JPH026651A - High-strength wet nonwoven fabric and production thereof - Google Patents

High-strength wet nonwoven fabric and production thereof

Info

Publication number
JPH026651A
JPH026651A JP63312795A JP31279588A JPH026651A JP H026651 A JPH026651 A JP H026651A JP 63312795 A JP63312795 A JP 63312795A JP 31279588 A JP31279588 A JP 31279588A JP H026651 A JPH026651 A JP H026651A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
strength
fiber
fibers
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63312795A
Other languages
Japanese (ja)
Other versions
JP2783411B2 (en
Inventor
Kenji Nakamae
中前 憲二
Tsukasa Shima
島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63312795A priority Critical patent/JP2783411B2/en
Publication of JPH026651A publication Critical patent/JPH026651A/en
Application granted granted Critical
Publication of JP2783411B2 publication Critical patent/JP2783411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an extremely soft high-strength wet nonwoven fabric having a strength comparable to that of a filament nonwoven fabric by forming sheets from short fibers having a specific single yarn diameter and fiber length, subjecting the resultant sheets to high-speed fluid treatment and three- dimensionally entangling the fibers therein so as to provide the average distance between the fiber entangled points with a specific length or below. CONSTITUTION:Short fibers having 7-25mum diameter of single yarns and 0.8X10<3> to 2.0X10<3> ratio (L/D) of the fiber length (L) to the single yarn diameter (D) are used to form sheets by a sheet forming method. The resultant sheets are then subjected to high-speed fluid treatment to mutually and three-dimensionally entangle the short fibers constituting the sheets and provide <=300mum average distance between fiber entangled points.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は高強度の湿式不織布およびその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a high-strength wet-laid nonwoven fabric and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、不織布はその優れた性能と高生産性の特徴を生か
して、従来の編織物等の代替用途、あるいは編織物等で
は対応できない機能的用途等に用いられ、著しい発展を
示している。不織布には種々の種類が知られているが、
代表的なものとしては、特公昭4B−38025等で開
示されているスパンポンド法、特公昭42−19520
等で開示されているフラッシュ紡糸法等の繊維形成性高
分子重合体を直接紡糸すると同時に空気、ガス等でフィ
ラメンI・を牽引し集積して得られる長繊維乾式不織布
、特開昭49−48921等で開示されているメルトブ
ローイング法によって得られる比較的長い繊維長の短繊
維乾式不織布、短繊維をカーデイングした後クロスレイ
ヤー、エアーレイヤー等でシート化し目的に応じてニー
ドルパンチや柱状水流による交絡、或いは接着剤、熱融
着繊維等で接合して得られる短繊維乾式不織布、および
抄造法によって得られる湿式不織布等が知られている。
In recent years, nonwoven fabrics have shown remarkable development, taking advantage of their excellent performance and high productivity to be used as an alternative to conventional knitted fabrics, or for functional uses that cannot be handled by knitted fabrics. Various types of nonwoven fabrics are known, but
Typical examples include the spanpond method disclosed in Japanese Patent Publication No. 4B-38025, etc., and the method disclosed in Japanese Patent Publication No. 42-19520.
A long-fiber dry nonwoven fabric obtained by directly spinning a fiber-forming polymer using the flash spinning method disclosed in et al., and simultaneously pulling and accumulating filaments I with air, gas, etc., JP-A-49-48921. A short fiber dry nonwoven fabric with a relatively long fiber length obtained by the melt blowing method disclosed in et al. After carding the short fibers, it is formed into a sheet by cross layering, air layering, etc., and depending on the purpose, entangling by needle punching or columnar water jet, Alternatively, short fiber dry nonwoven fabrics obtained by bonding with adhesives, heat-fused fibers, etc., and wet nonwoven fabrics obtained by papermaking methods are known.

スパンボンド法、フラッシュ紡糸法等により得られる長
繊維乾式不織布は、不織布の構成繊維がフィラメントで
あるので、これらを熱圧着して得られる不織布は引張強
度、引裂強度等の強度が大きい特徴があり高強度の要求
される産業資材等に広く用いられている。
Long-fiber dry nonwoven fabrics obtained by spunbonding, flash spinning, etc., have filaments as their constituent fibers, so the nonwoven fabrics obtained by thermocompression bonding are characterized by high tensile strength, tear strength, etc. Widely used for industrial materials that require high strength.

しかし7、一方で強度の中でも不織布層間剥離強度は高
々300〜400g/cmと十分な強さではない。
However, on the other hand, among the strengths, the nonwoven fabric's interlayer peel strength is at most 300 to 400 g/cm, which is not sufficient strength.

これは構成繊維が長繊維であること、及び繊維同志の接
合が単に熱圧着のめてなされているので次元的であり単
繊維間の絡みが殆んどないことの一点に依ると指定され
る。また、これら不織布はシート形成法が空気流、ガス
流等による牽引集積に依るのでどうしでもシートの均−
性即ち目付の斑が大きい点、及びフィラメントの接合手
段が殻内には熱圧着が用いられるので伸びがなくて硬く
、1、レープ性に欠のるといった欠点があった。
This designation is based on the fact that the constituent fibers are long fibers, and because the fibers are bonded together by simply thermocompression bonding, it is dimensional and there is almost no entanglement between single fibers. . In addition, since the sheet forming method of these nonwoven fabrics relies on traction and accumulation by air currents, gas flows, etc., the sheet cannot be uniformly formed.
There were disadvantages such as large unevenness in fiber properties, i.e., fabric weight, and because thermocompression bonding was used to join the filaments inside the shell, the filaments did not stretch and were hard, and 1. they lacked rapability.

またカート法により形成したシートをニートルパンチや
接着剤、熱融着繊維て接合しで得られる短繊維乾式不織
布は、長繊維乾式不織布に止べて、繊維長が短かいこと
から強度面で劣り、これを補う為Qこ接着剤等で構成繊
維を統合ざ一μることが多く、この場合どうしても風合
が硬いといった欠点かあった。
In addition, short fiber dry non-woven fabric obtained by joining sheets formed by the cart method with knittle punch, adhesive, or heat-sealable fibers is similar to long fiber dry non-woven fabric, but due to its short fiber length, it has a higher strength. In order to compensate for this, the constituent fibers are often integrated using adhesives, etc., and in this case, the disadvantage is that the texture is hard.

特公昭11.3749等で開示されているカー1゛法に
より形成したシートを柱状水流で交絡させて得られるノ
ーバインダーの所謂スパンレースタイプの不織布4J、
スパンポンドや接着剤、熱融着繊料1で接合するカード
法乾式不織布に比−・ると、ソフトな風合の面で優れて
いるが、やはり乾式決心こよるシーI・形成であるので
均一・性(目イく1斑)か不1分な点及び層間剥離強度
が未だ未だ不十分である点などの欠点を有している。
Binder-free so-called spunlace type nonwoven fabric 4J obtained by entangling sheets formed by the Carr 1 method disclosed in Japanese Patent Publication No. 11.3749 etc. with a columnar water stream,
Compared to card method dry non-woven fabrics that are bonded using spunpond, adhesives, or heat-sealable fibers, it has a softer texture, but it is still formed using a dry process. It has drawbacks such as poor uniformity (one spot) and poor delamination strength.

一方、湿式不織布は極めて短かい繊維を水中に分散させ
てシート形成する為に乾式不織布に比へ比較にならない
程均−性が良いという特徴をイJする。しかしながら、
水中に繊維を均一に分散さセる為には繊維長は−・般に
3〜7 mm程度の極めて短かい長さが要求される為、
この方法で得られた不織布G:1極めて強度が小さく、
用途も余り強度の要求されない分野に限定されている。
On the other hand, wet-laid non-woven fabrics are formed into sheets by dispersing extremely short fibers in water, so they have a characteristic of incomparably better uniformity than dry-laid non-woven fabrics. however,
In order to uniformly disperse the fibers in water, the fiber length must be extremely short, typically around 3 to 7 mm.
Nonwoven fabric G obtained by this method: 1 has extremely low strength;
Applications are also limited to fields that do not require much strength.

更Gこ、抄紙法に3) においては、通常フェル1−やヤンキードライヤーで圧
着される為に、一般に湿式不織布は厚みが薄く、密度が
高くなり、どうしてもペーパーライクな風合になる欠点
があった。
In the papermaking method (3), wet-processed nonwoven fabrics are generally thinner and denser, as they are usually crimped using a fel 1- or Yankee dryer, resulting in a paper-like texture. Ta.

この様に従来の不織布は、その製法の特徴に応して各々
′vj徴、欠点を有し、均一性に優れ、強度が大きく、
かつ風合がソフト、な特徴を備えた不織布は未だないの
が現状であった。
In this way, conventional nonwoven fabrics each have their own characteristics and defects depending on the characteristics of their manufacturing method, and they have excellent uniformity, high strength,
At present, there is currently no nonwoven fabric that has the characteristics of soft texture.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、湿式不織布において、その優れた均一性とい
った特徴を生かしながら、その欠点である強度が弱い点
、及び風合がペーパーライクである点を改良した新規な
湿式不織布とその製造方法を提供することを目的とする
The present invention provides a novel wet-laid nonwoven fabric that takes advantage of its characteristics such as excellent uniformity while improving its weak strength and paper-like texture, and a method for producing the same. The purpose is to

〔課題を解決する為の手段〕[Means to solve problems]

本発明者らは、上記問題点について鋭意検討し本発明に
到達した。すなわち本発明の前述の目的は、単糸の直径
が7〜25μm11で、繊維長りと単糸直径りとの比L
/Dが0.8X10’〜2.0XIO’の短繊維が相互
に三次元交絡しており、その繊維交絡点間距離が300
μ11以下である高強度湿式不織4」によって達成され
る。
The present inventors have diligently studied the above-mentioned problems and have arrived at the present invention. That is, the above-mentioned object of the present invention is that the diameter of the single yarn is 7 to 25 μm11, and the ratio L of the fiber length to the single yarn diameter is
Short fibers with /D of 0.8X10' to 2.0XIO' are three-dimensionally entangled with each other, and the distance between the fiber entanglement points is 300
This is achieved by using a high-strength wet-laid non-woven fabric with a tensile strength of μ11 or less.

前記本発明による高強度湿式不織布を得るための不織布
の製造法は単糸の直径7〜25μm、繊維長しと単糸直
径D(7)比I−/ I) b< 0.8 X 10′
〜2. ()×103の短繊維を抄造法でシート形成し
、ついて高速流体流処理により短繊維を相互にI次元交
絡させることを特徴とする。
The nonwoven fabric manufacturing method for obtaining the high-strength wet-laid nonwoven fabric according to the present invention is as follows: the diameter of the single yarn is 7 to 25 μm, the fiber length and the single yarn diameter D (7) ratio I-/I) b<0.8 X 10'
~2. It is characterized by forming a sheet of ( )×103 short fibers by a papermaking method, and then intertwining the short fibers with each other in the I dimension by high-speed fluid flow treatment.

本発明の湿式不織布は、特定の形状を有する短繊維から
構成され、かつその短繊維が特定された交絡密度で交絡
していることが必須の要件であり、この構成でもって始
めて従来の湿式不織布になかった高強度の不織布が得ら
れる。
The wet-laid nonwoven fabric of the present invention is composed of short fibers having a specific shape, and it is essential that the short fibers are intertwined at a specified entanglement density. A high-strength nonwoven fabric that was previously unavailable can be obtained.

ます、構成原糸は、単糸直径7〜25μm、繊維長りと
単糸直径りとの比L / Dが0.8X103〜2.0
X10’の二つの要素を共に満たずことが必要である。
The constituent fibers have a single yarn diameter of 7 to 25 μm, and a ratio L/D of fiber length to single yarn diameter of 0.8 x 103 to 2.0.
It is necessary that both of the two elements of X10' be satisfied.

単糸繊度が7μm未満であると、L / I)が前記の
範囲であっても、単糸強力が余りにも低い為に、引張強
度、引裂強度、更乙こは層間剥離強度等の強度か低く本
発明の目的を達することができない。
If the single yarn fineness is less than 7 μm, even if L/I) is within the above range, the single yarn strength will be too low, resulting in poor tensile strength, tear strength, and interlayer peeling strength. This is too low to achieve the purpose of the present invention.

jlil両糸が25μmを超えると、l−/ Dが本発
明の範囲であっても余りに繊維が太い為に不織布の表面
の均一1イ1、緻密さが失なわれ、本発明の目的を達す
ることが出来ない。したがって単糸直径は強度、均一性
の点からみて7〜25μmであることか必要であり、そ
の好ましい範囲は10〜17μmである。
If the length of both yarns exceeds 25 μm, even if l-/D is within the range of the present invention, the fibers are too thick and the surface uniformity and density of the nonwoven fabric will be lost, making it impossible to achieve the purpose of the present invention. I can't do that. Therefore, from the point of view of strength and uniformity, the single yarn diameter must be 7 to 25 μm, and the preferred range is 10 to 17 μm.

次に、原糸のL / Dは前記の繊維直径の範囲内で0
.8XIO”〜2.0X103である必要であり、その
好ましい範囲は1. OX 10’〜1.5 ×l Q
 3である。
Next, the L/D of the raw yarn is 0 within the above fiber diameter range.
.. 8XIO" to 2.0X103, and the preferable range is 1.OX10' to 1.5xlQ
It is 3.

原糸の1. / D &J: 、繊維同士の交絡のしゃ
ずさと重要な関係があることが本発明者らの検討により
見い出され、L/Dが0.8XIO3未満である場合、
及び2. OX 10″を超える場合はいずれも目的と
する不織布強度が得られず、本発明の0.8X103〜
2.0X]03の範囲で始めて実用的な高強度が得られ
る。この驚くべき事実は次の様に推定される。
1. of raw yarn. / D & J: The inventors have found that there is an important relationship with the degree of entanglement between fibers, and when L/D is less than 0.8XIO3,
and 2. If it exceeds OX 10'', the desired nonwoven fabric strength cannot be obtained, and the present invention's 0.8X103~
Practical high strength can only be obtained in the range of 2.0×]03. This surprising fact can be estimated as follows.

即ち、繊維のイ↑状水流等による動き易さばT、/l′
)か小さい、即ち太く短かい程大きく、繊維相互の絡み
は大きくなる。一方、繊維間相互の接触点の数は繊維が
細く長い、即ちL/Dが大きい程多くなる。しかしなが
らL / Dが大きすぎると交絡時に於りる繊維の動き
が抑制され横線相互の絡、71εJ逆に小さくなる。し
たがって繊維同士の交絡密度が最大になる最適範囲の1
.、 / Dが存在し、この範囲が0.8X10’〜2
.OX]03であると理解される。
In other words, the ease of movement of the fibers due to the ↑-shaped water flow, etc. T, /l'
) is smaller, that is, the thicker and shorter the fibers are, the greater the entanglement between the fibers. On the other hand, the number of contact points between fibers increases as the fibers become thinner and longer, that is, the L/D becomes larger. However, if L/D is too large, the movement of the fibers during intertwining will be suppressed, and the intertwining of the horizontal lines, 71εJ, will conversely become smaller. Therefore, the optimal range of 1 is the maximum intertwining density between fibers.
.. , /D exists, and this range is 0.8X10' to 2
.. OX]03.

本発明の高強度湿式不織布を構成する要件は、上記の特
定された繊維直径、L / Dを有する短繊維から構成
される点と、この様な原糸が平均繊維交絡点間距離30
0μm以下の状態で相互に三次元交絡している点の二点
から構成されていることが必要である。本発明でいう特
定の短繊維からなる湿式不織布であっても、抄造された
まkの状態で繊維相互が絡み合っていない状態、或いは
絡め合っていても平均繊維交絡点間距離が300μmo
を超える様な比較的ルーズな交絡状態は、本発明の目的
とずろ高強度か得られず本発明に含まれない。
The requirements for constituting the high-strength wet-laid nonwoven fabric of the present invention are that it is composed of short fibers having the above-specified fiber diameter and L/D, and that such raw yarn has an average distance between fiber entanglement points of 30.
It is necessary to consist of two points that are three-dimensionally intertwined with each other in a state of 0 μm or less. Even if the wet-laid nonwoven fabric is made of specific short fibers as used in the present invention, the average distance between fiber entanglement points is 300 μmo even if the fibers are not intertwined with each other in the paper-formed state, or even if they are intertwined.
A relatively loose intertwined state exceeding the above is not included in the present invention because high strength cannot be obtained, which is the objective of the present invention.

本発明を構成する単糸の直径は、単糸の断面が円形であ
っても、非円形の種々の異形断面であっても良い。円形
の場合は直接的にその直径を測定した値でもって単糸の
直径とし、異形断面糸の場合の単糸の直径は、重量法に
よりその繊度(デニル)を測定し、このデニールを単糸
が円形と仮定した場合の下記式で得られる平均直径でも
って表わすこととする。
Regarding the diameter of the single yarn constituting the present invention, the single yarn may have a circular cross section or various non-circular cross sections. In the case of a circular shape, the diameter of the single yarn is determined by directly measuring its diameter.In the case of a yarn with an irregular cross section, the diameter of the single yarn is determined by measuring its fineness (denier) by the gravimetric method, and this denier is determined as the diameter of the single yarn. It will be expressed by the average diameter obtained by the following formula when it is assumed that is circular.

(ここで R−単糸の直径(μ川) d−単糸の繊度(デニール) π−円周率            )ここでいう繊維
平均交絡点間距離とは、特開昭58−191280で公
知のつぎの方法で測定した値のことであり、繊維間相互
の交絡密度を示す1つの尺度として稙が小さいほど交絡
か緻密であることを示すものである。第1図は、湿式不
織布における構成繊維を平面方向に表面から観察したと
きの構成繊維の拡大模式図である。構成繊維をf l+
 f 2+f)・・・とし、そのうちの任意の2木の繊
維r l+f2が交絡する点をa、で上になっている繊
維f2が他の繊維の下になる形で交差する点までたどっ
ていき、その交差した点をa2とする。同様にal。
(Here, R - Diameter of single yarn (μ river) d - Fineness of single yarn (denier) π - Circumference) The fiber average distance between intertwining points here is the following known in JP-A-58-191280. It is a value measured by the method described above, and is a measure of the intertwining density between fibers. The smaller the strands, the more dense the intertwining. FIG. 1 is an enlarged schematic diagram of the constituent fibers of a wet-laid nonwoven fabric when observed from the surface in a plane direction. The constituent fibers are f l+
f 2 + f)..., and trace the point where the fibers r l + f2 of any two trees intertwine to the point where the fiber f2, which is above at a, intersects under the other fiber. , the point where they intersect is a2. Similarly al.

a4+・・・とする。つぎにこのようにして求めた交絡
点の間の直線水平距離al a2 、a2aJ 、・・
を測定し、これら多数の測定値の平均値を求めこれを平
均繊維交絡点間距離とする。
Let it be a4+... Next, the linear horizontal distances al a2 , a2aJ , . . . between the intersecting points obtained in this way are
is measured, and the average value of these many measured values is determined, and this is taken as the average distance between fiber entanglement points.

本発明の湿式不織布を構成する原糸は、ナイロン6、ナ
イロン66、ナイロン610なとのポリアミド繊維、ポ
リフチレンチレフタレー1へ、ポリフチレンチレフタレ
−I・等のポリエステル繊維、ポリプロピレン、ポリエ
チレン等のポリオレフィン繊維、レーヨン等の再生セル
ロースm維等が、本発明の繊維直径及び1./Dの範囲
内で好ましく用いられる。また、原糸のヤング率(J5
0〜700kg/ffll62、とりわけ50〜500
kg/mm”の範囲であることが好ましい。700kg
/mm2を超える様な高ヤング率の原糸は曲げ剛性も大
きく、本発明でいう平均繊維交絡点間距離300卿以下
の交絡状態になる為には、大きい交絡力(例えば非常に
高い圧力の柱状水流)が必要である等の問題が生ずるご
とがある。
The raw yarn constituting the wet-laid nonwoven fabric of the present invention includes polyamide fibers such as nylon 6, nylon 66, and nylon 610, polyester fibers such as polyethylene terephthalate 1, polyethylene ethylene terephthalate I, polypropylene, and polyethylene. Polyolefin fibers such as polyolefin fibers, regenerated cellulose fibers such as rayon, etc., have the fiber diameter of the present invention and 1. It is preferably used within the range of /D. In addition, the Young's modulus of the yarn (J5
0-700kg/ffll62, especially 50-500
kg/mm" range. 700 kg
A raw yarn with a high Young's modulus exceeding /mm2 also has high bending rigidity, and in order to achieve an intertwined state with an average fiber intertwining point distance of 300 degrees or less in the present invention, a large intertwining force (for example, a very high pressure) is required. Problems may arise, such as the need for columnar water flow.

本発明の湿式不織布はこの様な構成である為に、湿式不
織布で従来困難とされていた高強度を有するのみならず
、スパンボンド等の長繊維不織布、或いはカード法によ
って得られた比較的長くかっ捲縮を有する短繊維からな
るウェブを柱状水流によって交絡したタイプの不織布(
例えばDu Pout社の「ソンタラ■」等のスパンレ
ースタイプの不織布)等の不織布に比べはるかに強い層
間剥離強度を有すると共に、湿式不織布の特性である目
付斑が小さく均一性に優れているという特徴ももってい
る。さらに通常の接着剤等で接合された湿式不織布に比
べ、繊維の三次元交絡のみで繊維同士が接合されており
接着剤等の接合手段を用いなくても良いので風合が極め
てソフトでドレープ性に冨んでいるという特徴も有する
ものである。
Because the wet-laid nonwoven fabric of the present invention has such a structure, it not only has high strength, which was previously considered difficult to achieve with wet-laid nonwoven fabrics, but also has relatively long fibers such as spunbond or other long fiber nonwoven fabrics, or relatively long fibers obtained by a card method. A type of nonwoven fabric (
For example, it has much stronger interlayer peel strength than non-woven fabrics such as spunlace type non-woven fabrics such as Du Pout's ``Sontara ■'', and has excellent uniformity with less unevenness in area weight, which is a characteristic of wet-laid non-woven fabrics. It's also holding. Furthermore, compared to wet-laid nonwoven fabrics that are bonded with regular adhesives, the fibers are bonded together only by three-dimensional entanglement, and there is no need to use adhesives or other bonding means, resulting in an extremely soft texture and drapability. It also has the characteristic of being rich in

この様に本発明の不織布は、湿式法の特徴である均一性
を有しつつ、その欠点を克服した高強度、ソフト風合を
有し、更にはスパンボンド等の長繊維不織布やスパンレ
ースタイプの不織布に欠りている不織布層間剥離強度の
強さをも有するものであり、従来の不織布には望み得な
かった性能を有するものであるので、従来の不織布では
適用困難であった用途に用いるごとができる。
As described above, the nonwoven fabric of the present invention has the uniformity that is characteristic of the wet process, while also having high strength and a soft texture that overcome the disadvantages of the wet process. It also has strong delamination strength, which non-woven fabrics lack, and has performance that could not be expected from conventional non-woven fabrics, so it can be used in applications that are difficult to apply with conventional non-woven fabrics. I can do things.

その好適な例の1つは、医療、衛+A向の素材、例えば
サージカルバツク、サージカルガウン、アンダーパッド
等の医療用素材、オムツ、ナプキン、マスク等の衛生材
料である。これらの用途では本発明の不織布のドレープ
性に冨んだ風合と高強度の特徴が良く活かされる。
One suitable example thereof is materials for medical and sanitary + A applications, such as medical materials such as surgical bags, surgical gowns, and underpads, and sanitary materials such as diapers, napkins, and masks. In these applications, the characteristics of the nonwoven fabric of the present invention, such as drapability, rich texture, and high strength, are well utilized.

特に手術衣に本発明の不織布を用いる場合、手術衣に特
に要求される液体バリアー性に優れているという特性が
良く活かされる。本発明の不織布は、特定されたL/D
を持つ短繊維が高密度に交絡しているのでそれ自体高度
な液体バリアー性を有している。従来の不織布で手術衣
に要求される液体バリアー性を得る為の試みとして、例
えば特開昭59−94659に開示されている様に、ポ
リエステル(ポリエチレンテレフクレー1−)に、微細
なフィブリルで構成される木材パルプを積層、或いは混
合して得られたシートに柱状水流を噴射させて、パルプ
をいわば“目詰め的にポリエステルに交絡させて不織布
密度を高める工夫がされてきたが、本発明においては、
ごの様な特殊な目詰め的な)<インダー繊維を格別に用
いなくても、例えばポリエステル(ポリエチレンテレフ
タレート)の1d12.5+++mの原糸を用いるだけ
で優れた液体ノ\リアー性が得られることが確認されて
いる。
In particular, when the nonwoven fabric of the present invention is used in surgical gowns, the property of excellent liquid barrier properties, which is particularly required for surgical gowns, can be effectively utilized. The nonwoven fabric of the present invention has a specified L/D
Since the short fibers are intertwined with high density, it itself has a high level of liquid barrier property. As an attempt to obtain the liquid barrier properties required for surgical gowns using conventional nonwoven fabrics, for example, as disclosed in Japanese Patent Application Laid-Open No. 59-94659, a nonwoven fabric made of polyester (polyethylene tereph clay 1-) made of fine fibrils has been proposed. It has been devised to increase the density of the nonwoven fabric by jetting a columnar water stream onto a sheet obtained by laminating or mixing wood pulps to entangle the pulp with polyester in a so-called "filling" manner, but in the present invention, teeth,
Excellent liquid repellency can be obtained simply by using a 1d12.5+++m raw yarn of polyester (polyethylene terephthalate), for example, without using special inner fibers (such as special meshing). has been confirmed.

衣料用芯地に本発明不織布を用いた場合も、均一で強度
が大きいという特徴がよく活かされ、好適である。電子
分野等の工業用ワイピングクロスにも適性がある。これ
は本発明の不織布がノーバインダーで繊維間の交絡によ
り強固に繊維が接合されている為にリントフリー性に優
れ、かつ柔軟である為拭き取り性に優れている為である
。更に気体、液体用のフィルター特に5〜25Nの粒子
を濾過する所謂プレフィルタ−としての適性も認められ
る。これは本不織布の平均繊維交絡点間距離が小さく緻
密であるという特性がフィルター機能に十分活かされる
結果である。
When the nonwoven fabric of the present invention is used as an interlining material for clothing, the characteristics of uniformity and high strength are well utilized and it is suitable. It is also suitable for industrial wiping cloths such as those used in the electronic field. This is because the nonwoven fabric of the present invention has no binder and the fibers are firmly joined by interlacing the fibers, so it has excellent lint-free properties, and is flexible, so it has excellent wiping properties. Furthermore, it is also recognized to be suitable as a filter for gases and liquids, especially as a so-called pre-filter for filtering particles of 5 to 25N. This is a result of the fact that the average distance between fiber entanglement points of this nonwoven fabric is small and dense, which is fully utilized for its filter function.

コーティング基布として本発明の不織布を用いる場合、
本発明の不織布の特性がよく活かされる。
When using the nonwoven fabric of the present invention as a coating base fabric,
The characteristics of the nonwoven fabric of the present invention are well utilized.

即ち、従来の織編物の基布に代えて従来の不織布をコー
ティング基布として用いる試みが続けられてきたが、こ
れらの不織布の場合、層間剥離強度が織物、編物に比べ
弱いので、不織布の表面にポリウレタンやポリ塩化ビニ
ルをコーティングして得られたコーテイング品は使用中
に不織布の層間で剥離現象を起こし実用に耐えない場合
が多かった。この欠点を改良すべく不織布にポリウレタ
ン、ポリアクリル酸エステル、SBR,MBR,NBR
等の弾性重合体をバインダーとしてあらかじめ付ちし、
その後にポリウレタン、ポリ塩化ビニル等を表面にコー
ティングすることも行なわれてきているが、この場合ど
うしても風合がペーパーライクになり織編物基布に対し
品質が劣ることは避けられなかった。ごれに対し、本発
明の不織布は、従来の不織布に比べ極めて高い層間剥離
強度を有するので、バインダーなしでコーティング基布
として使用することが可能であり、従来の不織布基布に
見られない、ソフト風合、高層間剥離強度に優れた新た
な特徴を有するものである。
In other words, attempts have been made to use conventional nonwoven fabrics as coating base fabrics in place of conventional woven or knitted base fabrics, but these nonwoven fabrics have lower interlayer peel strength than woven or knitted fabrics, so the surface of the nonwoven fabric Coated products obtained by coating polyurethane or polyvinyl chloride on nonwoven fabrics often suffer from peeling between the layers of the nonwoven fabric during use, making them unsuitable for practical use. In order to improve this drawback, nonwoven fabrics include polyurethane, polyacrylic ester, SBR, MBR, and NBR.
Apply an elastic polymer such as as a binder in advance,
Subsequently, the surface has been coated with polyurethane, polyvinyl chloride, etc., but in this case, the texture becomes paper-like and the quality is inevitably inferior to that of woven or knitted fabrics. With respect to dirt, the nonwoven fabric of the present invention has extremely high delamination strength compared to conventional nonwoven fabrics, so it can be used as a coating base fabric without a binder, which is not seen in conventional nonwoven base fabrics. It has new features such as a soft texture and excellent peel strength between high-rise layers.

人]二1皮革用の基布として本発明の不織布を用いるこ
とも好適な例の1つである。例えば本不織布をそのま\
基布として用い、その表面にポリウレタン、塩化ビニル
、SBI?、 NIIR,MBR等の弾性重合体の溶液
、或いはエマルジ51ンをグラビア、ドクターナイフ等
で塗布するごとにより銀面様の人工皮革を得ることがで
きる。この場合、必要に応じて表面被覆層を形成する前
にポリウレタン等の弾性重合体を本不織布に含浸し、乾
式、或いは湿式凝固させ充填することも強度面、風合面
でより好ましい。
One of the preferable examples is to use the nonwoven fabric of the present invention as a base fabric for leather. For example, real nonwoven fabric is
Used as a base fabric and coated with polyurethane, vinyl chloride, SBI? By applying a solution of an elastic polymer such as NIIR, MBR, etc., or emulsion 51 using a gravure machine, a doctor knife, etc., a silver-like artificial leather can be obtained. In this case, it is more preferable in terms of strength and texture to impregnate the nonwoven fabric with an elastic polymer such as polyurethane and dry or wet coagulate and fill it, if necessary, before forming the surface coating layer.

さらに、スェード様の人二[皮革を得たい場合には、本
不織布に単糸繊度0.5d以下の極細繊維からなるシー
1〜を積層し、この積層体を三次元交絡させて一体化し
た複合不織布を形成し、極細糸交絡層を起毛させ、必要
に応じ弾性重合体等を含浸したり、染色加工することに
より目的とするスェード調人工皮革を得ることも可能で
ある。
Furthermore, if you want to obtain suede-like leather, you can laminate sheets 1~ made of ultrafine fibers with a single fiber fineness of 0.5 d or less on this nonwoven fabric, and integrate this laminate by three-dimensional entanglement. It is also possible to obtain the desired suede-like artificial leather by forming a composite nonwoven fabric, raising the ultrafine interlaced layer, impregnating it with an elastic polymer, etc. as necessary, or dyeing it.

次に本発明の高強度湿式不織布の製造方法について説明
する。
Next, a method for producing a high-strength wet-laid nonwoven fabric of the present invention will be explained.

まず、単糸直径7〜25 um、 L/ D 0.8 
XHI′〜2X10”の特定形状を持った短繊維を準備
する。
First, single yarn diameter 7~25 um, L/D 0.8
Short fibers having a specific shape of XHI' to 2X10'' are prepared.

これを0.1〜3%の濃度になるように水に分散させス
ラリーを調製する。この際少量の分散剤を加えることが
好ましい。このスラリーを長網式、或いは丸網式の抄造
機にて抄紙する。目付量は用途に応じて5〜500g/
r+(の範囲で設定することが好ましい。抄造シートを
形成する原糸の種類については、単糸直径、L/Dが本
発明の範囲を満たずものであれば目的に応し適宜選択す
れば良いし、また素材および/または形状の異なった2
種類或いは3種類の原糸を混合して用いることも好まし
い。得られた抄造シートを高速流体流にて交絡さ−Uる
。ここでいう流体とは、津5体或いは気体であるが、取
り扱いやすさ、コスト、流体としての衝突エネルギーの
大きさなどの点から水が最も好ましい。水を用いろ場合
、水圧は用いる原糸の種類及び抄造シーI・の目伺里に
よって異なるが、平均繊維交絡点間距離300μmを得
る為には5〜200kg/ cIN 、好ましくは10
〜80kg/(艷の範囲で衝突させる。
A slurry is prepared by dispersing this in water to a concentration of 0.1 to 3%. At this time, it is preferable to add a small amount of a dispersant. This slurry is made into paper using a fourdrinier type or circular net type paper making machine. The basis weight is 5 to 500g/depending on the application.
It is preferable to set it within the range of r + It is good and also has two different materials and/or shapes.
It is also preferable to use one type or a mixture of three types of yarn. The obtained paper sheet is entangled with a high-speed fluid stream. The fluid here refers to a body or a gas, but water is most preferable from the viewpoint of ease of handling, cost, and high collision energy as a fluid. When water is used, the water pressure varies depending on the type of yarn used and the distance of the papermaking sheet I, but in order to obtain an average distance between fiber entanglement points of 300 μm, the water pressure is 5 to 200 kg/cIN, preferably 10
~80kg/(Collide within the range of the barge.

同一原糸の場合、低目春1稈水圧は低く、高目付になる
程高水圧に設定すればよい。また、同−目句の場合ヤン
グ率の高い原糸の場合にはより高圧の水流で処理するこ
とが本発明の目的とする高強度が得られる。水流を噴射
するノズルの径は、0゜01〜1 mmが好ましい。水
流の軌跡形状は抄造シトの進行方向に対し並行な直線状
であっても良いし、ノズルを取り付けたヘッダーの回転
運動やソートの進行方向に直角に往復する振動運動によ
って得られる曲線形状であっても良い。回転運動により
得られる幾重にも重なった円形状の水流軌跡の交絡は、
ノズル1錘当たりのシートに対する水流の噴射面積が大
きくなり効率的であると同時に、用途によっては商品価
値を低下させる水流軌跡の斑が見えにくい、史には不織
布の経緯の強度比が小さい等の利点があり好ましい。抄
造シートに対する高速水流の処理の仕方は、表・裏交互
に水流を噴射する方法でも良いし、片面だりを処理する
のも良い。また処理回数も目的に応じて最適条件を選択
すればよい。
In the case of the same raw yarn, the water pressure for one culm of a low eye spring is low, and the higher the basis weight, the higher the water pressure may be set. In addition, in the case of the same objective, in the case of yarn having a high Young's modulus, high strength, which is the object of the present invention, can be obtained by treating with a water stream of higher pressure. The diameter of the nozzle that sprays the water stream is preferably 0.01 to 1 mm. The shape of the trajectory of the water stream may be a straight line parallel to the direction of advance of the papermaking sheet, or it may be a curved shape obtained by the rotational movement of a header equipped with a nozzle or the vibration motion that reciprocates at right angles to the direction of progress of sorting. It's okay. The intertwining of multiple circular water flow trajectories obtained by rotational motion is
The spray area of the water stream against the sheet per nozzle is large, which is efficient, but at the same time, depending on the application, it is difficult to see spots in the trajectory of the water stream, which can reduce the product value. Advantages and preferred. The paper sheet may be treated with a high-speed water stream by spraying the water stream alternately on the front and back sides, or it may be applied on one side. Moreover, the optimum conditions for the number of processing times may be selected depending on the purpose.

これら抄造シートの柱状水流処理の水圧条件は、目的と
する平均繊維交絡点間距離30071111以下を得る
様に及び、均一性を得る様な条件下で選択されるが、例
えば10〜100 g / rdの比較的小さい目(=
Jの抄造シートの処理の場合は10〜40 kg / 
r舗の水圧で片面或いは両面処理するのが好ましく、1
50〜500g/rrfの比較的大きい目付の場合には
、30〜80kg/c+flの水圧で交互に両面に柱状
水流を噴き当てるのが好ましい。平均繊維交絡点間距離
300μm以下の交絡状態を得る為の柱状水流条件につ
いて更に述べると、例えば、ポリエチレンテレフタレ−
1,(PET)の1デニール、長さ10mmの短繊維か
らなる目付100 g / n(の抄造シートに対し、
オリフィス径0.07〜0.25mmのノズルがノズル
間隔1〜8 mmで穿孔または配置された列が10〜2
0列配列された多数のノズルを装着したノズルヘッダー
を用い、水圧30〜50kg/c[で表裏交互に1回ず
つ処理する。この時、ノズルへラダーは50〜500r
、p、m、 (シーL処理速度2〜20TnZ分に対応
)の回転円運動をさセるのが好ましい。更に必要に応じ
、シート表面に残存する水流軌跡が製品品位を損なう様
な場合には、同一構造のノズルヘッダーとシートの間に
40〜100メツシユの金網を挿入し柱状水流を散水化
し、水流軌跡の深さを軽減するのも好ましい態様である
The water pressure conditions for the columnar water flow treatment of these paper sheets are selected under such conditions as to obtain the desired average fiber entanglement point distance of 30,071,111 or less and to obtain uniformity, for example, 10 to 100 g/rd. relatively small eyes (=
In the case of J papermaking sheet processing, 10 to 40 kg/
It is preferable to treat one or both sides with water pressure.
In the case of a relatively large basis weight of 50 to 500 g/rrf, it is preferable to spray columnar water streams alternately on both sides at a water pressure of 30 to 80 kg/c+fl. To further describe the columnar water flow conditions for obtaining an entangled state with an average distance between fiber entangled points of 300 μm or less, for example, polyethylene terephthalate
1. For a sheet made of 1 denier (PET) short fibers with a length of 10 mm and a weight of 100 g/n,
10 to 2 rows of nozzles with an orifice diameter of 0.07 to 0.25 mm are drilled or arranged at a nozzle spacing of 1 to 8 mm.
Using a nozzle header equipped with a large number of nozzles arranged in 0 rows, the treatment is performed once on each side alternately at a water pressure of 30 to 50 kg/c. At this time, the rudder to the nozzle is 50~500r.
, p, m (corresponding to a sea L processing speed of 2 to 20 TnZ). Furthermore, if necessary, if the water flow trajectory remaining on the sheet surface impairs the quality of the product, a wire mesh of 40 to 100 meshes is inserted between the nozzle header of the same structure and the sheet to sprinkle the columnar water flow and reduce the water flow trajectory. It is also a preferred embodiment to reduce the depth.

本発明の高強度湿式不織布を14る製造方法に含まれる
態様として、抄造シートを柱状水流で交絡処理後、例え
ば荒い金網(10〜20メツシユ)の上に該シートを載
・口、シートの上から柱状水流を噴射し゛、金網の模様
にそった開孔した模様付けをすることも好ましい。この
場合に得られる本発明の不織布は開孔の模様付目をする
前に比べて、バルキー性、寸法安定性(伸長回復率)等
が向上する効果が認められる。
As an embodiment included in the manufacturing method for producing the high-strength wet-laid nonwoven fabric of the present invention, after the paper-formed sheet is entangled with a columnar water stream, the sheet is placed on, for example, a rough wire mesh (10 to 20 meshes). It is also preferable to spray a columnar stream of water from the wire mesh to create a pattern with holes that follow the pattern of the wire mesh. The nonwoven fabric of the present invention obtained in this case is found to have improved bulkiness, dimensional stability (elongation recovery rate), etc., compared to the nonwoven fabric before patterning with openings.

さらに、本発明で得られる高強度湿式不織布1の後加工
の一態様として彫刻されたロール(エンボスロール)で
もって冷間或いは熱間プレスし表面に賦型することも好
ましい方法である。この方法によると交絡シー[・を接
合するごとになるので、引張強度等の強度が向上すると
いう効果が認められ、さらには寸法安定性も向−にする
という予101ゼぬ効果も発現することがわかった。
Furthermore, as a mode of post-processing of the high-strength wet-laid nonwoven fabric 1 obtained by the present invention, it is also preferable to cold or hot press it with an engraved roll (emboss roll) to shape the surface. According to this method, each time the intertwined sheets are joined, it has been observed that the strength such as tensile strength is improved, and it also has the unexpected effect of improving dimensional stability. I understand.

〔実施例〕〔Example〕

以下、実施例でもって本発明をさらに詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例中、測定値は以下の方法によって測定したもので
あり、%は全て重量%である。
In the Examples, the measured values were determined by the following method, and all percentages are by weight.

1)引張強度: JISLI096  ス1−リップ法
2)引裂強度: JISLI096  シングルタング
法3)層間剥離強度: 不織布を中2.5 cm、長さ13cm4こカントする
1) Tensile strength: JISLI096 slip-lip method 2) Tear strength: JISLI096 single tongue method 3) Interlaminar peel strength: The nonwoven fabric is cut into four pieces with a diameter of 2.5 cm and a length of 13 cm.

ごのサンプルに接着テープ(ソニーケミカル■製D 3
200 )を接着させた後70 g /c+R(D圧力
−(’ 200”C、30秒間プレスし貼り合わ一已る
Adhesive tape (D3 manufactured by Sony Chemical ■) was applied to the sample.
After adhering 200"C, 70g/c+R(D pressure-('200"C), press for 30 seconds and bond together.

こうして得られた測定用サンプルの、接着テープと不織
布の間に切れ込みを入れ、両端をオートグラフのチャッ
クでつかみ測定を行なう。オートグラフの測定条件は以
下の様に設定する。
A slit is made between the adhesive tape and the nonwoven fabric of the measurement sample thus obtained, and both ends are gripped with an autograph chuck and measured. The measurement conditions for the autograph are set as follows.

引張速度: l Ocrn / minチャー1・速度
:10cm/min ごの場合テープは強く、又テープと不織布は強固に接着
されているので、測定用サンプルのテプが測定用サンプ
ルから引き剥される時に、テープが切断したり、テープ
と不織布の接着面が剥されることはなく、前記引き剥し
力は不織布の一部分を他の部分から引き剥すように作用
する。したがっ”ζこの方法によって不織布の層間剥離
強度を測定することができる。
Tensile speed: lOcrn / Minature 1 Speed: 10cm/min Since the tape is strong and the tape and non-woven fabric are firmly bonded, when the tape of the measurement sample is peeled off from the measurement sample, The peeling force acts to peel one part of the nonwoven fabric from another part without cutting the tape or peeling off the adhesive surface between the tape and the nonwoven fabric. Therefore, the delamination strength of nonwoven fabrics can be measured by this method.

前記測定をオートグラフで行う際に得られるストレスス
トレン曲線から強度値の大きい方の値3個と小さい方の
値3個を選んで計6個の値の平均値を得る。測定用サン
プルの試験数は5とする。
From the stress-strain curve obtained when performing the above measurement using an autograph, three of the larger intensity values and three of the smaller intensity values are selected, and the average value of the six values in total is obtained. The number of test samples for measurement is 5.

この様な測定を不織布のタテ方向(MD)、ヨコ方向(
CD)につき各々同様に行ない、そのタテ/zヨコ平均
値でもって不織布の層間剥離強度とする。
This kind of measurement is carried out in the vertical direction (MD) and horizontal direction (MD) of the nonwoven fabric.
CD), and the average value of the vertical/z-horizontal values is taken as the interlayer peel strength of the nonwoven fabric.

4)柔軟度: JISL1096 45°カンヂレハー
法タテ方向(MD)とココ方向(CD)の平均値をとり
、柔軟度とする。
4) Flexibility: JISL1096 45° Kanjireher method The average value of the longitudinal direction (MD) and the longitudinal direction (CD) is taken and used as the flexibility.

5)平均繊維交絡点間距離:走査型電子顕微鏡で100
倍の倍率で測定し、50個の平均値をとった。
5) Average distance between fiber entanglement points: 100 by scanning electron microscope
Measurements were made at twice the magnification, and the average value of 50 measurements was taken.

尖旌斑上 1d(10I1m)のポリエチレンテレフタレート繊維
をlOmm(L/D−103)にカットし、水中ニ分散
させ1%濃度のスラリーとした。このスラリを斜傾式長
網抄造機で抄造し、目付50g/n(のシートを得た。
Polyethylene terephthalate fibers having an area of 1 d (10 I1 m) were cut into 10 mm (L/D-103) and dispersed in water to form a slurry with a concentration of 1%. This slurry was made into paper using an inclined fourdrinier machine to obtain a sheet with a basis weight of 50 g/n.

このシートに、ノスル径0.1 mm、ノズル間ピッチ
5 mm、列数18列の多数のノズルから30kg/c
Illの水圧の柱状水流を噴D=Iさセて繊維を交絡さ
せた。ノズルと抄造シー1−の間隔は30mmで、抄造
シートの下にはステンレス類の80メツシユの金網を支
持部材とし、金網を通しく21) て吸引脱水した。同様の処理をシートの反対面にも施ご
した。
On this sheet, a large number of nozzles with a nozzle diameter of 0.1 mm, a pitch between nozzles of 5 mm, and 18 rows were used to generate 30 kg/c.
A columnar water stream with a water pressure of Ill was jetted D=I to entangle the fibers. The distance between the nozzle and the sheet-forming sheet 1- was 30 mm, and an 80-mesh wire mesh made of stainless steel was used as a supporting member under the sheet-forming sheet. Similar treatment was applied to the opposite side of the sheet.

次いて水圧を] 8 kg / cfに設定し、両面を
同様に柱状水流で噴射処理した。その後乾燥して交絡シ
トを得た。この不織布の平均繊維交絡点間距離は70μ
mであった。物性は以下の値を示した。
Then, the water pressure was set at 8 kg/cf, and both sides were similarly sprayed with a columnar water stream. After that, it was dried to obtain an entangled sheet. The average distance between fiber entanglement points of this nonwoven fabric is 70μ
It was m. The physical properties showed the following values.

引張強度(タテ/ヨコ)   : 2.0 / 1.9
 kg/c+n引裂強度(クチ/ヨ:])   :1.
6/1.4kg層間剥離強度      : 2100
 g /cm柔軟度(タテ・ヨコ平均):2B+mn仕
較として、スパンボンド法によって得られた長繊維のポ
リエチレンテレフタレート不織布(旭化成T業■製「旭
化成スパンボンド■E 3050゜(目(’j’ 50
 g / rrr )の物性は以下の通りであった。
Tensile strength (vertical/horizontal): 2.0/1.9
kg/c+n tear strength (cut/yo:]): 1.
6/1.4kg Peeling strength: 2100
g/cm Flexibility (vertical and horizontal average): 2B+mn As a comparison, a long-fiber polyethylene terephthalate nonwoven fabric obtained by the spunbond method (Asahi Kasei Spunbond E 3050° (made by Asahi Kasei T Co., Ltd.) 50
The physical properties of g/rrr) were as follows.

引張強度  : 2.4 / 1. Okg/cm引裂
強度  :1.1/1.2kg 層間剥離強度:  230 g / c、m柔軟度  
 : 41 mm この様に本発明の不織布は湿式不織布でありながら長繊
維不織布並以上の引張強度、引裂強度を有し、かつはる
かに高い層間剥離強度を有する。
Tensile strength: 2.4/1. Okg/cm Tear strength: 1.1/1.2kg Peeling strength: 230 g/c, m Flexibility
: 41 mm As described above, although the nonwoven fabric of the present invention is a wet-laid nonwoven fabric, it has tensile strength and tear strength higher than that of a long fiber nonwoven fabric, and has a much higher delamination strength.

更に非常な柔軟な風合と従来の湿式不織布並の均一性(
目付均一性)を有し、従来のいずれの不織布に比べても
優れた品質を示すごとがわかった。
Furthermore, it has an extremely flexible texture and a uniformity comparable to that of conventional wet-laid nonwoven fabrics (
It was found that the fabric has excellent quality compared to any conventional nonwoven fabric.

1tff七↓ ポリエチレンテレフタレート(以下PETと略記)の0
.1d(3μm)原糸を直接紡糸法で作り、3mmの長
さにカッ1へした(L/D=10’)。これを実施例1
と同様の方法で抄造、柱状流処理をした得られた不織布
の平均繊維交絡点間距離ば36μm口であった。物性は
以下の様であった引裂強度が特に小さいものであった。
1tff7↓ 0 of polyethylene terephthalate (hereinafter abbreviated as PET)
.. A 1d (3 μm) raw yarn was produced by a direct spinning method and cut to a length of 3 mm (L/D=10′). Example 1
The average distance between fiber entanglement points of the resulting nonwoven fabric, which was paper-formed and subjected to columnar flow treatment in the same manner as described above, was 36 μm. The physical properties were as shown below.Tear strength was particularly low.

引張強度  : 1.4 / 1.2 kg/cm引裂
強度  :0.210.2kg 層間剥離強度:  910g/cm 柔軟度   :24mm 此嘉J剥 原糸としてr’ET1デニール(10μm)、長さ51
mm (L/D=5.1 XIO’)を用い実施例1と
同様に目(t50g/r4で抄造した。スラリーの状態
Cat繊維同上かもつれあい、ところどころで繊維塊が
あり分散性は不十分であった。この抄造シートを実施例
1と同様の柱状流処理をした。但し圧力は1回目が4 
Fl kg/cM、2回目が25kg/cJとした。平
均繊維交絡点間距離は330μmであり、物性は以下の
通りであった。
Tensile strength: 1.4 / 1.2 kg/cm Tear strength: 0.210.2 kg Interlaminar peel strength: 910 g/cm Flexibility: 24 mm R'ET1 denier (10 μm) as Konoka J stripping yarn, length 51
mm (L/D=5.1 This paper sheet was subjected to the same columnar flow treatment as in Example 1. However, the pressure was 4.
Fl kg/cM, the second time was 25 kg/cJ. The average distance between fiber entanglement points was 330 μm, and the physical properties were as follows.

引張強度  : 0.8 / 0.7 kg/ cm引
裂強度  : 3.6 / 3.4 kg層間剥離強度
:  210g/cm 柔軟度   :39m+1 此〕引にン1リ−1SY□ 原糸としてナイロン6の5デニール(24pm)5 m
m (L / D = 0.21 X 103)を用い
て実施例1と同様にして抄造シートを得た。スラリー中
の原糸の分散状態は良好であった。目伺は50g/rW
であった。この抄造シートを実施例1と同様の設備、条
件で柱状流による交絡処理をした。平均繊維交絡点間距
離は340 pmであった。また物性は以下の通りであ
った。
Tensile strength: 0.8 / 0.7 kg/cm Tear strength: 3.6 / 3.4 kg Peeling strength: 210 g/cm Flexibility: 39 m + 1 Nylon 6 as yarn 5 denier (24pm) 5m
A paper sheet was obtained in the same manner as in Example 1 using m (L/D = 0.21 x 103). The dispersion state of the fibers in the slurry was good. Target weight is 50g/rW
Met. This paper sheet was subjected to an entanglement treatment using a columnar flow using the same equipment and conditions as in Example 1. The average distance between fiber entanglements was 340 pm. Moreover, the physical properties were as follows.

引張強度  : 0.4 / 0.2 kg / cm
引裂強度  : 0.8 / 0.6 kg層間剥離強
度:  t9sg/cm 柔軟度   :43mm ル較炭土 原糸としてヤング率900kg / c+flのポリプ
ロピし・ン繊維の3デニール(221Im)、長さ20
mm(L/ D =0.91 x 103)の短繊維を
用いて実施例1と同様にして抄造、柱状流交絡を行ない
、目(t 50 g/ポの交絡不織布を得た。平均繊維
交絡点距離は350μmであり物性は以下の通りであっ
た。
Tensile strength: 0.4/0.2 kg/cm
Tear strength: 0.8 / 0.6 kg Peeling strength: t9sg/cm Flexibility: 43mm Young's modulus: 900kg/c+fl polypropylene fiber, 3 denier (221 Im), length 20
Using short fibers of mm (L/D = 0.91 x 103), papermaking and columnar flow entanglement were performed in the same manner as in Example 1 to obtain an entangled nonwoven fabric with a grain size (t 50 g/po). Average fiber entanglement The point distance was 350 μm, and the physical properties were as follows.

引張強度  : 0.1 / 0.09kg/ cm引
裂強度  :0.710.3kg 層間剥離強度:  180g/cm 柔軟度   : 41 mm 夫旌桝I 原糸としてナイロン66の]、 5 d (13,1μ
m)、長さ12.5mm (L / D = 0.95
X 10”)の原糸を用い実施例1と同様にして300
 g / raの抄造シー1−を作った。柱状流設備は
、ノズル径0.2 mm、ノスル間ピンチ5 mm、ノ
スル列数12、ノズルと抄造シー1・の間隔30mm、
抄造シートの支持部月として80メソシブ、の金網を用
いた。金網を通して吸弓脱水しなから、1回目は70k
g/cff12回目ば50kg/ ctMの水圧で抄造
シ1−1・の両面にそれぞれ柱状水流を噴射させた。乾
燥後、交絡不織布の平均繊維交絡点間距離を測定した結
果90μm11てあった。
Tensile strength: 0.1 / 0.09 kg/cm Tear strength: 0.710.3 kg Peeling strength: 180 g/cm Flexibility: 41 mm Nylon 66 as yarn], 5 d (13,1 μ
m), length 12.5mm (L/D = 0.95
300 mm in the same manner as in Example 1 using a raw yarn of
A paper-making sheet 1- of g/ra was made. The columnar flow equipment has a nozzle diameter of 0.2 mm, a pinch between nozzles of 5 mm, a number of nozzle rows of 12, and a distance of 30 mm between the nozzle and the papermaking seam 1.
A wire mesh of 80 mesosib was used as a support for the paper-made sheet. The first time was 70k because the water was dehydrated through a wire mesh.
g/cff 12th time, columnar water streams were injected onto both sides of the papermaking sheet 1-1 at a water pressure of 50 kg/ctM. After drying, the average distance between fiber entanglement points of the interlaced nonwoven fabric was measured and found to be 90 μm.

物性は以下の様であり、この不織布は均一でタテ/ヨコ
の強度等方性も良好であり、ルーフイング用等の土木資
材に好適であった。
The physical properties are as follows: this nonwoven fabric was uniform and had good vertical/horizontal strength isotropy, and was suitable for civil engineering materials such as roofing.

引張強度  : 16.1 / 15.7kg / r
am引裂強度  : 9.7 /10.6kg層間剥離
強度:  L900g/Cm 柔軟度   ニア4mm 凋1列ユa− ビスコース法セルロース繊維(レーヨン)の1デニール
(9,7μm)、I 5n++n (L/D −1,5
5X103)の原糸を用い、実施例1と同様に操作をし
て40g / r+?のシートを得た。柱状流交絡処理
の条件は次の様にした。オリフィス径0.08mm、ノ
ズルピッチ2mm、ノズル列数IO列、ノズルと抄造シ
ー1への間隔50画、支持部材の金網60メンシ1.。
Tensile strength: 16.1/15.7kg/r
am tearing strength: 9.7 /10.6kg Delamination strength: L900g/Cm Flexibility Near 4mm F1 row a- 1 denier (9.7μm) of viscose process cellulose fiber (rayon), I 5n++n (L/ D-1,5
Using a yarn of 5×103), the same procedure as in Example 1 was performed to obtain a yarn of 40 g/r+? I got a sheet of The conditions for the columnar flow entanglement process were as follows. Orifice diameter 0.08 mm, nozzle pitch 2 mm, number of nozzle rows IO rows, distance between nozzle and papermaking seam 1 50 strokes, support member wire mesh 60 mesh 1. .

水圧1回目15 kg / c+fl、2回目23 k
g / c+ll、3回ト116kg/C111,通し
回数表裏各3回。乾燥後得られた交絡不織布の繊維交絡
点間距離は52μInであ−2た。物性は以下の様であ
り、比較として同時に測定したセルロース系長繊維不織
布(旭化成下業■製「ヘンリーゼ■」40g/+dとほ
ぼ同程度の強度を有し、かつ風合がよりソフトでドレー
プ性に優れた不織布であった。
Water pressure 15 kg/c+fl for the first time, 23 k for the second time
g/c+ll, 3 times 116kg/C111, number of passes: 3 times each on the front and back sides. The interlaced nonwoven fabric obtained after drying had a distance between fiber entanglement points of 52 μIn, which was -2. The physical properties are as follows, and it has almost the same strength as the cellulose long fiber nonwoven fabric (“Henryse ■” manufactured by Asahi Kasei Gyogyo ■ 40g/+d) that was measured at the same time as a comparison, but has a softer texture and drapeability. It was a nonwoven fabric with excellent properties.

引張強度  : 0.14/ 0. l0kg/ cm
引裂強度  : 0.30/ 0.25kg層間剥離強
度:  1,020 g /cm柔軟度   : 26
 mm 「ベンリーゼ■」の物性 引張強度  : 0.22/ 0.03kg / cr
n引裂強度  : 0.21/ 0.24kg層間剥離
強度:  160g/cm 柔軟度   :34mm 実Jili[4 PETの2.0デニール(14μm) 、20mm (
1−/ D = ]、 /12 X 10”)の20 
g / r+fの抄造シートを実施例1と同様にして得
た。さらに同様の方法でウッドパルプの30 g / 
rl(の抄造シー1〜を得た。
Tensile strength: 0.14/0. l0kg/cm
Tear strength: 0.30/0.25kg Peeling strength: 1,020 g/cm Flexibility: 26
mm Physical properties of “Benliese ■” Tensile strength: 0.22/0.03kg/cr
n Tear strength: 0.21/0.24kg Peeling strength: 160g/cm Flexibility: 34mm Real Jili [4 PET 2.0 denier (14μm), 20mm (
1-/D = ], /12 x 10”) of 20
A paper sheet of g/r+f was obtained in the same manner as in Example 1. Furthermore, 30 g of wood pulp/
The paper-making sheet 1~ of RL was obtained.

PETの抄造シート20 g / r+r 2枚の間に
パルプの抄造シー1〜をサンドイッチ状に挟み三層の積
層シー1〜とした。この積層シートに以下の条件で柱状
処理を施ごした。ノスル径: 0.1 +nm、ノズル
ピッチ:5mm、ノズル列数:15列、ノズルとシート
間距離:30mm、水圧:1回目15 kg/afl、
 2回目28kg/c++1.ノズルへラダーの回転数
=70゜rpm 、シート速度=6m/分、通し方法=
2回共に両面処理。得られた交絡シートの平均繊維交絡
点間距離は32μIllであった。物性は以下の通りで
あり、パルプの吸湿性機能を生かし、使い捨て衣料、例
えば手術衣等に好適であった。
Pulp paper sheets 1~ were sandwiched between two PET sheets of 20 g/r+r to form a three-layer laminated sheet 1~. This laminated sheet was subjected to columnar treatment under the following conditions. Nozzle diameter: 0.1 +nm, nozzle pitch: 5mm, number of nozzle rows: 15 rows, distance between nozzle and sheet: 30mm, water pressure: 15 kg/afl for the first time,
2nd time 28kg/c++1. Rotation speed of the rudder to the nozzle = 70° rpm, sheet speed = 6 m/min, threading method =
Both sides were treated twice. The average distance between the intertwined fiber points of the obtained intertwined sheet was 32 μIll. The physical properties are as follows, and by taking advantage of the hygroscopic function of the pulp, it was suitable for disposable clothing, such as surgical gowns.

引張強度  : 4.1 / 4.0 kg/cm引裂
強度  : 3.1 / 2.9 kg層間剥離強度:
  1,300g/cm柔軟度   : 42 mm 、実涜1引晃 ポリプロピレン(pp)繊維の1.5デニール(15,
6μm) 、17.5mm (1−/ D = 1. 
I Xl03)からなる原糸70%とレーヨン繊維1デ
ニール(9,7μm口)、12.5n+m (L / 
D = 1.3 X 10”)の原糸30%を混合し、
実施例1と同様にして60 g / rdの抄造シトを
得た。この抄造シー1〜に実施例4と同一の条件で柱状
流処理を行なった。交絡シートの平均繊維交絡点間距離
ば150μmであり、物性は以下の様であった。この不
織布はセルロース等の制電性、吸湿性の特徴を生かし、
エレクI−コニクス用ワイピングクロス、フロッピーデ
スクのライナー等に好適であった。
Tensile strength: 4.1 / 4.0 kg/cm Tear strength: 3.1 / 2.9 kg Peeling strength:
1,300 g/cm Flexibility: 42 mm, 1.5 denier (15,
6μm), 17.5mm (1−/D=1.
1 denier (9.7 μm opening), 12.5 n+m (L /
D = 1.3
A sheet-formed sheet weighing 60 g/rd was obtained in the same manner as in Example 1. Columnar flow treatment was performed on these paper sheets 1 to 1 under the same conditions as in Example 4. The average distance between fiber entanglement points of the entangled sheet was 150 μm, and the physical properties were as follows. This nonwoven fabric takes advantage of the antistatic and hygroscopic properties of cellulose, etc.
It was suitable for electronic I-conics wiping cloths, floppy desk liners, etc.

引張強度  : 3.6 / 3.3 kg/ cm引
裂強度  :2.4/2.1kg 層間剥離強度:  1,230g/cm柔軟度   :
39mm 失隻桝立 ナイロン66繊維の2デニール(1,5,1μm)、1
5mm (L/D−1,0X103)の原糸を用い、9
5g/l「γの抄造ソートを得た。この抄造シートを実
施例1と同じ柱状流ノズルて表・裏を各2回、水圧40
 kg / aRで交絡させた。この不織布の平均繊維
交絡点間距離11は93 pmであった。物性は以下の
通りであった。
Tensile strength: 3.6/3.3 kg/cm Tear strength: 2.4/2.1 kg Peeling strength: 1,230 g/cm Flexibility:
39mm 2 denier (1, 5, 1μm) of nylon 66 fiber, 1
Using raw yarn of 5 mm (L/D-1,0X103), 9
A paper-made sort of 5 g/l "γ" was obtained. This paper-made sheet was passed through the same columnar flow nozzle as in Example 1, twice each on the front and back sides, at a water pressure of 40
Confounded by kg/aR. The average distance 11 between fiber entanglement points of this nonwoven fabric was 93 pm. The physical properties were as follows.

引張強度  : 6.3 / 5.6 kg / cm
引裂強度  :3゜5 / 2.7 kg層間剥離強度
: 2.1 kg / (:TI+柔軟度   : 3
7 mm この不織布の表面にポリニーデル系の井ポルムアミドに
ン容かしたポリウレタン(濃度30%)をドクターナイ
フで塗布量45g/rdになる様にコーティングした。
Tensile strength: 6.3/5.6 kg/cm
Tear strength: 3°5 / 2.7 kg Peeling strength: 2.1 kg / (: TI + flexibility: 3
7 mm The surface of this non-woven fabric was coated with polyurethane (concentration 30%) containing polyamide resin in an amount of 45 g/rd using a doctor knife.

得られたコーテイング物は、不織布かノーバインダーで
ある為に風合が極めてソフトであり、また形成したポリ
ウレタン膜の表面の折れンボもきめ細かく天然皮革の銀
面の様に自然で高級感のあるものであった。さらに層間
剥離強度も十分に強いので、例えば椅子張りなとの素材
として用いても使用中に剥離等の損傷はないことが確認
された。
The resulting coated product has an extremely soft texture because it is a non-woven fabric or has no binder, and the folds on the surface of the polyurethane film are fine and have a natural and luxurious feel, similar to the silver surface of natural leather. Met. Furthermore, since the interlayer peeling strength is sufficiently strong, it was confirmed that there would be no damage such as peeling during use, even when used as a material for, for example, upholstery.

実りl殊エ ナイロン6繊維の1.5デニール(13,1μm)、1
2.5mm (L / D = 0.95X10”)の
原糸を用い、300g / rt’jの抄造シートを得
た。この抄造シートをノズル径: 0.2 mm、ノズ
ルピッチ:5mm、ノズル列数=18列、抄造シートと
ノズルの間隔: 30 man、ノズルヘッダー回転数
: 150rpm、シート速度:5m/分で柱状流処理
をした。この交絡シートの平均繊維交絡点間距離は12
0umであり、物性は以下の様であった。
1.5 denier (13.1 μm) of special nylon 6 fiber, 1
A paper-made sheet of 300 g/rt'j was obtained using a raw yarn of 2.5 mm (L/D = 0.95X10"). This paper-made sheet was prepared using a nozzle diameter: 0.2 mm, a nozzle pitch: 5 mm, and a nozzle row. Column flow treatment was performed with number = 18 rows, distance between paper sheet and nozzle: 30 man, nozzle header rotation speed: 150 rpm, and sheet speed: 5 m/min.The average distance between fiber entanglement points of this entangled sheet was 12
The physical properties were as follows.

引張強度  : 18.9/16.4kg/c+n引裂
強度  : 13.1/I1.5kg層間剥離強度: 
 2,210g/cn+この交絡シー1〜に、ポリオー
ル成分にポリテトラメチレングリコール、イソシアネー
ト成分にP。
Tensile strength: 18.9/16.4kg/c+n Tear strength: 13.1/I1.5kg Interlayer peeling strength:
2,210 g/cn + this entangled sea 1 ~, polytetramethylene glycol as a polyol component, and P as an isocyanate component.

P′−ジフェニルメタンジイソシアネート、鎖伸長剤に
エチレングリコールを用いたポリウレタンの15%濃度
ジメチルホルムアミド溶液を含浸し、絞り率300%に
絞液したのち、水中で凝固した。
It was impregnated with a 15% dimethylformamide solution of P'-diphenylmethane diisocyanate and polyurethane using ethylene glycol as a chain extender, squeezed to a squeezing rate of 300%, and coagulated in water.

乾燥後、得られた含浸シートの片面を320メツシェの
エメリーペーパを装着したヘルドサンダーでパフィング
した。次いで、表面温度150”Cのカレンダーロール
で研削面を加熱プレスした。このパフィング・加熱プレ
スされた面に、グラビアロールにてポリブチレンアジペ
ート、P、P’−ジフェニルメタンシイソシアネ−1・
、エチレンゲルコールの組成からなる30%ジメチルホ
ルムアミドをコーティングし、水中で凝固、ついて乾燥
した。
After drying, one side of the obtained impregnated sheet was puffed using a held sander equipped with 320 mesh emery paper. Next, the ground surface was hot pressed with a calender roll with a surface temperature of 150"C. Polybutylene adipate, P, P'-diphenylmethane cyisocyanate-1,
, coated with 30% dimethylformamide having the composition of ethylene gelcol, coagulated in water, and dried.

さらにこの面にポリエチレングリコール、P、P’ジフ
ェニルメタンジイソシアネート、エチレンジアミンのメ
チルエチルケトンとイソプロピルアルコールの混合溶媒
の40%溶液をグラビアロールにてコーティングし、1
30°Cで溶媒を乾燥除去した。こうして得られた銀面
調のシート状物は、ポリウレタンの被覆層の表面平滑性
も極めて良好で、風合の柔軟性の優れ、物性も下記に示
すように、例えばスポーツシューズ用ムこも適用し得る
程度tこ迄十分な強度を有していた。
Further, this surface was coated with a 40% solution of a mixed solvent of polyethylene glycol, P, P' diphenylmethane diisocyanate, and ethylene diamine in methyl ethyl ketone and isopropyl alcohol using a gravure roll.
The solvent was removed by drying at 30°C. The silver-like sheet material obtained in this way has a polyurethane coating layer with extremely good surface smoothness, excellent flexibility in texture, and physical properties as shown below. It had sufficient strength to the extent that it could be obtained.

引張強度: 21.5/20.6kg/cm引裂強度:
 13.8/12.1kg 柔軟度 :81mm 尖隻班主 ナイロン66繊維の1デニール(10,7μII+)、
10mm (L/D=0.93X10″)の短繊維から
なる200g/lTfの抄造シートの上に、直接紡糸法
で得られた0、 1デニール、5 mmのP E、T極
細短繊維からなる7 0 g/n(の抄造シートを積層
した。これを実施例6と同じ条件で柱状流処理をし、交
絡シートを得た。この不織布のナイロン66シート面か
ら観察した平均繊維交絡点間距離は93I1mであり、
物性は以下の様であった。
Tensile strength: 21.5/20.6kg/cm Tear strength:
13.8/12.1kg Flexibility: 81mm 1 denier (10.7 μII+) of nylon 66 fiber,
A 200g/lTf paper sheet made of 10mm (L/D=0.93X10'') short fibers is coated with 0, 1 denier, 5 mm PE, T ultrafine short fibers obtained by direct spinning. 70 g/n (paper-made sheets were laminated. This was subjected to columnar flow treatment under the same conditions as in Example 6 to obtain an entangled sheet. The average distance between fiber entangled points observed from the nylon 66 sheet surface of this nonwoven fabric is 93I1m,
The physical properties were as follows.

引張強度  : 12.6/ 10.8kg / Cl
11引裂強度  :8.9/8.7kg 層間剥離強度:  1,900g/cmこの積層交絡体
シートのPET極細糸シート面の表面を240メツシユ
のエメリーペーパーを装着したヘルドサンダーでパフィ
ングし、この面に冷水不溶、熱水可溶性のポリビニルア
ルコール20%水溶液をドクターナイフでコーティング
し、熱風乾燥した。このシートに、ポリプロピレングリ
コ−ル、イソフオじ1ンシイソシアネ−1へ、コーチレ
ンジアミンからなるポリウレタンを1.5%の濃度で水
中に分散させたポリウレタンエマルジョンを含浸し、熱
風乾燥で水を除去し凝固させた。そののち、80°Cの
熱水でポリヒニールアルコールを除去し、ザーキュラー
式染色機でPIE’、T、ナイロン66を同浴で染色し
洗浄・乾燥した。この様にして得られたシート秋物は、
PIIT O,1デニールの層の表面が優美なスェード
効果を有し、全体として十分な強度とソフトな風合を示
し、衣料、インテリア分野に好適な高級感のある人ニス
ニードであった。
Tensile strength: 12.6/10.8kg/Cl
11 Tear strength: 8.9/8.7 kg Interlayer peel strength: 1,900 g/cm Puff the surface of the PET ultrafine fiber sheet side of this laminated entangled sheet with a held sander equipped with 240 mesh emery paper, and then was coated with a 20% aqueous solution of polyvinyl alcohol, which is insoluble in cold water and soluble in hot water, using a doctor knife, and dried with hot air. This sheet is impregnated with a polyurethane emulsion made by dispersing polypropylene glycol, isocyanate, and coachi diamine in water at a concentration of 1.5%, and the water is removed by hot air drying to solidify. I let it happen. Thereafter, polyhinyl alcohol was removed with hot water at 80°C, and PIE', T, and nylon 66 were dyed in the same bath using a circular dyeing machine, and washed and dried. The sheet autumn material obtained in this way is
The surface of the PIIT O.1 denier layer had an elegant suede effect, and the overall material exhibited sufficient strength and a soft texture, giving it a luxurious feel suitable for the clothing and interior decoration fields.

引張強度: 13.0/ ]1.3kg/cm弓裂強度
: 6.7 / 6.0 kg柔軟度 :63mm 〔発明の効果〕 本発明の高強度湿式不織布は前述のように構成されでい
るので、長繊維不織重亜の強度を有し且つ非常に柔軟な
風合を有する。又その不織布の均性は湿式不織重亜であ
り、長繊維不織布のスパンボンド不織布よりはるかに優
れている。
Tensile strength: 13.0/ ] 1.3 kg/cm Bow tear strength: 6.7/6.0 kg Flexibility: 63 mm [Effects of the Invention] The high-strength wet-laid nonwoven fabric of the present invention is constructed as described above. Therefore, it has the strength of long fiber non-woven heavy fibers and has a very soft texture. In addition, the uniformity of the nonwoven fabric is a wet-laid nonwoven fabric, which is far superior to that of a spunbond nonwoven fabric made of long fiber nonwoven fabrics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の不織布の平面方向の一方の表面から観
察したときの構成繊維の拡大模式図である。 f、〜f7・・構成繊維、 a1〜a7・・・構成繊維同士の交絡点。
FIG. 1 is an enlarged schematic diagram of the constituent fibers when observed from one surface in the planar direction of the nonwoven fabric of the present invention. f, ~f7... Constituent fibers, a1-a7... Intertwining points of constituent fibers.

Claims (2)

【特許請求の範囲】[Claims] 1.単糸の直径が7〜25μmで、繊維長Lと単糸の直
径Dの比L/Dが0.8×10^3〜2.0×10^3
の短繊維が相互に三次元交絡しており、その平均繊維交
絡点間距離が300μm以下である高強度湿式不織布。
1. The diameter of the single yarn is 7 to 25 μm, and the ratio L/D of the fiber length L to the diameter D of the single yarn is 0.8 x 10^3 to 2.0 x 10^3
A high-strength wet-laid nonwoven fabric in which short fibers are three-dimensionally entangled with each other, and the average distance between fiber entanglement points is 300 μm or less.
2.単糸の直径7〜25μm、繊維長Lと単糸直径Dの
比L/Dが0.8×10^3〜2.0×10^3の短繊
維を抄造法でシート形成し、ついて高速流体流処理によ
り短繊維を相互に三次元交絡させることを特徴とする高
強度湿式不織布の製造方法。
2. Short fibers with a single yarn diameter of 7 to 25 μm and a ratio L/D of fiber length L to single yarn diameter D of 0.8 x 10^3 to 2.0 x 10^3 are formed into a sheet using a papermaking method, and are processed at high speed. A method for producing a high-strength wet-laid nonwoven fabric, characterized by three-dimensionally entangling short fibers with each other through fluid flow treatment.
JP63312795A 1987-12-16 1988-12-13 High strength wet nonwoven fabric and method for producing the same Expired - Fee Related JP2783411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312795A JP2783411B2 (en) 1987-12-16 1988-12-13 High strength wet nonwoven fabric and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-316091 1987-12-16
JP31609187 1987-12-16
JP63312795A JP2783411B2 (en) 1987-12-16 1988-12-13 High strength wet nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH026651A true JPH026651A (en) 1990-01-10
JP2783411B2 JP2783411B2 (en) 1998-08-06

Family

ID=26567329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312795A Expired - Fee Related JP2783411B2 (en) 1987-12-16 1988-12-13 High strength wet nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2783411B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254399A (en) * 1990-12-19 1993-10-19 Mitsubishi Paper Mills Limited Nonwoven fabric
WO1996020505A1 (en) * 1994-12-28 1996-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
JP2002115160A (en) * 2000-10-05 2002-04-19 Asahi Kasei Corp Wet type nonwoven fabric for packing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539301A (en) * 1976-07-12 1978-01-27 Mitsubishi Rayon Co Production of leather like sheet structre
JPS6075690A (en) * 1983-09-30 1985-04-30 Toray Ind Inc Leathery sheet and its preparation
JPS6119853A (en) * 1984-07-02 1986-01-28 東レ株式会社 Method and apparatus for producing fiber interlaced sheet
JPS6215389A (en) * 1986-07-28 1987-01-23 Toray Ind Inc Production of leather-like sheet material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539301A (en) * 1976-07-12 1978-01-27 Mitsubishi Rayon Co Production of leather like sheet structre
JPS6075690A (en) * 1983-09-30 1985-04-30 Toray Ind Inc Leathery sheet and its preparation
JPS6119853A (en) * 1984-07-02 1986-01-28 東レ株式会社 Method and apparatus for producing fiber interlaced sheet
JPS6215389A (en) * 1986-07-28 1987-01-23 Toray Ind Inc Production of leather-like sheet material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254399A (en) * 1990-12-19 1993-10-19 Mitsubishi Paper Mills Limited Nonwoven fabric
WO1996020505A1 (en) * 1994-12-28 1996-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
US5888916A (en) * 1994-12-28 1999-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Wet-laid nonwoven fabric for battery separator, its production method and sealed type secondary battery
JP2002115160A (en) * 2000-10-05 2002-04-19 Asahi Kasei Corp Wet type nonwoven fabric for packing material

Also Published As

Publication number Publication date
JP2783411B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP0796940B1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
KR970005852B1 (en) Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof
EP0321237B2 (en) High strength wet-laid nonwoven fabric and process for producing same
DE2737703C3 (en) Textile composite suitable as a carrier material for nubuck artificial leather, its manufacture and use
JPH0151582B2 (en)
JP3277046B2 (en) Hydro-entangled non-woven fabric and method for producing the same
JP3138074B2 (en) Hydraulic entangled nonwoven fabric having good texture and good feel and method for producing the same
JPH026651A (en) High-strength wet nonwoven fabric and production thereof
JP3423476B2 (en) Nonwoven fabric for durable clothing, method for producing the same, and clothing
JPH0314692A (en) Fluid-interlocked vegetable fiber pulp nonwoven fabric and its production
JPS6225780B2 (en)
JPS63145462A (en) Silver surface like sheet like article and its production
JPS6051589B2 (en) Method for manufacturing leather-like sheet material
JP3046410B2 (en) Hydroentangled web, hydroentangled nonwoven fabric and method of manufacturing hydroentangled nonwoven fabric
JP2989249B2 (en) High strength ultrafine fiber nonwoven fabric and method for producing the same
JPH0314694A (en) Wet-process nonwoven fabric having excellent dimensional stability and its production
JPH08109563A (en) Thin, lightweight, reinforced, and water jet-interlaced nonwoven fabric and its production
JPS6137390B2 (en)
JP2635391B2 (en) Wet laminated nonwoven fabric for silver surface and method for producing the same
JPH04185793A (en) Wet non-woven fabric and method for producing the same
JPS6252076B2 (en)
JP2003041472A (en) Thin, light-weight and reinforced nonwoven fabric entangled by water current
JPS6134287A (en) Production of flexible sheet like leather
JP2927451B2 (en) Sheet-like object made of high-strength wet nonwoven fabric and method for producing the same
JP3081853B2 (en) Hydro-entangled nonwoven fabric with good formation and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees