JPH03146417A - Oxide superconductor - Google Patents
Oxide superconductorInfo
- Publication number
- JPH03146417A JPH03146417A JP1282702A JP28270289A JPH03146417A JP H03146417 A JPH03146417 A JP H03146417A JP 1282702 A JP1282702 A JP 1282702A JP 28270289 A JP28270289 A JP 28270289A JP H03146417 A JPH03146417 A JP H03146417A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- content
- powder
- superconducting
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 9
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 7
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 7
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 5
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 3
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- 229910052693 Europium Inorganic materials 0.000 abstract description 7
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 239000000843 powder Substances 0.000 abstract description 6
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 abstract description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract 1
- 239000002574 poison Substances 0.000 abstract 1
- 231100000614 poison Toxicity 0.000 abstract 1
- 230000007704 transition Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000000634 powder X-ray diffraction Methods 0.000 description 5
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005404 magnetometry Methods 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- -1 Sa+ Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004442 gravimetric analysis Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、超電導転移温度(以下、Tcと略す)が液体
窒素温度(絶対温度77K)を越える酸化物超電導体に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide superconductor whose superconducting transition temperature (hereinafter abbreviated as Tc) exceeds liquid nitrogen temperature (absolute temperature 77 K).
[従来の技術]
液体窒素温度を越えるTcを示す酸化物Mi電導体とし
て2重のCu−0重次元鎖を持つ層状ペロブスカイト型
の結晶構造を有する80に級のLnBa2Cuao*(
Ln=Y、Nd、Sm、Eu、Gd、Dy、Ho、Er
、Tm)が知られている( Phys、rev、B、
、 39(1989)7347)。[Prior Art] LnBa2Cuao* (of the order of 80), which has a layered perovskite crystal structure with double Cu-0 heavy-dimensional chains, is used as an oxide Mi conductor that exhibits a Tc exceeding the liquid nitrogen temperature.
Ln=Y, Nd, Sm, Eu, Gd, Dy, Ho, Er
, Tm) is known (Phys, rev, B,
, 39 (1989) 7347).
その結晶構造は、第1図の様に決定されている。Its crystal structure has been determined as shown in FIG.
さらに、Yの一部をCaで置換することにより90Kま
でTcを上昇させることが可能であることも知られてい
る(Nature、、341(1989)41)。Furthermore, it is known that it is possible to increase Tc to 90K by substituting a part of Y with Ca (Nature, 341 (1989) 41).
この様な酸化物超電導体の合成には、炭酸ナトリウム(
Na*C0a)を反応促進剤として原料に混合し800
℃以下の温度で長時間(例えば50時間以上)の焼成を
行う方法(Nature、、338(1989)328
)や、酸素ガスと不活性ガスの混合雰囲気中で熱間静水
圧プレスを用いる方法(特願平1−213730)が既
に提案されている。For the synthesis of such oxide superconductors, sodium carbonate (
Mix Na*C0a) into the raw material as a reaction accelerator and add 800
A method of firing for a long time (for example, 50 hours or more) at a temperature of ℃ or less (Nature, 338 (1989) 328
) and a method using hot isostatic pressing in a mixed atmosphere of oxygen gas and inert gas (Japanese Patent Application No. 1-213730) have already been proposed.
[本発明が解決しようとする課題]
しかしながら、この超電導酸化物にはYBa2CUaO
・の組成で13.33モル%のBaを含んでおり、その
合成には劇物であるバリウム化合物(例えば、BaO,
BaC0a、Ba(Now)*)を用いなければならず
、製造過程での取扱には十分な対策を講じなければなら
ない。また、低温あるいは、高圧でこの物質の合成が進
行するため、安価な炭酸バリウム(BaCOa)は、そ
の分解温度が900°C以上の高温であることから、こ
の超電導物質の出発原料にすることができず、他の高価
な化合物を出発原料にしなければならない。[Problems to be solved by the present invention] However, this superconducting oxide contains YBa2CUaO.
The composition of
BaC0a, Ba(Now)*) must be used, and sufficient measures must be taken to handle it during the manufacturing process. In addition, since the synthesis of this substance proceeds at low temperatures or high pressures, cheap barium carbonate (BaCOa) has a high decomposition temperature of 900°C or higher, so it cannot be used as a starting material for this superconducting material. cannot, and other expensive compounds must be used as starting materials.
本発明は、これらの問題点を解決するためになされたも
のである。The present invention has been made to solve these problems.
本発明の目的は、劇物であるBaの含有量を減らすと共
にBa原料の選択性を拡大することにある。The purpose of the present invention is to reduce the content of Ba, which is a deleterious substance, and to expand the selectivity of Ba raw materials.
[課題を解決するための手段]
前記目的を達成するために、本発明の酸化物超電導体は
、化学組成式(Ln、−、Ca、)(Bat−、La、
)2CUJO11で表され、LnがY、Nd、Sa+、
Eu、Gd、Dy、Ho、Er、T−のうちの1つある
いは複数の任意の組み合せであり、Xが0.001以上
0.3以下の範囲にあり、yが0.001以上0.2以
下の範囲にあることを特徴とする。[Means for Solving the Problem] In order to achieve the above object, the oxide superconductor of the present invention has a chemical composition formula (Ln, -, Ca,) (Bat-, La,
)2CUJO11, Ln is Y, Nd, Sa+,
Eu, Gd, Dy, Ho, Er, T- or any combination of them, X is in the range of 0.001 or more and 0.3 or less, and y is 0.001 or more and 0.2 It is characterized by being in the following range.
[作用コ
前述した手段によれば、従来技術で製造されるTc=8
0に級の超電導体YBa2Cu40sにはBaが13.
33モル%含有されていて、Baの供給源には硝酸バリ
ウム(Ba(NO3)2)を使用しているのに対して、
(L nl−x Caw)(B a+−y L a、)
2Cut Osの組成を「し、LnがY、Nd、Sm、
Eu、Gd、Dy、Ho、Er、T−のうちの1つある
いは複数の任意の組み合せであり、Xが0.001以上
0.3以下の範囲にあり、yが0.001以上0.2以
下の範囲にある本実施例では、Baの供給源に安価なり
acO3を使用してもTc=80に以上を示し、Baの
含有量も10.67モル%まで低減することが可能にな
る。さらに、熱重量分析の結果、本発明の超電導体は、
850℃付近まで酸素の出入りがなく安定に存在すると
いうYBa2CuaO@超電導材料の特長を失っていな
いことも確認された。[Function] According to the above-mentioned means, Tc=8 manufactured by the prior art
0 grade superconductor YBa2Cu40s has Ba of 13.
It contains 33 mol%, and barium nitrate (Ba(NO3)2) is used as the Ba source.
(L nl-x Caw) (B a+-y La,)
The composition of 2Cut Os is ``, and Ln is Y, Nd, Sm,
Eu, Gd, Dy, Ho, Er, T- or any combination of them, X is in the range of 0.001 or more and 0.3 or less, and y is 0.001 or more and 0.2 In this example, which is within the following range, even if cheap acO3 is used as the Ba supply source, Tc=80 or higher is achieved, and the Ba content can be reduced to 10.67 mol%. Furthermore, as a result of thermogravimetric analysis, the superconductor of the present invention has
It was also confirmed that the feature of YBa2CuaO@superconducting material, which exists stably without oxygen entering or exiting up to around 850°C, has not been lost.
従って、本発明のMi電導体によれば、Baの含有率が
低く、原料選択性の広い80に級の5電導逓移温度を示
すYBa2CuJOs超電導材料を作製することができ
る。Therefore, according to the Mi conductor of the present invention, it is possible to produce a YBa2CuJOs superconducting material that has a low Ba content and exhibits a 5 conductivity transition temperature of 80 degrees with wide raw material selectivity.
[発明の実施例コ 以下、本発明の実施例について説明する。[Embodiments of the invention] Examples of the present invention will be described below.
まず、本発明による酸化物a電導体の主成分であるYB
a2Cu40gの基本構造を第1図に示す。第1図にお
いて、1はY、 2はBa、3はCu、 4は線分
の交差点に配置されているOである。First, YB is the main component of the oxide a conductor according to the present invention.
The basic structure of a2Cu40g is shown in FIG. In FIG. 1, 1 is Y, 2 is Ba, 3 is Cu, and 4 is O placed at the intersection of the line segments.
本発明の酸化物B電導体の(Ln+−6Caj(Bal
−、La、)2Cu40sは、第1図に示すYBa2C
u*Osの構造の中でYの位置にCa、Lnがi′ji
喚し、Baの位置にLaが置換することが本発明の一つ
の特徴である。(Ln+-6Caj(Bal
-, La, )2Cu40s is YBa2C shown in FIG.
In the structure of u*Os, Ca and Ln are located at the Y position i'ji
One feature of the present invention is that La is substituted at the Ba position.
〔実施例1〕
純度99.9%以上のLn2O3,CaO,Ba(NO
3)2.La2O3,CIOの各種粉末を化学組成式(
Ln+−xCax)(Bat−yLay)2Cu40s
においてx=0.0゜0.001.0.01.0.1.
0.3,0.5.y=0.0.0.001,0.01,
0.1,0.2,0.3,0.5の各組み合せの組成で
不活性雰囲気中で混合し、酸素気流中で750℃で10
時間(hr)、その後750℃から900℃の間の任意
の温度で10時間の仮焼を行った。仮焼後、試料を粉砕
し矩形?こ成形した。この成形体を酸素気流中で800
°Cから950℃の間の温度で5時間予備焼結した。こ
の予備焼結体をl OOOKg/am2の圧力下でAr
80%−0220%のガス雰囲気下で熱処理を行った。[Example 1] Ln2O3, CaO, Ba(NO
3)2. Chemical composition formula (
Ln+-xCax) (Bat-yLay)2Cu40s
At x=0.0°0.001.0.01.0.1.
0.3, 0.5. y=0.0.0.001,0.01,
The compositions of each combination of 0.1, 0.2, 0.3, and 0.5 were mixed in an inert atmosphere and heated at 750°C in an oxygen stream for 10
After that, calcination was performed at an arbitrary temperature between 750°C and 900°C for 10 hours. After calcination, the sample is crushed into a rectangular shape? This was molded. This molded body was heated to 800°C in an oxygen stream.
Pre-sintering was carried out for 5 hours at a temperature between °C and 950 °C. This pre-sintered body was heated with Ar under a pressure of lOOOKg/am2.
Heat treatment was performed under a gas atmosphere of 80%-0220%.
200℃/hrの昇温速度でtooo℃まで加熱し、こ
の温度で10時間保持した。冷却は200℃/hrで3
00℃まで行い、1気圧まで減圧したあと試料を空気中
に取り出した。この試料を再び粉砕して成形した。この
成形体を酸素気流中800″Cで20時間焼結して所定
の試料を得た。前記L n203のLnは、 Y、Nd
、Sm、Eu、Gd、Dy、Ho、Er、TIIのうち
の一つあるいは複数の所定の組み合せである。It was heated to toooC at a temperature increase rate of 200C/hr and held at this temperature for 10 hours. Cooling is 200℃/hr 3
After heating to 00°C and reducing the pressure to 1 atm, the sample was taken out into the air. This sample was ground again and shaped. This molded body was sintered at 800''C in an oxygen stream for 20 hours to obtain a specified sample. Ln of the above Ln203 was Y, Nd
, Sm, Eu, Gd, Dy, Ho, Er, and TII, or a predetermined combination of them.
この様にして得られた(Ln+−Ca−XBa+−La
、)2Cu4O3の焼結体の構成相を粉末X線回折を用
いて確認した。得られた試料の主成分はいずれもY B
a2Cua O*型の結晶構造を有することを確認し
た。x=0.1.y=0.1の粉末X線回折図形を第2
図に示した。図中の数字はYBa2Cu−Os型(14
造にもとづいたピークの指数である。この試料は超電導
相単一相であった。X=O,Oから0,15以下、y=
o、oから0.1以下の組成範囲ではいずれの試料も超
電導相単一相であった。試料の構成相を第1表にまとめ
て示した。Thus obtained (Ln+-Ca-XBa+-La
,) The constituent phases of the sintered body of 2Cu4O3 were confirmed using powder X-ray diffraction. The main components of the obtained samples were all YB
It was confirmed that it had a2Cua O* type crystal structure. x=0.1. The powder X-ray diffraction pattern of y=0.1 is
Shown in the figure. The numbers in the figure are YBa2Cu-Os type (14
It is a peak index based on the structure. This sample was a single superconducting phase. X=O, from O to 0.15 or less, y=
In the composition range from o and o to 0.1 or less, all samples had a single superconducting phase. The constituent phases of the samples are summarized in Table 1.
超電導特性を抵抗測定により調べた。その結果を第3図
及び第1表に示した。本実施例の(Ln+−I Cam
)(B al−v L ay)a Cua O@超電
導体試料は、第3図及び第1表かられかるように、Ca
の含有量が0≦X≦0.3.Srの含有量が0≦y≦0
.2の範囲の試料はいずれも80に級の超電導転移温度
を示す。交流帯磁率の測定でも80に以上の温度から反
磁性が観測された(第4図)。これは、80に以上の温
度で超電導状態が発現していることを示しており、抵抗
測定の結果を裏付けている。この超電導転移温度は、液
体窒素の沸点(77K)よりも高い温度である。The superconducting properties were investigated by resistance measurements. The results are shown in FIG. 3 and Table 1. (Ln+-I Cam
)(Bal-v Lay)a CuaO@superconductor sample, as seen from FIG. 3 and Table 1, Ca
The content of 0≦X≦0.3. Sr content is 0≦y≦0
.. All samples in the range 2 show superconducting transition temperatures in the order of 80 degrees. Diamagnetism was also observed in AC magnetic susceptibility measurements at temperatures above 80°C (Figure 4). This indicates that a superconducting state occurs at temperatures above 80°C, and supports the results of resistance measurement. This superconducting transition temperature is higher than the boiling point (77K) of liquid nitrogen.
これらの試料におけるBaの含有率についての分析値を
第1表にまとめて示した。この結果を見ると、Laの含
有量が増加するとともにBaの含有量が低下し、製造上
有利になることがわかる。Laの含有量が0.2の場合
には、Baの含有量は10モル%以下になる。しかしな
がら、あまりLaの含有量が多くなると、超電導転移温
度(Tc)が低下してしまい、y=0,3の番号21の
試料の場合にはTCは40Kになってしまう。The analytical values for the Ba content in these samples are summarized in Table 1. Looking at the results, it can be seen that as the La content increases, the Ba content decreases, which is advantageous in manufacturing. When the La content is 0.2, the Ba content is 10 mol% or less. However, if the La content increases too much, the superconducting transition temperature (Tc) decreases, and in the case of sample No. 21 with y=0,3, TC becomes 40K.
第5図にx=0.1.y=0.1の組成を持つ試料の熱
重量分析の結果を示す。常温から850℃付近まで重量
変化を示さず、850℃から900℃で重量減少を示す
ことから、従来のYBa2Cu40゜組成のm電導酸化
物同様、850℃という高温に至るまで酸素の出入りも
なく安定に存在することが確認できた。In FIG. 5, x=0.1. The results of thermogravimetric analysis of a sample having a composition of y=0.1 are shown. It shows no weight change from room temperature to around 850°C, and shows weight loss from 850°C to 900°C, so it is stable with no oxygen entering or exiting up to a high temperature of 850°C, like the conventional m-conducting oxide with YBa2Cu40° composition. It was confirmed that it exists.
以上の説明かられかるように、本実施例1によれば、従
来のY B afi Cua O・組成の超電導酸化物
では、13.33モル%に及ぶBaが含有され、その製
造工程中の取扱には十分な対策を講じていたのに対し、
(Ln+−mcax)(Bit−、La、)acuzo
sの組成を有し、LnがY、Nd、Ss、Eu、Gd+
DV、Ha、Er、Tmのうちの1つあるいは複数の任
意の組み合せであり、Xが0.001以上0.3以下の
範囲にあり、yがo、oot以上0.2以下の範囲にあ
る超電導酸化物は、いずれも超電導転移温度が80に以
上であり、Baの含有率を10モル%以下まで低減する
ことができた。さらに、これらの材料は850℃付近ま
で、酸素の出入りがなく安定に存在することが確認でき
た。As can be seen from the above description, according to Example 1, the conventional superconducting oxide having the composition Y Bafi Cua O contains up to 13.33 mol% of Ba, and the handling during the manufacturing process is difficult. Although sufficient measures had been taken to
(Ln+-mcax) (Bit-, La,) acuzo
s, and Ln is Y, Nd, Ss, Eu, Gd+
Any combination of one or more of DV, Ha, Er, and Tm, where X is in the range of 0.001 or more and 0.3 or less, and y is in the range of o, oot or more and 0.2 or less. All of the superconducting oxides had a superconducting transition temperature of 80 or more, and the Ba content could be reduced to 10 mol% or less. Furthermore, it was confirmed that these materials existed stably up to around 850° C. without oxygen entering or exiting.
したがって、本発明の酸化物超電導体は、Baの含有量
を従来の75%まで低減しながら80に以上の超電導転
移温度を得ることができるのである。Therefore, the oxide superconductor of the present invention can achieve a superconducting transition temperature of 80 or higher while reducing the Ba content to 75% of the conventional value.
〔実施例2〕
純度99.9%以上のLnaOs(Ln=Y、Nd、S
s+ E u + G d 、D y + Ho +
E r + T a ) * Ca COa 、B a
COs 。[Example 2] LnaOs with a purity of 99.9% or more (Ln=Y, Nd, S
s+ E u + G d , D y + Ho +
E r + T a ) * Ca COa , B a
COs.
LaaOa、CuOの各種粉末を化学組成式(Ln+−
xCax)(Bat−yLav)gcuaosにおいて
x=0.0.o。Various powders of LaaOa and CuO have chemical composition formula (Ln+-
xCax) (Bat-yLav) in gcuaos x=0.0. o.
00 t 、0.01.0.1.0.3.0.5.y=
0.0,0.001,0.01,0.1,0.2,0.
3,0.5の各組み合せの組成で混合し、酸素気流中で
900℃から950℃の間の任意の温度で10時間の仮
焼を行った。仮焼後、試料を粉砕し矩形に成形した。00 t, 0.01.0.1.0.3.0.5. y=
0.0, 0.001, 0.01, 0.1, 0.2, 0.
The compositions of each combination of 3 and 0.5 were mixed and calcined for 10 hours at an arbitrary temperature between 900° C. and 950° C. in an oxygen stream. After calcining, the sample was crushed and shaped into a rectangle.
この成形体を酸素気流中で900℃から950℃の間の
温度で5時間予備焼結した。この予備焼結体をI O0
0Kg/c1の圧力下でAr80%−0220%のガス
雰囲気下で熱処理を行った。200℃/hrの昇温速度
で1000℃まで加熱し、この温度で10時間保持した
。冷却は200℃/hrで300℃まで行い、1気圧ま
で減圧したあと試料を空気中に取り出した。この試料を
再び粉砕して成形した。この成形体を酸素気流中800
℃で20時間焼結して所定の試料を得た。This compact was presintered for 5 hours at a temperature between 900°C and 950°C in an oxygen stream. This preliminary sintered body is I O0
Heat treatment was performed under a pressure of 0 kg/c1 in a gas atmosphere of 80%-0220% Ar. It was heated to 1000°C at a heating rate of 200°C/hr and held at this temperature for 10 hours. Cooling was performed at 200°C/hr to 300°C, and after reducing the pressure to 1 atmosphere, the sample was taken out into the air. This sample was ground again and shaped. This molded body was placed in an oxygen stream for 800 min.
A prescribed sample was obtained by sintering at ℃ for 20 hours.
この様にしで得られた(Ln+−xcax)(Bat−
、La、 )2Cua O*の焼結体の構成相を粉末X
線回折を用いて確認した。得られた試料の主成分はいず
れもYBaaCLlnOs型の結晶構造を有することを
確認した。x=0.1.y=0.1の粉末X線回折図形
を第6図に示した。図中の数字はY B a9 Cua
Oe型構造にもとづいたピークの指数である。この試
料は超電導相単一相であった。X=O,Oから0.15
以下、y=0.0から0.1以下の組成範囲ではいずれ
の試料も超電導相単一相であった。試料の構成相を第2
表にまとめて示した。(Ln+-xcax) (Bat-
, La, )2Cua O* The constituent phases of the sintered body are powdered
This was confirmed using line diffraction. It was confirmed that the main components of the obtained samples all had a YBaaCLlnOs type crystal structure. x=0.1. The powder X-ray diffraction pattern for y=0.1 is shown in FIG. The numbers in the diagram are YB a9 Cua
This is a peak index based on the Oe type structure. This sample was a single superconducting phase. X=O, O to 0.15
Hereinafter, in the composition range of y=0.0 to 0.1 or less, all samples had a single superconducting phase. The constituent phases of the sample are
They are summarized in the table.
超電導特性を抵抗測定により調べた。その結果を第7図
及び第2表に示した。本実施例の(Ln+−xcax)
(Bat−yLa、)2CL140sjl?Im導体試
料は、第7図及び第2表かられかるように、Caの含有
量がO≦X≦0.3 + S rの含有量がO≦y≦0
.2の範囲の試料はいずれも80に級の超電導転移温度
を示す。交流帯磁率の測定でも80に以上の温度から反
磁性が観測された(第8図)。この超電導転移温度は、
液体窒素の沸点(77K)よりも高い温度である。The superconducting properties were investigated by resistance measurements. The results are shown in FIG. 7 and Table 2. (Ln+-xcax) in this example
(Bat-yLa,)2CL140sjl? As can be seen from Fig. 7 and Table 2, the Im conductor sample has a Ca content of O≦X≦0.3 + S r content of O≦y≦0.
.. All samples in the range 2 show superconducting transition temperatures in the order of 80 degrees. Diamagnetism was also observed in AC magnetic susceptibility measurements at temperatures above 80°C (Figure 8). This superconducting transition temperature is
This temperature is higher than the boiling point (77K) of liquid nitrogen.
これらの試料におけるBaの含有率についての分析値を
第2表にまとめて示した。この結果を見ると、Laの含
有量が増加するとともにBaの含有量が低下し、製造上
有利になることがわかる。Laの含有量が0.2の場合
には、Baの含有量は10モル%以下になる。しかしな
がら、あまりLaの含有量が多くなると、超電導転移温
度(Tc)が低下してしまい、y=0.3の番号23の
試料の場合にはTCは40Kになってしまろ。The analytical values for the Ba content in these samples are summarized in Table 2. Looking at the results, it can be seen that as the La content increases, the Ba content decreases, which is advantageous in manufacturing. When the La content is 0.2, the Ba content is 10 mol% or less. However, if the La content increases too much, the superconducting transition temperature (Tc) decreases, and in the case of sample No. 23 with y=0.3, TC becomes 40K.
第9図にx=0.1.y=0.1の組成を持つ試料の@
重量分析の結果を示す。常温から850″C付近まで重
量変化を示さず、850℃から900”Cで重量減少を
示すことから、従来のY B a2 CL1208組成
の超電導酸化物同様、850″Cという高温に至るまで
酸素の出入りもなく安定に存在することが確認できた。In FIG. 9, x=0.1. @ of sample with composition of y=0.1
The results of gravimetric analysis are shown. It shows no weight change from room temperature to around 850"C, and shows a weight decrease from 850°C to 900"C, so like the conventional superconducting oxide with YB a2 CL1208 composition, it shows no change in weight up to the high temperature of 850"C. It was confirmed that it existed stably with no comings and goings.
以上の説明かられかるように、本実施例2によれば、従
来のY B as Cua Os組成の超電導酸化物で
は、13.33モル%に及ぶBaが含有され、Baの供
給源として高価な硝酸塩を用い、その′JJ造工程中の
取扱には十分な対策を講じていたのに対し、(Ln+−
、Ca、)(Bat−、Lay)2cu40eの組成を
有し、LnがY、Nd、Ss、Eu、Gd、Dy、Ho
、Er Tmのうちの1つあるいは複数の任意の組み合
せであり、Xが0.001以上0.3以下の範囲にあり
、yが0.001以上0.2以下の範囲にある超電導酸
化物は、いずれも超電導転移温度が80に以上であり、
Baの含有率を10モル%以下まで低減し、安価な炭酸
塩を原料とすることができた。さらIこ、これらの材料
は850℃付近まで、酸素の出入りがなく安定に存在す
ることが確認できた。As can be seen from the above description, according to Example 2, the conventional superconducting oxide having the Y Bas Cua Os composition contains up to 13.33 mol% of Ba, which is expensive as a source of Ba. Nitrates were used and sufficient measures were taken to handle them during the JJ manufacturing process;
, Ca, )(Bat-, Lay)2cu40e, and Ln is Y, Nd, Ss, Eu, Gd, Dy, Ho
, Er Tm, or any combination of them, where X is in the range of 0.001 or more and 0.3 or less, and y is in the range of 0.001 or more and 0.2 or less. , all have a superconducting transition temperature of 80 or higher,
It was possible to reduce the Ba content to 10 mol % or less and use an inexpensive carbonate as a raw material. Furthermore, it was confirmed that these materials existed stably up to around 850° C. without oxygen entering or exiting.
したがって、本発明の酸化物超電導体は、BQの含有量
を従来の75%まで低減し、原料の選択性を広げながら
80に以上の超電導転移温度を得ることができるのであ
る。Therefore, in the oxide superconductor of the present invention, the BQ content can be reduced to 75% of the conventional one, and a superconducting transition temperature of 80 or higher can be obtained while widening the selectivity of raw materials.
以下、余白。Below is the margin.
[発明の効果コ
以上、説明したように、本発明によれば、液体窒素の沸
点よりも十分高い超電導転移温度を有し、劇物であるB
aの使用量を低減し、かつ原料選択性の広い高温まで安
定な超電導体を提供できる。[Effects of the Invention] As explained above, according to the present invention, B, which has a superconducting transition temperature sufficiently higher than the boiling point of liquid nitrogen and is a deleterious substance,
It is possible to reduce the amount of a used and provide a superconductor that is stable up to high temperatures with a wide range of raw material selectivity.
第1図は、本発明の(Ln+−、Ca、)(Bad−、
La、)2 Cua O・の結晶構造を説明するための
図、第2図は、本実施例1に係る(Ln+−8Ca、)
(Bad−yLa、)sCuaOsにおけるx=0.1
.y=0.1試料の粉末X線回折図形、
第3図は、本実施例1の(Ln+−xCaj(Bad−
yLa、)2Cu40*におけるx=0.1.y=0.
1の試料の抵抗−温度特性図、
第4図は、本実施例1の(Ln+−xCax)(Bad
−、L”v )2 Cua O@におけるx=0.1.
y=o、lの試料の交流帯磁率測定の結果を示す図、
第5図は、本実施例1 (L n+ −x Cax)(
B al−、L av)2cu40sにおけるx=0.
1+y=O,lの試料の熱重量分析の結果を示す図、
第6FgJは、本実施例2に係る(Ln+−、Cax)
(Ba1−vLau)2cuao@におけるX:0.1
.y:0.1の試料の粉末X線回折図形、
第7図は、本実施例2の(t、n+−xcax)(Ba
t−、t。
ay)2Cu40@におけるx=0.1.y=0.1の
試料の抵抗−温度特性図、
第8図は、本実施例2の(Ln+−xca、、)(Ba
t−yLa、 )2Cua Osにおけるx=0.1.
y=0.1の試料の交流帯磁率測定の結果を示す図、
第9図は、本実施例2の(Ln+−xcaj(Bat−
、Lay)acu40mにおけるx=o、l、y=0.
1の試料の試料の熱重量分析の結果を示す図である。
図中、1・・・Y、 2・・・Ba、 3・・・C
u、 4・・・0である。FIG. 1 shows (Ln+-, Ca,) (Bad-,
Figure 2 is a diagram for explaining the crystal structure of (Ln+-8Ca,)2CuaO・ according to Example 1.
(Bad-yLa,)x=0.1 in sCuaOs
.. The powder X-ray diffraction pattern of the y=0.1 sample, FIG. 3, shows the (Ln+-xCaj(Bad-
yLa,)2Cu40* x=0.1. y=0.
The resistance-temperature characteristic diagram of the sample No. 1, FIG. 4 shows the (Ln+-xCax) (Bad
−, L”v )2 x=0.1 in Cua O@.
FIG. 5 is a diagram showing the results of AC magnetic susceptibility measurement of a sample with y=o, l.
B al-, L av) x=0 in 2cu40s.
A diagram showing the results of thermogravimetric analysis of a sample of 1+y=O,l, No. 6FgJ is (Ln+-, Cax) according to Example 2
(Ba1-vLau)X in 2cuao@: 0.1
.. The powder X-ray diffraction pattern of the sample with y: 0.1, Figure 7 shows the (t, n+-xcax) (Ba
t-, t. ay) x=0.1 in 2Cu40@. The resistance-temperature characteristic diagram of the sample with y=0.1, FIG.
x=0.1 in t-yLa, )2Cua Os.
FIG. 9 is a diagram showing the results of AC magnetic susceptibility measurement of a sample with y=0.1.
, Lay) acu40m x=o, l, y=0.
FIG. 1 is a diagram showing the results of thermogravimetric analysis of sample No. 1. In the figure, 1...Y, 2...Ba, 3...C
u, 4...0.
Claims (1)
1_−_yLa_y)_2Cu_4O_3で表わされる
酸化物超電導体において、LnがY,Nd,Sm,Eu
,Gd,Dy,Ho,Er,Tmのうちの1つあるいは
複数の任意の組み合せであり、xが0.001以上0.
3以下の範囲にあり、yが0.001以上0.2以下の
範囲にあることを特徴とする酸化物超電導体。1. Chemical composition formula (Ln_1_-_xCa_x) (Ba_
In the oxide superconductor represented by 1_-_yLa_y)_2Cu_4O_3, Ln is Y, Nd, Sm, Eu
, Gd, Dy, Ho, Er, and Tm, or any combination of them, and x is 0.001 or more and 0.
3 or less, and y is in the range of 0.001 or more and 0.2 or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1282702A JP2748943B2 (en) | 1989-10-30 | 1989-10-30 | Oxide superconductor |
US07/567,958 US5169830A (en) | 1989-08-18 | 1990-08-15 | Superconducting material |
DE69019258T DE69019258T2 (en) | 1989-08-18 | 1990-08-16 | Superconducting material. |
EP90308994A EP0413581B1 (en) | 1989-08-18 | 1990-08-16 | Superconducting material |
KR1019900012754A KR970001258B1 (en) | 1989-08-18 | 1990-08-18 | Super conducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1282702A JP2748943B2 (en) | 1989-10-30 | 1989-10-30 | Oxide superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03146417A true JPH03146417A (en) | 1991-06-21 |
JP2748943B2 JP2748943B2 (en) | 1998-05-13 |
Family
ID=17655941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1282702A Expired - Lifetime JP2748943B2 (en) | 1989-08-18 | 1989-10-30 | Oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2748943B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03164427A (en) * | 1989-04-19 | 1991-07-16 | Jeffrey L Tallon | Rbco 124 superconducting material and its manufacture |
-
1989
- 1989-10-30 JP JP1282702A patent/JP2748943B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03164427A (en) * | 1989-04-19 | 1991-07-16 | Jeffrey L Tallon | Rbco 124 superconducting material and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JP2748943B2 (en) | 1998-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5145831A (en) | High-tc oxide superconductor and method for producing the same | |
JPH03146417A (en) | Oxide superconductor | |
US5149683A (en) | Method for producing oxide superconductor | |
JPH0251468A (en) | Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body | |
JPH04175224A (en) | Oxide superconductor and production thereof | |
JPH03223151A (en) | Superconducting material of oxide and its production | |
JPH03146416A (en) | Oxide superconductor | |
JP2854338B2 (en) | Copper oxide superconductor | |
JP2635704B2 (en) | Method for producing Bi-based oxide high-temperature superconductor | |
KR970001258B1 (en) | Super conducting material | |
JP2831755B2 (en) | Oxide superconductor | |
JP2523928B2 (en) | Oxide superconductor and method for producing the same | |
JP2838312B2 (en) | Oxide superconducting material | |
JP2855127B2 (en) | Oxide superconductor | |
JPH03109252A (en) | Superconducting ceramic | |
JPH0365513A (en) | Raw material for superconductor, production thereof and production of superconductor using the same raw material | |
JPH01212227A (en) | Oxide superconducting material | |
JPH03247550A (en) | Production of bismuth-containing superconductor | |
JPH03122017A (en) | Superconducting material | |
JPH0238357A (en) | Oxide superconductor | |
JPH0222129A (en) | Production of oxide superconducting substance | |
JPH01160857A (en) | Superconducting ceramic and production thereof | |
JPH04114920A (en) | Superconductive metal oxide t1-pb, ln-sr-cu-o composition | |
JPH02153823A (en) | Production of oxide superconductor | |
JPH04193718A (en) | Oxide superconductor and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 12 |