g)      640耐水圧 (mmHzO
)       4 5 0実施例3 実施例2と同様にして得た1%濃度のパルブスラリー液
と、ナイロン6繊維1.5デニール、繊維長13mmの
短繊維から調整した1%濃度のスラリー液から、第1表
に示すパルプ/ナイロン6繊維の目付が異なる3種類(
A,B,C)の積層抄造シートを得た。各抄造シートを
80メッシュのネットコンベアの上に乗せ20m/分の
速度で移動させながら、まず、ナイロン6短繊維層の面
から、ノズル直径0. 2 mm,ノズル間の間隔5m
m,ノズル列数3列のノズルを装着したノズルへッダー
を5 0 Or.p.mで周回運動させながら、4 0
 Kg/cm”の水圧の柱状水流処理を行った。ついで
シートを裏返し、同様の条件でパルプ面を処理交絡させ
た。
Dimensions (g/mJ 1 0 5 Thickness (n++n) 0.52 Tensile strength (MO/CD Kg/cm) 3.6 /2.
0 tensile elongation (MD/CD%) 2 9/4
9 Flexibility (mm) 8 2 Glabella peel strength (g) 640 Water pressure resistance (mmHzO
) 4 5 0 Example 3 From the 1% concentration pulp slurry obtained in the same manner as in Example 2 and the 1% concentration slurry prepared from short fibers of nylon 6 fibers of 1.5 denier and fiber length 13 mm, Three types of pulp/nylon 6 fibers with different basis weights shown in Table 1 (
Laminated paper sheets A, B, and C) were obtained. While each paper sheet is placed on an 80 mesh net conveyor and moved at a speed of 20 m/min, first, from the surface of the nylon 6 short fiber layer, a nozzle diameter of 0. 2 mm, distance between nozzles 5 m
m, nozzle header equipped with nozzles with 3 nozzle rows is 50 Or. p. While moving around at m, 40
A columnar water jet treatment was carried out at a water pressure of 1 kg/cm''.The sheet was then turned over and the pulp surface was treated and entangled under the same conditions.

この交絡処理における水流のカバー率は36%である。The water flow coverage rate in this entanglement process is 36%.

引続いて、上記と同様のノズルヘッダーを5 0 0r
.p.mで周回運動させながら65κg/cm”の柱状
水流をノズルから噴射させ、ナイロン面、パルプ面の順
序で交絡処理を各面に対して6回行った。ノズルとシー
トの間には16メッシュの金網を挿入し、間歇流とした
。ノズル面積を基準にこの時のカバー率は144%であ
る。次いで、ノズル直径0. 2 mm,ノズル間の間
隔LOmm、ノズル列数15列のノズルを装置したノズ
ルヘッダーを3 0 O r.p.mで周回運動させな
がら、ノズルヘッダーとシートの間には80メッシュの
金網を挿入2 0 Kg/cm”の水圧で敗水流を同様
にナイロン面、パルプ面の順序で処理を行った。得られ
た交絡積層不織布の諸物性を第1表に示す。パルプ層の
目付の割合が多い程、液体バリアー性が高くなり、強度
が低くなる。一方、ナイロン短繊維の目付の割合が多く
なると強度が強くなるが、液体バリアー性は小さくなる
傾向を示す。
Subsequently, the same nozzle header as above was installed at 500r.
.. p. A columnar water stream of 65 κg/cm was injected from the nozzle while rotating at m, and the entangling treatment was performed 6 times on each surface in the order of the nylon surface and the pulp surface. A wire mesh was inserted to create an intermittent flow.The coverage rate at this time was 144% based on the nozzle area.Next, a nozzle with a nozzle diameter of 0.2 mm, an interval between nozzles of LO mm, and 15 nozzle rows was installed. While rotating the nozzle header at 30 O rpm, an 80 mesh wire mesh was inserted between the nozzle header and the sheet. Processing was performed in the order of the faces. Table 1 shows the physical properties of the obtained interlaced laminated nonwoven fabric. The higher the basis weight ratio of the pulp layer, the higher the liquid barrier property and the lower the strength. On the other hand, as the basis weight ratio of short nylon fibers increases, the strength increases, but the liquid barrier properties tend to decrease.

第   l   表 [発明の効果] 本発明の流体交絡積層不織布は液体バリア性、均一性、
柔軟性、強度物性、表面の平滑性に優れており、壁装材
、装飾材、手術覆布、手術着などの用途に好適に使用す
ることが出来る。
Table l [Effects of the Invention] The fluid-entangled laminated nonwoven fabric of the present invention has good liquid barrier properties, uniformity,
It has excellent flexibility, physical strength, and surface smoothness, and can be suitably used for wall covering materials, decorative materials, surgical coverings, surgical gowns, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の不織布の (B) 層側の表面の 拡大模式図である。 f,−fff・・・構成繊維 旧〜a,・・・構威繊維同士の交絡点 Figure 1 shows the nonwoven fabric of the present invention. (B) layer side surface It is an enlarged schematic diagram. f, -fff... Constituent fiber Old~a,...intersecting points between structural fibers

Claims (2)

【特許請求の範囲】[Claims] 1.主として植物繊維パルプから成る三次元交絡した不
織布層(A)と繊維長が15mm以下の短繊維が三次元
交絡してなる不織布層(B)が積層されてなる複合不織
布であって、該不織布層(A)と不織布層(B)とはそ
の短繊維の一部同士がその接合部において混合しあって
交絡することによって一体に結合しており、不織布層(
B)を構成する短繊維の繊維交絡点間距離が300μm
以下であることを特徴とする無孔の流体交絡不織布。
1. A composite nonwoven fabric formed by laminating a three-dimensionally entangled nonwoven fabric layer (A) mainly made of vegetable fiber pulp and a nonwoven fabric layer (B) made of three-dimensionally entangled short fibers with a fiber length of 15 mm or less, the nonwoven fabric layer (A) and the nonwoven fabric layer (B) are integrally bonded by some of their short fibers being mixed and intertwined at the joint, and the nonwoven fabric layer (B) is
The distance between fiber entanglement points of short fibers constituting B) is 300 μm
A non-porous, fluid-entangled nonwoven fabric characterized by:
2.主として植物繊維パルプから成る抄造シートと繊維
長15mm以下で繊維長L(mm)と単糸直径D(μm
)の比L/Dが0.6〜2.5×10^3の間にある短
繊維を抄造して形成したシートとの積層体に多数のノズ
ルより噴出する高速の流体流を衝突させることにより、
該パルプ及び該短繊維をそれ同士、又相互に三次元交絡
させることを特徴とする流体交絡不織布の製造方法。
2. A paper-made sheet mainly made of vegetable fiber pulp and a fiber length of 15 mm or less, fiber length L (mm) and single yarn diameter D (μm
) A high-speed fluid stream ejected from a number of nozzles impinges on a laminate with a sheet formed by paper-making short fibers having a ratio L/D of 0.6 to 2.5 x 10^3. According to
A method for producing a fluid-entangled nonwoven fabric, which comprises three-dimensionally entangling the pulp and short fibers with each other or with each other.
JP1145198A 1989-06-09 1989-06-09 Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production Pending JPH0314692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145198A JPH0314692A (en) 1989-06-09 1989-06-09 Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145198A JPH0314692A (en) 1989-06-09 1989-06-09 Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH0314692A true JPH0314692A (en) 1991-01-23

Family

ID=15379684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145198A Pending JPH0314692A (en) 1989-06-09 1989-06-09 Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH0314692A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112083U (en) * 1991-03-14 1992-09-29 凸版印刷株式会社 Protective jacket for compact disk
JP2003048265A (en) * 2001-08-06 2003-02-18 Hour Seishi Kk Wall paper for shielding electromagnetic wave and its manufacturing method
JP2007009356A (en) * 2005-06-29 2007-01-18 Daiwabo Co Ltd Laminated nonwoven fabric and method for producing the same
JP2011032631A (en) * 2010-10-25 2011-02-17 Daiwabo Holdings Co Ltd Sheet for cosmetic and method for producing the same
CN104099801A (en) * 2013-04-10 2014-10-15 孙显林 Anti-counterfeiting fiber and anti-counterfeiting paper containing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112083U (en) * 1991-03-14 1992-09-29 凸版印刷株式会社 Protective jacket for compact disk
JP2003048265A (en) * 2001-08-06 2003-02-18 Hour Seishi Kk Wall paper for shielding electromagnetic wave and its manufacturing method
JP2007009356A (en) * 2005-06-29 2007-01-18 Daiwabo Co Ltd Laminated nonwoven fabric and method for producing the same
JP4721788B2 (en) * 2005-06-29 2011-07-13 ダイワボウホールディングス株式会社 Laminated nonwoven fabric and method for producing the same
JP2011032631A (en) * 2010-10-25 2011-02-17 Daiwabo Holdings Co Ltd Sheet for cosmetic and method for producing the same
JP4722222B2 (en) * 2010-10-25 2011-07-13 ダイワボウホールディングス株式会社 Cosmetic sheet and method for producing the same
CN104099801A (en) * 2013-04-10 2014-10-15 孙显林 Anti-counterfeiting fiber and anti-counterfeiting paper containing same

Similar Documents

Publication Publication Date Title
KR970005849B1 (en) Nonwoven materials subjected to hydraulic jet treatment in sopts, and method and apparatus for producing the same
US3966519A (en) Method of bonding fibrous webs and resulting products
US6675429B2 (en) Imaged nonwoven fabric for imparting an improved aesthetic texture to surfaces
US4891262A (en) High strength wet-laid nonwoven fabric and process for producing same
MXPA04012112A (en) Method of forming a nonwoven composite fabric and fabric produced thereof.
JP4722222B2 (en) Cosmetic sheet and method for producing the same
JP4721788B2 (en) Laminated nonwoven fabric and method for producing the same
JPH0314692A (en) Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production
US20040255440A1 (en) Three-dimensionally imaged personal wipe
AU2016243241B2 (en) Hydroembedded film-based composites
JP2817057B2 (en) Nonwoven fabric having aperture pattern and method for producing the same
JP3277046B2 (en) Hydro-entangled non-woven fabric and method for producing the same
WO2022069689A1 (en) Spunlace composite web comprising staple fibers, short absorbent fibers and binder
JP3032323B2 (en) Medical nonwoven composite sheet
JPH04263699A (en) Nonwoven fabric having barrier property and its production
JPH026651A (en) High-strength wet nonwoven fabric and production thereof
TWI330210B (en) A hydroentangling device in combination with hydroentangling support fabric
JPH04185793A (en) Wet non-woven fabric and method for producing the same
JP3046410B2 (en) Hydroentangled web, hydroentangled nonwoven fabric and method of manufacturing hydroentangled nonwoven fabric
JPH0314694A (en) Wet-process nonwoven fabric having excellent dimensional stability and its production
JPH0314693A (en) Surgical gown having excellent lint-freeness and its production
JP2023143236A (en) Nonwoven fabric and manufacturing method thereof
JPS6252076B2 (en)
JPS6119752B2 (en)
JPH0160561B2 (en)