JPH03146411A - Metal melting graphite material - Google Patents

Metal melting graphite material

Info

Publication number
JPH03146411A
JPH03146411A JP1284796A JP28479689A JPH03146411A JP H03146411 A JPH03146411 A JP H03146411A JP 1284796 A JP1284796 A JP 1284796A JP 28479689 A JP28479689 A JP 28479689A JP H03146411 A JPH03146411 A JP H03146411A
Authority
JP
Japan
Prior art keywords
graphite
molten metal
metal
glassy carbon
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1284796A
Other languages
Japanese (ja)
Other versions
JPH0725524B2 (en
Inventor
Kazumi Nozawa
和己 野澤
Masahiko Nakajima
征彦 中島
Masaaki Obata
正明 小畑
Kazuo Maeda
和夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1284796A priority Critical patent/JPH0725524B2/en
Publication of JPH03146411A publication Critical patent/JPH03146411A/en
Publication of JPH0725524B2 publication Critical patent/JPH0725524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To prevent deposition of molten metal on a graphite vessel and to enhance the purity of the refined metal by applying a vitreous carbon coating over the whole surface of the graphite base material and specifying the regular reflectance of the 30 deg incident beam at least on the contact part with the molten metal. CONSTITUTION:A metal melting graphite vessel is prepared, the whole surface is sufficiently coated with vitreous carbon until the regular reflectance of the 30deg incident beam is controlled to 0.5-1% on the contact part with the molten metal such as the inner surface of the vessel. When the graphite material thus obtained is used, the deposition of molten metal on the vessel is prevented, Thence the molten metal is easily handled at high purity, the purity of the refined metal is improved, the characteristic of the vapor-deposited film is ameliorated, and the characteristic of the epitaxially grown film is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属溶融に使用する黒鉛材料に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to graphite materials used in metal melting.

(従来の技術) 高温で溶融金属を処理する際に用いられる溶融金属用黒
鉛材料としては、従来より、反応性、熱伝導性、熱膨張
性、熱衝撃性等のバランスの良さから、高純度黒鉛をル
ツボ、ボート、ダイス、鋳型等の各形状に加工したもの
、もしくはそれらにガラス状炭素を被覆したものが知ら
れている。
(Prior art) Graphite materials for molten metals used when processing molten metals at high temperatures have traditionally been made of high-purity materials due to their well-balanced properties such as reactivity, thermal conductivity, thermal expansion properties, and thermal shock resistance. It is known that graphite is processed into various shapes such as crucibles, boats, dies, molds, etc., or those that are coated with glassy carbon.

これらの溶融金属用黒鉛材料は、様々な用途並びに形態
で使われている。即ち、ガス分析用ルツボ、ウラン溶融
用ルツボ、ゲルマニウム、アルミニウム、銅等を精製す
る時に使用される高純度金属精練用ボート、酸化タング
ステンあるいは酸化モリブデンを水素雰囲気中で加熱還
元してタングステンあるいはモリブデンを製造する場合
に使用される黒鉛ボート、アルミニウム蒸着用ルツボ、
鉄、銅、アルミニウム等を溶融金属の状態から直接連続
的にロンド、パイプ、プレート等の形に製造する際に使
用される連続鋳造用ダイス、及びCaAs5GaP s
 InP等のI、PE用ボート、スライダー、ルツボな
とである。
These graphite materials for molten metal are used in various applications and forms. In other words, crucibles for gas analysis, crucibles for uranium melting, high-purity metal scouring boats used for refining germanium, aluminum, copper, etc., tungsten oxide or molybdenum oxide are thermally reduced in a hydrogen atmosphere to produce tungsten or molybdenum. Graphite boats used in manufacturing, crucibles for aluminum deposition,
Continuous casting dies used to directly and continuously manufacture iron, copper, aluminum, etc. from molten metal into shapes such as ronds, pipes, plates, etc., and CaAs5GaP s.
These include I such as InP, boats for PE, sliders, and crucibles.

(発明が解決しようとする課題) しかしながら、土間従来の高純度黒鉛を単に機械加工し
てなる黒鉛材料にあって−は、黒鉛材料表面の黒鉛微粒
子が離型剤の働きをするために溶融金属の付着は起こら
なかったが、溶融金属中に黒鉛微粒子が取り込まれる、
黒鉛が多孔質であるために不純物ガスを吸着してしまい
使用中にその不純物ガスが脱離し溶融金属中にそれが混
入する、LPEボートとして使用する際にはスライダー
の摺動によって発生するダストの溶融金属内及び工ピタ
キシャル形成膜内への取り込みが生しる等の欠点があっ
た。一方、溶融金属用ガラス状炭素被覆黒鉛材料にあっ
ては、黒鉛微粒子の取り込み、不純物ガス吸脱着の問題
は起こらないが表面の正反射率が1%を超えているため
に、溶融金属が容器に付着してしまい取扱いに手間が掛
かる等の問題があった。
(Problems to be Solved by the Invention) However, in the case of graphite materials made by simply machining conventional high-purity graphite, the graphite particles on the surface of the graphite material act as a mold release agent, so that the molten metal Although no adhesion occurred, fine graphite particles were incorporated into the molten metal.
Since graphite is porous, it adsorbs impurity gases, and during use, the impurity gases are desorbed and mixed into the molten metal.When used as an LPE boat, dust generated by the sliding of the slider is removed. There were drawbacks such as incorporation into the molten metal and into the pittaxially formed film. On the other hand, with glassy carbon-coated graphite materials for molten metal, problems such as incorporation of graphite particles and adsorption/desorption of impurity gas do not occur, but since the specular reflectance of the surface exceeds 1%, the molten metal is There was a problem that it adhered to the surface and required time and effort to handle.

本発明は、高純度黒鉛を単に機械加工してなる黒鉛材料
及びガラス状炭素被覆材料における上記従来の問題点を
解消することを目的とするものである。
The object of the present invention is to solve the above-mentioned conventional problems in graphite materials and glassy carbon coating materials made by simply machining high-purity graphite.

(課題を解決するための手段) 即ち、本発明は、ガラス状炭素被覆が黒鉛基材全面に施
こされてなり、少なくとも溶融金属と接する部分の30
deg入射光の正反射率を0.5〜1%としてなること
を特徴とする金属溶融用黒鉛材料である。
(Means for Solving the Problems) That is, in the present invention, a glassy carbon coating is applied to the entire surface of a graphite base material, and at least 30% of the portion in contact with molten metal is coated with glassy carbon.
The graphite material for metal melting is characterized by having a specular reflectance of deg incident light of 0.5 to 1%.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明は、金属溶融用黒鉛容器を従来通り加工して準備
し、その全面にガラス状炭素被覆を施こしてなるもので
あるが、とくに容器内面などの溶融金属と接する部分は
30deg入射光の正反射率が0.5〜1%になるまで
十分にガラス状炭素で被覆してなるものである。
In the present invention, a graphite container for metal melting is processed and prepared in the conventional manner, and the entire surface of the container is coated with glassy carbon. Particularly, the inner surface of the container and other parts in contact with the molten metal are coated with 30 degrees of incident light. It is sufficiently coated with glassy carbon until the specular reflectance is 0.5 to 1%.

本発明において、基材黒鉛容器の形状としては、円筒容
器が一般的であるが、何等それに限られることはなく例
えば、LPE用ボート、LPE用スライダー、船型、パ
イプ状等であってもよい。この時点における基材容器の
正反射率は、通常、0.1〜0.3%となっている。こ
の基材容器の溶融金属との接触部分即ち容器内面以外の
面をサンドペーパーや工業用パッドなどの研磨材を用い
て表面研磨する。
In the present invention, the shape of the base graphite container is generally a cylindrical container, but the shape is not limited thereto, and may be, for example, an LPE boat, an LPE slider, a ship shape, a pipe shape, etc. The regular reflectance of the base container at this point is usually 0.1 to 0.3%. The surface of the base container that is in contact with the molten metal, that is, the surface other than the inner surface of the container, is polished using an abrasive material such as sandpaper or an industrial pad.

このようにして得られた基材容器の表面を例えば特公昭
52−39684号公報記載の方法を用いてガラス状炭
素で被覆する。以下その被覆方法について簡単に説明す
る。
The surface of the base container thus obtained is coated with glassy carbon using, for example, the method described in Japanese Patent Publication No. 52-39684. The coating method will be briefly explained below.

ガラス状炭素の原料であるポリ塩化ビニルを不活性化雰
囲気中において350〜450 ’Cで熱分解しピッチ
状の炭素前駆体をトリクレンなどの有機溶剤に溶解し容
器表面に塗布し真空中もしくは不活性化雰囲気中におい
て1000℃以上の高温で焼成する。この塗布−焼成工
程をガラス状炭素被覆黒鉛容器の溶融金属接触面の30
degの正反射率が0.5〜1%の範囲となるまで繰り
返し行う。
Polyvinyl chloride, which is the raw material for glassy carbon, is thermally decomposed at 350 to 450'C in an inert atmosphere, and the pitch-like carbon precursor is dissolved in an organic solvent such as trichlene and applied to the surface of a container. Firing is performed at a high temperature of 1000° C. or higher in an activating atmosphere. This coating-firing process is applied to the molten metal contact surface of the glassy carbon-coated graphite container.
The process is repeated until the deg specular reflectance falls within the range of 0.5 to 1%.

正反射率が0.5%未満であると、黒鉛ダストの発生防
止、吸脱着ガスの防止等のガラス状炭素被覆効果を充分
に得ることができず、一方、1%を超えると溶融金属が
付着する。不純物ガスの吸脱着の影響を少なくするには
比表面積が小さい方が好ましく、比表面積を小さくする
には、黒鉛基材の表面に光沢を出しく正反射率を高くす
る〉た方がよいことは経験的に知られているので、溶融
金属が接する部分のみの正反射率は1%以下であるのが
望ましい。
If the specular reflectance is less than 0.5%, it will not be possible to obtain sufficient glassy carbon coating effects such as preventing the generation of graphite dust and adsorption/desorption of gases, while if it exceeds 1%, the molten metal will adhere to. In order to reduce the effects of adsorption and desorption of impurity gases, it is preferable to have a small specific surface area, and in order to reduce the specific surface area, it is better to increase the specular reflectance to make the surface of the graphite base material glossy. is known from experience, it is desirable that the specular reflectance of only the portion in contact with the molten metal be 1% or less.

高純度が要求される用途に対しては、炭素前駆体を塗布
する前に、例えば1600℃以上で塩素、フッ素等のハ
ロゲンガスを混入することで高純度の黒鉛材料を得、こ
の黒鉛材料に灰分20ppm以下のガラス状炭素を被覆
することにより高純度のガラス状炭素被覆黒鉛材料が得
られる。このような灰分20ppm以下のガラス状炭素
で被覆することにより、LPE法によって成長させたエ
ピタキシャル膜の特性を著しく向上させることができる
という利点がある。なお、灰分20ppm以下のガラス
状炭素は高純度のポリ塩化ビニルを原料とすることによ
り得ることができる。
For applications that require high purity, a high-purity graphite material can be obtained by mixing halogen gas such as chlorine or fluorine at a temperature of 1,600°C or higher before applying the carbon precursor. By coating with glassy carbon having an ash content of 20 ppm or less, a highly purified glassy carbon-coated graphite material can be obtained. By coating with such glassy carbon having an ash content of 20 ppm or less, there is an advantage that the characteristics of the epitaxial film grown by the LPE method can be significantly improved. Note that glassy carbon having an ash content of 20 ppm or less can be obtained by using high-purity polyvinyl chloride as a raw material.

(実施例) 以下、実施例と比較例をあげてさらに具体的に本発明を
説明する。
(Example) Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例1 黒鉛ルツボ(直径10M×高さ10mm厚さ2mm)を
表面積度で機械加工した。このとき表面の正反射率は0
.2%であった。この黒鉛ルツボを2000°Cで塩素
処理を施こしたところ、黒鉛ルツボの純度は灰分て20
ppm以下であった。
Example 1 A graphite crucible (diameter 10M x height 10mm x thickness 2mm) was machined according to its surface area. At this time, the regular reflectance of the surface is 0
.. It was 2%. When this graphite crucible was subjected to chlorine treatment at 2000°C, the purity of the graphite crucible was 20% in terms of ash content.
It was less than ppm.

一方、ポリ塩化ビニル(電気化学工業社製商品名rss
 t t 0−3J >を窒素中390 ’Cで熱分解
しタール状のピンチ炭素前駆体を得、トリクレンにこの
炭素前駆体を溶解しく15重量%)、この溶液をルツボ
表面に塗布し、真空雰囲気中、12oo’cで焼成した
。この塗布−焼成工程を4回繰り返してガラス状炭素を
ルツボ表面に被覆した。このガラス状炭素被覆膜の純度
を測定したところ灰分は20ppm以下であった。ガラ
ス状炭素被覆後の全表面の正反射率は0.7%であった
On the other hand, polyvinyl chloride (product name: rss manufactured by Denki Kagaku Kogyo Co., Ltd.)
t t 0-3J> in nitrogen at 390'C to obtain a tar-like pinch carbon precursor, dissolve this carbon precursor in trichlene (15% by weight), apply this solution to the crucible surface, and vacuum It was fired in an atmosphere at 12 oo'c. This coating-firing process was repeated four times to coat the surface of the crucible with glassy carbon. When the purity of this glassy carbon coating was measured, the ash content was 20 ppm or less. The specular reflectance of the entire surface after coating with glassy carbon was 0.7%.

実施例2 実施例1で用いた黒鉛ルツボのルツボ内面以外の面を工
業用パッド(スコッチプライト7448)で鏡面に仕上
げた。このときの表面の正反射率は10.1%であった
。この黒鉛ルツボを実施例1と同様に純化処理を施こし
た後、灰分20ppm以下のガラス状炭素を実施例1と
同様に被覆した。この黒鉛ルツボ内面以外の面の正反射
率は17.3%であった。
Example 2 The surfaces of the graphite crucible used in Example 1 other than the crucible inner surface were mirror-finished with an industrial pad (Scotchprite 7448). The regular reflectance of the surface at this time was 10.1%. This graphite crucible was purified in the same manner as in Example 1, and then coated with glassy carbon having an ash content of 20 ppm or less in the same manner as in Example 1. The specular reflectance of surfaces other than the inner surface of this graphite crucible was 17.3%.

比較例1 実施例1で用いた黒鉛ルツボを実施例1と同様に純化処
理を施こした後、塗布−焼成工程を2回繰り返してガラ
ス状炭素をルツボ表面に被覆した。
Comparative Example 1 The graphite crucible used in Example 1 was purified in the same manner as in Example 1, and then the coating-firing process was repeated twice to coat the surface of the crucible with glassy carbon.

ガラス状炭素被覆後の全表面の正反射率は0.3%であ
った。
The specular reflectance of the entire surface after coating with glassy carbon was 0.3%.

比較例2 実施例1で用いた黒鉛ルツボを実施例1と同様に純化処
理を施こした後、塗布−焼成工程を6回繰り返してガラ
ス状炭素をルツボ表面に被覆した。
Comparative Example 2 The graphite crucible used in Example 1 was purified in the same manner as in Example 1, and then the coating-firing process was repeated six times to coat the surface of the crucible with glassy carbon.

ガラス状炭素被覆後の全表面の正反射率は1.8%であ
った。
The specular reflectance of the entire surface after coating with glassy carbon was 1.8%.

比較例3 実施例1で用いた黒鉛ルツボにガラス状炭素被覆を施こ
していない金属溶融用黒鉛ルツボを得た。
Comparative Example 3 A graphite crucible for metal melting, which was the same as the graphite crucible used in Example 1 but not coated with glassy carbon, was obtained.

このときのルツボ内面の正反射率は0.2%であった。At this time, the regular reflectance of the inner surface of the crucible was 0.2%.

且JtitL値 上記実施例1〜2及び比較例1〜3の金属溶融用ルツボ
を用いて、ルツボ内に金属インジウムを入れ水素雰囲気
中、850℃に加熱−冷却したときの金属インジウムの
付着状態及び黒鉛ダストの取り込み量を測定した。その
結果と上記5例の金属溶融用ルツボの比表面積の測定結
果を表1に示す。
And JtitL value Using the crucibles for metal melting of Examples 1 to 2 and Comparative Examples 1 to 3 above, the adhesion state of metallic indium and The amount of graphite dust taken in was measured. Table 1 shows the results and the measurement results of the specific surface area of the metal melting crucibles of the five examples above.

なお、表1に記載した物性値の測定は次の方法によって
行った。
Note that the physical property values listed in Table 1 were measured by the following method.

(1)正反射率(%) 光沢針GM−060(ミノルタカメラ社製)を用いて3
0deg入射光の正反射率を測定した。なお、屈折率n
=1.567のガラスの30deg入射光の正反射率を
10%として計算した。
(1) Specular reflectance (%) 3 using glossy needle GM-060 (manufactured by Minolta Camera Co., Ltd.)
The regular reflectance of 0 degree incident light was measured. Note that the refractive index n
Calculation was made assuming that the specular reflectance of 30 deg incident light of the glass with =1.567 was 10%.

(2)黒鉛ダスト取り込み量(個/ cd)走査型電子
顕微鏡を用いて観察した。
(2) Graphite dust intake amount (pieces/cd) Observed using a scanning electron microscope.

(3)比表面積(ポ/g) 流通式BET法を用いて測定した。(3) Specific surface area (po/g) It was measured using the flow BET method.

表  1 (発明の効果) 金属溶融用黒鉛材料として、本発明の黒鉛材料を使用す
ることにより溶融金属が黒鉛容器に付着しなくなるので
、溶融金属を高純度にしかも操作性よく取り扱うことが
でき、精練金属の純度の向上、蒸着膜の特性向上、エピ
タキシャル成長膜の特性向上などの効果がある。また、
灰分20ppm以下のガラス状炭素で被覆すればエピタ
キシャル成長膜の特性をさらに向上させることができる
Table 1 (Effects of the invention) By using the graphite material of the present invention as a graphite material for metal melting, the molten metal will not adhere to the graphite container, so the molten metal can be handled with high purity and with good operability. It has effects such as improving the purity of refined metals, improving the properties of deposited films, and improving the properties of epitaxially grown films. Also,
The properties of the epitaxially grown film can be further improved by coating with glassy carbon having an ash content of 20 ppm or less.

Claims (1)

【特許請求の範囲】[Claims] 1.ガラス状炭素被覆が黒鉛基材全面に施こされてなり
、少なくとも溶融金属と接する部分の30deg入射光
の正反射率を0.5〜1%としてなることを特徴とする
金属溶融用黒鉛材料。
1. A graphite material for metal melting, characterized in that a glassy carbon coating is applied to the entire surface of a graphite base material, and the specular reflectance of 30 degree incident light at least in the portion in contact with the molten metal is 0.5 to 1%.
JP1284796A 1989-11-02 1989-11-02 Graphite material for melting metal Expired - Lifetime JPH0725524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284796A JPH0725524B2 (en) 1989-11-02 1989-11-02 Graphite material for melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284796A JPH0725524B2 (en) 1989-11-02 1989-11-02 Graphite material for melting metal

Publications (2)

Publication Number Publication Date
JPH03146411A true JPH03146411A (en) 1991-06-21
JPH0725524B2 JPH0725524B2 (en) 1995-03-22

Family

ID=17683132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284796A Expired - Lifetime JPH0725524B2 (en) 1989-11-02 1989-11-02 Graphite material for melting metal

Country Status (1)

Country Link
JP (1) JPH0725524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733524A (en) * 1992-02-18 1995-02-03 Denki Kagaku Kogyo Kk Material coated with glassy carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733524A (en) * 1992-02-18 1995-02-03 Denki Kagaku Kogyo Kk Material coated with glassy carbon

Also Published As

Publication number Publication date
JPH0725524B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
EP0149044A1 (en) Boron nitride containing titanium nitride, method of producing the same and composite ceramics produced therefrom
JPH01172290A (en) Heat resistant complex body and production thereof
US3385723A (en) Carbon article coated with beta silicon carbide
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
RU1782229C (en) Method for making self-baring ceramic body
JPH1012692A (en) Dummy wafer
JP2003267781A (en) Method for producing high purity, wear resistant insert, and material therefor
JP4070816B2 (en) Thermochemical treatment of non-porous or porous materials containing carbon in halogenated atmospheres.
JPH03146411A (en) Metal melting graphite material
JP2009274905A (en) Crucible for melting silicon
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH059028A (en) Production of titanium suboxide
JP3642446B2 (en) Semiconductor wafer processing tool
JPH04224113A (en) Production of titanium oxide for vapor deposition
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPH0666265B2 (en) Susceptor for semiconductor vapor phase growth
CN116675998B (en) High-temperature heat treatment anti-lithium release coating for aluminum lithium alloy and preparation method thereof
Powell et al. The deposition of tantalum and columbium from their volatilized halides
JPH0583517B2 (en)
JPH01242408A (en) Silicon carbide-graphite composite material and production thereof
JPS60141698A (en) Manufacture of silicon carbide whisker
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JP2620075B2 (en) Graphite material for Ga compound single crystal pulling device
JPH0617236A (en) Vessel for molten metal
JPH01224153A (en) Graphite-made nozzle for continuous casting