JPH04114920A - Superconductive metal oxide t1-pb, ln-sr-cu-o composition - Google Patents

Superconductive metal oxide t1-pb, ln-sr-cu-o composition

Info

Publication number
JPH04114920A
JPH04114920A JP2226442A JP22644290A JPH04114920A JP H04114920 A JPH04114920 A JP H04114920A JP 2226442 A JP2226442 A JP 2226442A JP 22644290 A JP22644290 A JP 22644290A JP H04114920 A JPH04114920 A JP H04114920A
Authority
JP
Japan
Prior art keywords
composition
superconducting
sample
mixture
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2226442A
Other languages
Japanese (ja)
Inventor
Joki Ryu
如熹 劉
Kyomei Ryo
梁 鉅銘
Yoshu Ko
黄 耀宗
▲ご▼ 盛豐
Seiho Go
Koju Ko
顧 鴻壽
Rikishun Chin
陳  力俊
▲ご▼ ▲へい▼天
Heiten Go
Bonan O
望南 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to JP2226442A priority Critical patent/JPH04114920A/en
Publication of JPH04114920A publication Critical patent/JPH04114920A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE: To obtain a superconducting critical temperature of a prescribed temperature range corresponding to composition by performing formation by the composition composed of Tl, Pb, Ca, Y, Sr, Cu and O, etc., and indicated by a prescribed formula.
CONSTITUTION: This superconductive metal oxide Tl-Pb, In-Sr-Cu-O composition is formed by the composition indicated by (Tl1-xBx) (Ca1-YAY)Sr2Cu2O2) (where A: Y and/or a lanthanide rare earth element, B: Pb and/or Bi, X; 0-0.8, Y; 0-0.5 and Z; 6.5-7.5). The composition is provided with the superconducting critical temperature; 42-108K.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 発明の背景 H,Maedaら、  Jpn、  ]、  ^ppl
、Phyi、  27.  L209(1988)、 
 は、BISrCaCu20.に近い組成及び約150
にの超伝導転移温度(iup++conduc+ing
tranSition Iemperalure)を有
する、B1−8rCu−0系の超伝導酸化物を開示して
いる。
[Detailed Description of the Invention] Background of the Invention H, Maeda et al., Jpn, ], ^ppl
, Phyi, 27. L209 (1988),
is BISrCaCu20. composition close to and about 150
superconducting transition temperature (iup++conduc+ing
Discloses a B1-8rCu-0 based superconducting oxide having a tranSition Iemperalure).

M、Takanoら、Ipn、  1.  Apppl
、  l’「、y+、  27.  L1041(19
8g)は、B1−3r−Ca−Cu−0系においてB1
を部分的にPbて置き換えると高Tc相の体積分率の増
加をもたらすことを開示している。
M. Takano et al., Ipn. 1. Apppl
, l'", y+, 27. L1041 (19
8g) is B1 in the B1-3r-Ca-Cu-0 system.
It is disclosed that partial replacement of Pb by Pb results in an increase in the volume fraction of the high Tc phase.

Bi:Pb:Sr:Ca:Cu=0.7  :Q、3 
 :11 18の出発組成物が244時間に亘って1l
li!にて加熱された。その高Tc相は、約115にで
の超伝導の生起を示す。
Bi:Pb:Sr:Ca:Cu=0.7 :Q, 3
:11 18 starting compositions were added to 1 liter over 244 hours.
li! heated at. The high Tc phase exhibits the onset of superconductivity at about 115.

z、 2. Shang ら、Nature 332.
138 (1988)、  は、公称組成TI Ca 
BaCu309+xを有する試料の、T l−Ca−B
a−Cu−0系における超伝導性を開示している。
z, 2. Shang et al., Nature 332.
138 (1988), with nominal composition TI Ca
T l-Ca-B of the sample with BaCu309+x
Discloses superconductivity in the a-Cu-0 system.

R,M、l1axen  ら、Phys、 Rev、 
Left、 60.1657 (1988)は、T l
−Ba−Ca−Cu−0系の2つの超伝導相即ち、T1
2Ba2Ca2Cu301o及びTI  Ba  Ca
Cu2O3を開示している。
R, M, l1axen et al., Phys, Rev.
Left, 60.1657 (1988)
- Two superconducting phases of the Ba-Ca-Cu-0 system, namely T1
2Ba2Ca2Cu301o and TI Ba Ca
Discloses Cu2O3.

M、 A、 Subtamanian、米国特許「超伝
導金属酸化物T l−Pb−Ca−3r−Cu−0組成
物、その製造方法及びその使用」、特許番号第4.89
4.361号明細書は、公称式T I  P b 、 
Ca bS r 。
M.A. Subtamanian, U.S. Patent No. 4.89, “Superconducting Metal Oxide Tl-Pb-Ca-3r-Cu-0 Composition, Method of Preparation and Use thereof”
No. 4.361 specifies the nominal formula T I P b ,
CabSr.

C1,IdOアを有する超伝導組成物を開示し、式中、
aは約1/10−3/2であり、bは約 1〜4であり
、Cは約1〜3であり、dは約1〜5であり、eは約3
/10〜1であり、及び、yが約172〜3である場合
にx= (a+b+c+d十e+y)であり、更に、前
記組成物は少なくとも70にの超伝導転移温度を有する
Discloses a superconducting composition having C1,IdO, where:
a is about 1/10-3/2, b is about 1-4, C is about 1-3, d is about 1-5, and e is about 3
/10~1 and x=(a+b+c+d+y) where y is about 172~3, and the composition has a superconducting transition temperature of at least 70°C.

M、 A、 Subtamanian  ら、  Na
ture 242.249 (1988)は、Tl−P
b−3r−Ca−Cu−0系の2つの超伝導相、即ち、
(TI   Pb   )Sr2CaO,50,5 Cu  O及び(T I   P b   ) S r
 227     0.50.5 Ca2Cu309を開示し、これらの相は各々約80K
及び約115にの超伝導臨界温度(supercond
ucling xe+o−+esiStance te
mperature)を有する。
M, A, Subtamanian et al., Na
ture 242.249 (1988) is Tl-P
Two superconducting phases of the b-3r-Ca-Cu-0 system, namely:
(TIPb)Sr2CaO,50,5CuO and (TIPb)Sr
227 0.50.5 Ca2Cu309, each of these phases approximately 80K
and the superconducting critical temperature of about 115
ucling xe+o-+esi Stance te
mperature).

発明の要約 本発明は、Aがイツトリウムもしくはランタニド希土類
元素又はこれらの混合物であり、BがPbもしくはBi
又はこれらの混合物であり、Xが約0〜08であり、y
が約θ〜05であり、及び、Zが約65〜7.5である
、公称式%式% Oを有する、新規の超伝導組成物を提供する。
SUMMARY OF THE INVENTION The present invention provides that A is yttrium or a lanthanide rare earth element or a mixture thereof, and B is Pb or Bi.
or a mixture thereof, where X is about 0-08, and y
is about θ˜05 and Z is about 65 to 7.5.

これらの組成物の超伝導臨界温度は、その組成に応じて
、42Kから INKの範囲内である。
The superconducting critical temperature of these compositions ranges from 42 K to INK, depending on their composition.

これらの超伝導組成物は、2つの段階の熱、処理によっ
て製造される。第1段階では、Aがイツトリウムもしく
はランタニド希土類元素又はこれらの混合物を表す時に
、適切な量のCaCO3と、S r COa と、Cu
Oと、A−0とから成る混合物をIff〜20時間に亘
って850〜950℃で加熱することによって、公称前
駆体(CaA)−Y  Y S r 2 Cu 202を製造する。第2段階では、
次式中でBがpbもしくはB1又はこれらの混合物を表
す時に、式(TI   B)(Ca   A)1−r 
 X     by  ’I S r  Cu 20 Kに従って、適切な量のTl2
O3とB−0とが前記第1段階から得られる公称前駆体
の中に加えられ、その後で、このT】含有混合物又はペ
レット化試料が、約880〜911O℃に加熱され、及
び、密封された雰囲気の中に、即ち、金のような非反応
性金属が作られ及び反応物の逃散を防ぐ密封された袋の
中で、約1〜12時間に亘って保たれる。
These superconducting compositions are produced by a two-step thermal process. In the first step, appropriate amounts of CaCO3, S r COa , Cu
The nominal precursor (CaA)-YYSr2Cu 202 is prepared by heating a mixture consisting of O and A-0 at 850-950<0>C for Iff~20 hours. In the second stage,
When B represents pb or B1 or a mixture thereof in the following formula, the formula (TI B) (Ca A) 1-r
Appropriate amount of Tl2 according to X by 'I S r Cu 20 K
O3 and B-0 are added into the nominal precursor obtained from the first stage, after which the T]-containing mixture or pelletized sample is heated to about 880-911 O<0>C and sealed. A non-reactive metal such as gold is made and kept in a sealed bag to prevent escape of reactants for about 1 to 12 hours.

発明の説明 本発明は、Aがイツトリウムもしくはランタニド希土類
元素又はこれらの混合物であり、BがPbもしくはBi
又はこれらの混合物であり、Xが約0−0.8であり、
yが約θ〜0.5であり、及び、2が約6.5〜75で
ある、公称式%式% Oを有する高温超伝導金属酸化物に係わる。
DESCRIPTION OF THE INVENTION The present invention provides that A is yttrium or a lanthanide rare earth element or a mixture thereof, and B is Pb or Bi.
or a mixture thereof, where X is about 0-0.8;
The present invention relates to high temperature superconducting metal oxides having the nominal formula % O, where y is about θ ~ 0.5 and 2 is about 6.5 to 75.

Ca:A:Sr:Cu=1−y:y:2:2の原子モル
比を有する、適量の高純度試薬である、CaC0と、S
 r CO3と、CuOと、A−0との粉末が、例えば
乳鉢の中で摩砕することによって混合される。上記のA
−0金属酸化物は、Y  OST−a  O1Ca O
1P r 60 t 1.Nd  ○ 、Sm O、E
u2O3,Gd203、Tb4O7、Dy2O3、Ho
 0−、 E r 203−、 T m 203−Yb
 OもしくはLu2O3又はこれらの混合物を表す。十
分に混合された混合物が約10〜20時間に亘って炉内
で850〜950°Cに加熱され、その後で、炉への供
給電力のスイッチを切ることによって炉内の温度が室温
にまで冷却される。
Suitable amounts of high purity reagents CaC0 and S with an atomic molar ratio of Ca:A:Sr:Cu=1-y:y:2:2.
The powders of r CO3, CuO and A-0 are mixed, for example by grinding in a mortar. A above
-0 metal oxide is Y OST-a O1Ca O
1P r 60 t 1. Nd ○, Sm O, E
u2O3, Gd203, Tb4O7, Dy2O3, Ho
0-, E r 203-, T m 203-Yb
Represents O or Lu2O3 or a mixture thereof. The well-mixed mixture is heated in the furnace to 850-950°C for approximately 10-20 hours, after which the temperature in the furnace is cooled to room temperature by switching off the power supply to the furnace. be done.

得られた生成物が再び摩砕され、その後で、Tl:Pb
  Bi:Ca:A:Sr:Cu=I−x:y、  :
ly  :y  :2:2の原子モル比に従って、適量
のTI  O、PbO及び/又はB12O3が前記生成
物と混合される。次に、このTI含有混合物は直接的に
加熱されてもよく、又は、この混合物は、初めにペレッ
トもしくは他の形状に成形された後で、加熱されてもよ
い。前記TI含有混合物を加熱する際の雰囲気が注意深
(調整される場合にたけ、本発明の超伝導生成物が生成
される。
The product obtained is milled again, after which Tl:Pb
Bi:Ca:A:Sr:Cu=I-x:y, :
According to the atomic molar ratio of ly :y :2:2, appropriate amounts of TIO, PbO and/or B12O3 are mixed with the product. The TI-containing mixture may then be heated directly, or the mixture may be first formed into pellets or other shapes and then heated. The superconducting products of the present invention are produced if the atmosphere in which the TI-containing mixture is heated is carefully controlled.

この条件を実現する方法の1つは、金のような非反応性
金属で作られた袋又は管の中に前記混合物を封じ込める
ことである。その後で、この密封された試料が1〜12
時間に亘って約880〜980℃に加熱される。焼結の
後は、その試料を炉から直接取り出すことが可能である
か、又は電源を切って炉が冷えるにまかせて、炉内で冷
却することが可能である。密封された前記容器を開封す
ると、黒色の超伝導試料が得られる。
One way to achieve this condition is to confine the mixture in a bag or tube made of a non-reactive metal such as gold. Afterwards, this sealed sample is
It is heated to about 880-980°C over a period of time. After sintering, the sample can be removed directly from the furnace, or it can be cooled in the furnace by turning off the power and allowing the furnace to cool. When the sealed container is opened, a black superconducting sample is obtained.

実施例1 CaCO(1,601g)と、Y2O3(0,452g
)と、S r CO3(5,905g )と、Cu O
(3,182g )との各高純度試薬(299,9%)
を、Ca:Y:S r : Cu= 0.8:  0.
2: 2 + 2の原子モル比に従って、めのう乳鉢内
で十分に混合した。その混合物を炉内に入れ、10時間
に亘って920℃に加熱し、その後で再粉砕した。次に
、T1203(0,526g )及びP b O(0,
515g)を、TI・P 1)Ca  :Y:Sr  
:Cu=0.5  :0.5  :0.8  +0.2
  :2:2の原子モル比に従って、か焼されたCaY
−3r−Cu−0混合物(2,G g )と混合した。
Example 1 CaCO (1,601g) and Y2O3 (0,452g
), S r CO3 (5,905 g ), and Cu O
(3,182g) and each high purity reagent (299.9%)
, Ca:Y:Sr:Cu=0.8:0.
Mixed well in an agate mortar according to the atomic molar ratio of 2:2+2. The mixture was placed in a furnace and heated to 920° C. for 10 hours before being reground. Next, T1203 (0,526 g) and P b O (0,
515g), TI・P 1)Ca:Y:Sr
:Cu=0.5 :0.5 :0.8 +0.2
:calcined CaY according to the atomic molar ratio of 2:2
-3r-Cu-0 mixture (2,G g ).

そのT1含有混合物を、直径10 mm及び厚さ約1.
5状 mmの円板材の試料にペレット化した。その後で、この
ペレット試料を、機械を使って、厚さ0.05mmの4
N金箔で作られた金製の袋の中に封じ込めた。
The T1-containing mixture was cut into a 10 mm diameter and approximately 1.5 mm thick.
The sample was pelletized into a 5-mm disk material sample. Afterwards, this pellet sample was machined into 0.05 mm thick 4
It was sealed in a gold bag made of N gold leaf.

その袋の中の前記試料の焼結を、流動する酸素雰囲気の
中で、3時間に亘って950℃で実施し、その後、炉へ
の供給電力のスイッチを切ることによって、前記試料を
室温まで冷却した。袋を炉から取り出して開封し、黒色
のペレットを得た。
Sintering of the sample in the bag is carried out at 950° C. for 3 hours in a flowing oxygen atmosphere, after which the sample is brought to room temperature by switching off the power supply to the furnace. Cooled. The bag was removed from the oven and opened to yield black pellets.

第1図は、標準的な四端子法を使用して測定した、前記
焼結試料の電気抵抗の温度依存性を示す。
FIG. 1 shows the temperature dependence of the electrical resistance of the sintered sample, measured using the standard four-terminal method.

108にの超伝導臨界温度Tc    が達成された。A superconducting critical temperature Tc of 108 was achieved.

(zero) 超伝導量子干渉計(Supe+eonducting 
quantaminterference devic
e (SQUID) )によって測定された前記試料の
磁化を、第2図に示す。反磁性転移生起温度は1. [
18Kであり、これは前述の電気抵抗測定結果と一致し
ている。第3図は、前記塊状試料のX線回折パターンを
示す。この測定結果から、その試料の結晶相が正方晶相
に属することが示される。第3図のX線回(斤パターン
から、その結晶相が、格子定数a = 0.380nm
及びC=に、I94nmを有する247mllll11
対称の正方晶相に属することが示される。P4/mmm
対称の回折ピークは、前記X線回折図の中に示され及び
指数表示されている。第4図は、本発明の(TI、Pb
、)(Ca 、Y ) S r 2 Cu 207の構
造を示す。
(zero) Superconducting quantum interferometer (Supe+eonducting)
quantum interference device
The magnetization of the sample measured by e (SQUID) is shown in FIG. The diamagnetic transition temperature is 1. [
18K, which is consistent with the electrical resistance measurement results described above. FIG. 3 shows the X-ray diffraction pattern of the bulk sample. This measurement result shows that the crystal phase of the sample belongs to the tetragonal phase. The X-ray circuit in Figure 3 (from the loaf pattern, the crystal phase has a lattice constant a = 0.380 nm
and C=247mllll11 with I94nm
It is shown to belong to a symmetric tetragonal phase. P4/mm
Symmetrical diffraction peaks are shown in the X-ray diffractogram and indexed. FIG. 4 shows the (TI, Pb) of the present invention.
, )(Ca,Y)S r 2 Cu 207 structure is shown.

 n 実施例2 そのY ○ 成分を、L a  O、Ce O2P r
  O、N d  O、S m203Eu  O、Gd
2O3,Tb4O7゜Dy O、Ho O、Er2O3
゜ Tm203.Yb2O3及びLu2o3の中の1つによ
って置き換えたことを除いて、実施例1の処理工程を繰
り返した。得られた超伝導試料のXRDパターンは全て
、第3図に示される結晶構造と類似の結晶構造を有する
ことを示した。電気抵抗測定から決定された前記試料の
超伝導臨界温度は次の通りである。
n Example 2 The Y ○ component is L a O, Ce O2P r
O, N d O, S m203Eu O, Gd
2O3, Tb4O7゜Dy O, Ho O, Er2O3
゜Tm203. The process steps of Example 1 were repeated, except that Yb2O3 and Lu2o3 were substituted. The XRD patterns of the superconducting samples obtained all showed that they had a crystal structure similar to that shown in FIG. The superconducting critical temperature of the sample determined from electrical resistance measurements is as follows.

元素   Lu  C+  P+  Nd  Sm  
Eu  Gd  Tb  D7  no  E+  T
m  Yb  LuKl 実施例3 Ca / Y比を次式のように変化させたことを除いて
、実施例1の処理工程を繰り返した。
Element Lu C+ P+ Nd Sm
Eu Gd Tb D7 no E+ T
m Yb LuKl Example 3 The process steps of Example 1 were repeated, except that the Ca/Y ratio was varied as follows:

TC(zerO) Tlo、5Pbo、5CaSr2Cu20!78KTl
o5Pbo5Cao9Yo、1Sr2Cu2o2   
1o3KT1o、5Pbo5Cao、85Yo15Sr
2Cu20,1o7KT1o、5Pbo、5Cao、8
Yo2Sr2Cu20□1o8KTIo、5Pbo、5
Cao、7Yo、3Sr2Cu2o!98KT Io、
5Pbo、5Cao、GY、4S r2Cu20.  
   78KT1o、5Pbo、5Cao、5Yo、5
Sr2Cu2o244KTIo、5Pbo、5Cao、
3Yoy S r2CIJ202     半導体電気
抵抗測定から決定された各試料の超伝導臨界温度が、そ
の組成の後に示されている。
TC(zerO) Tlo, 5Pbo, 5CaSr2Cu20!78KTl
o5Pbo5Cao9Yo, 1Sr2Cu2o2
1o3KT1o, 5Pbo5Cao, 85Yo15Sr
2Cu20, 1o7KT1o, 5Pbo, 5Cao, 8
Yo2Sr2Cu20□1o8KTIo, 5Pbo, 5
Cao, 7Yo, 3Sr2Cu2o! 98KT Io,
5Pbo, 5Cao, GY, 4S r2Cu20.
78KT1o, 5Pbo, 5Cao, 5Yo, 5
Sr2Cu2o244KTIo, 5Pbo, 5Cao,
3Yoy S r2CIJ202 The superconducting critical temperature of each sample, determined from semiconductor electrical resistance measurements, is shown after its composition.

実施例4 次式のようにCa / Y比を変化させ及びPb。Example 4 By changing the Ca/Y ratio and Pb as shown in the following formula.

をBi2O3試薬によって置き換えたことを除いて、実
施例1の処理工程を繰り返した。
The process steps of Example 1 were repeated, except that the Bi2O3 reagent was replaced by the Bi2O3 reagent.

T l o、5P bo、s Cao、9MoIS r
2Cu2oZT l o5P b o、 5Ca o、
 p、 Mo、 23 r 2°LI20ZT I o
、5P 1)++、5Cao、7M08a S r2C
IJ2 o。
T lo, 5P bo, s Cao, 9MoIS r
2Cu2oZT l o5P b o, 5Ca o,
p, Mo, 23 r 2°LI20ZT I o
, 5P 1) ++, 5Cao, 7M08a S r2C
IJ2 o.

ミツシュメタル酸化物は、モナザイト TC(zerO) 102に 98に 8K (Monazile)中に含まれる粘土の抽出の第1段
階から得られる原料である。ミツシュメタル酸化物の価
格は、個々の希土類金属酸化物の価格よりも約10〜2
0011SD/kg低価格である。この実施例で使用さ
れるミツシュメタル酸化物に含まれる希土類元素は次の
一覧表の通りである。
Mitsushmetal oxide is a raw material obtained from the first stage of the extraction of the clay contained in Monazite TC (zerO) 102 to 98 to 8K (Monazile). The price of Mitshu metal oxide is about 10-20% lower than the price of individual rare earth metal oxides.
0011SD/kg low price. The rare earth elements contained in the Mitsushi metal oxide used in this example are as shown in the following table.

成分        %1 La203      31.8 Ce O224,5 Pr601.       8.9 Nd203      31.1 ’Eu  O、Gd  O、Tb4O7゜Dy O、H
o O、Er2O3゜ Tm O、Yb O、Lu2o3、及びY 203のよ
うな他の希土類金属酸化物が、0.1%未満の量で含ま
れる。
Ingredients %1 La203 31.8 Ce O224,5 Pr601. 8.9 Nd203 31.1 'Eu O, Gd O, Tb4O7゜Dy O, H
Other rare earth metal oxides such as oO, Er2O3°TmO, YbO, Lu2o3, and Y203 are included in amounts less than 0.1%.

電気抵抗測定から決定された各試料の超伝導臨界温度が
、その組成の後に示されている。
The superconducting critical temperature of each sample, determined from electrical resistance measurements, is shown after its composition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超伝導組成物(TI   Pb   )0.5
  0.5 (Ca  Y  )Sr Cu2O!の電気抵抗0.8
 0.2   2 と温度との関係を示し、 第2図は超伝導組成物(TI   Pb   )05 
 0.5 (Ca  Y  )Sr Cu2O,の磁化と温0.8
0.2   2 度との関係を示し、 第3図は超伝導組成物(TI   Pb   )0.5
  0.5 (Ca  Y  )Sr Cu2OにのX線回折0.8
0.2   2 パターンを示し、及び、 第4図は(TI   Pb   )  (Cao、80
.5    0.5 Y   )Sr  Cu2O,の結晶構造を示す。
Figure 1 shows superconducting composition (TI Pb) 0.5
0.5 (CaY)SrCu2O! electrical resistance of 0.8
0.2 2 and temperature, and Figure 2 shows the relationship between superconducting composition (TI Pb) 05
0.5 (Ca Y )Sr Cu2O, magnetization and temperature 0.8
Figure 3 shows the relationship between the superconducting composition (TI Pb) 0.2 and 0.5
0.5 X-ray diffraction of (Ca Y )Sr Cu2O 0.8
0.2 2 pattern and FIG. 4 shows (TI Pb ) (Cao, 80
.. 5 0.5 Y)SrCu2O, is shown.

Claims (1)

【特許請求の範囲】[Claims] (1)式: (T1_1_−_xB_x)(Ca_1_−_yA_y
)Sr_2Cu_2O_z (式中、 Aがイットリウムもしくはランタニド希土類元素又はこ
れらの混合物であり、 BがPbもしくはBi又はこれらの混合物であり、 xが約0〜0.8であり、 yが約0〜0.5であり、及び、 zが約6.5〜7.5である)を有する超伝導組成(2
)前記組成物が42K〜108Kの範囲内の超伝導臨界
温度を有する請求項1に記載の超伝導組成物。
Formula (1): (T1_1_-_xB_x)(Ca_1_-_yA_y
) Sr_2Cu_2O_z (wherein A is yttrium or a lanthanide rare earth element or a mixture thereof, B is Pb or Bi or a mixture thereof, x is about 0 to 0.8, and y is about 0 to 0. 5 and z is about 6.5 to 7.5).
2.) A superconducting composition according to claim 1, wherein said composition has a superconducting critical temperature within the range of 42K to 108K.
JP2226442A 1990-08-28 1990-08-28 Superconductive metal oxide t1-pb, ln-sr-cu-o composition Pending JPH04114920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2226442A JPH04114920A (en) 1990-08-28 1990-08-28 Superconductive metal oxide t1-pb, ln-sr-cu-o composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2226442A JPH04114920A (en) 1990-08-28 1990-08-28 Superconductive metal oxide t1-pb, ln-sr-cu-o composition

Publications (1)

Publication Number Publication Date
JPH04114920A true JPH04114920A (en) 1992-04-15

Family

ID=16845174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2226442A Pending JPH04114920A (en) 1990-08-28 1990-08-28 Superconductive metal oxide t1-pb, ln-sr-cu-o composition

Country Status (1)

Country Link
JP (1) JPH04114920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518287A (en) * 1998-06-18 2002-06-25 インダストリアル リサーチ リミテッド Critical doping in high-Tc superconductors to obtain maximum flux spinning and critical current

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297422A (en) * 1988-10-05 1990-04-10 Onoda Cement Co Ltd Production of tl-pb-sr-ca-cu-o type oxide superconductor
JPH02167820A (en) * 1988-08-10 1990-06-28 Sumitomo Electric Ind Ltd Method for forming tl-base multiple oxide superconducting thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167820A (en) * 1988-08-10 1990-06-28 Sumitomo Electric Ind Ltd Method for forming tl-base multiple oxide superconducting thin film
JPH0297422A (en) * 1988-10-05 1990-04-10 Onoda Cement Co Ltd Production of tl-pb-sr-ca-cu-o type oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518287A (en) * 1998-06-18 2002-06-25 インダストリアル リサーチ リミテッド Critical doping in high-Tc superconductors to obtain maximum flux spinning and critical current

Similar Documents

Publication Publication Date Title
Yan et al. Dopant effects on the superconductivity of YBa2Cu3O7 ceramics
CA1341500C (en) Superconductor and process for its preparation
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
CA1337149C (en) Devices and systems based on novel superconducting material
US5374611A (en) Preparation and composition of superconducting copper oxides based on Ga-O layers
JPH04114920A (en) Superconductive metal oxide t1-pb, ln-sr-cu-o composition
EP0305515B1 (en) Devices and systems based on novel superconducting material
US5270292A (en) Method for the formation of high temperature semiconductors
Kharlanov et al. The new family of complex copper oxides with possible superconducting properties: Pb2Sr2R1. 33Ce0. 67Cu3O10+ δ
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JPH0333055A (en) Oxide superconducting material and its production
JPH02217316A (en) High-temperature superconductive material and its manufacture
KR970001258B1 (en) Super conducting material
Xingjiang et al. Stability and doping of infinite-layer compound (Ca 1− x Sr x) CuO 2 at ambient pressure
JP2854338B2 (en) Copper oxide superconductor
JP2716698B2 (en) Method for producing superconducting oxide
JPH01208319A (en) Oxide superconducting material
JPH02153822A (en) Oxide superconductor composition
JPH01212227A (en) Oxide superconducting material
JPS63303851A (en) Sintered body of superconducting ceramic
JPS63303814A (en) Oxide superconductor
JPH01126258A (en) Production of oxide high-temperature superconductive material
EP0431170A1 (en) Oxide superconductor
JPH02107518A (en) Oxide superconducting material
Nigrey et al. Synthesis and Properties of YBaSrCu 3 O 6.9 Prepared from Soluble Precursors