JP2620075B2 - Graphite material for Ga compound single crystal pulling device - Google Patents

Graphite material for Ga compound single crystal pulling device

Info

Publication number
JP2620075B2
JP2620075B2 JP62072686A JP7268687A JP2620075B2 JP 2620075 B2 JP2620075 B2 JP 2620075B2 JP 62072686 A JP62072686 A JP 62072686A JP 7268687 A JP7268687 A JP 7268687A JP 2620075 B2 JP2620075 B2 JP 2620075B2
Authority
JP
Japan
Prior art keywords
graphite
pyc
single crystal
film
cte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62072686A
Other languages
Japanese (ja)
Other versions
JPS63236798A (en
Inventor
相煥 三木
亨 星川
Original Assignee
東洋炭素 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素 株式会社 filed Critical 東洋炭素 株式会社
Priority to JP62072686A priority Critical patent/JP2620075B2/en
Publication of JPS63236798A publication Critical patent/JPS63236798A/en
Application granted granted Critical
Publication of JP2620075B2 publication Critical patent/JP2620075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はGa化合物単結晶の引き上げを行うに際し使用
される黒鉛材料に関し、更に詳しくは例えばルツボ、ル
ツボ受けヒーター、ヒートシールド等Ga化合物単結晶の
引き上げに際し、使用される黒鉛材料に関するものであ
る。
The present invention relates to a graphite material used for pulling a Ga compound single crystal, and more specifically, for example, a Ga compound single crystal such as a crucible, a crucible receiving heater, a heat shield, etc. The present invention relates to a graphite material to be used when pulling up.

〔従来の技術〕[Conventional technology]

現在GaAs単結晶育成法には大きく分けて水平ブリッジ
マン法と液体封止法とがあるが、後者の方法によるGaAs
単結晶の方が結晶構造上優れている為、一般的に液体封
止法がよく使われている。
Currently, the GaAs single crystal growth method can be roughly divided into the horizontal Bridgman method and the liquid sealing method.
Since a single crystal is superior in crystal structure, a liquid sealing method is generally used.

液体封止法とはSi単結晶育成法と同様に溶融したGaAs
を引き上げつつ結晶を成長させて製造するものである。
Liquid sealing method is GaAs melted in the same way as Si single crystal growth method
And growing the crystal while pulling up.

この様なプロセスに於いて用いられる黒鉛材料は電気
伝導性であるばかりでなく、極めて高い耐熱性を持ち、
化学的に不活性であってGaAs単結晶の有害な汚染を防ぐ
為に極めて高い純度をもつものでなければならない。
The graphite material used in such a process is not only electrically conductive, but also has extremely high heat resistance,
It must be chemically inert and of very high purity to prevent harmful contamination of the GaAs single crystal.

しかるに従来の黒鉛材料には次の様な欠点がある。即
ち(i)表面の黒鉛結晶微粒子が容易に脱落しやすくそ
の離脱物がGaAs単結晶に混入し汚染する。(ii)黒鉛は
本質的には多孔質であり、微量の不純物元素が存在して
も熱により極めて容易に表面に拡散する性質を有し、所
謂“out gas"の影響を受け易く、その結果、GaAs単結晶
を汚染する欠点がある。
However, the conventional graphite material has the following disadvantages. That is, (i) the graphite crystal fine particles on the surface easily fall off easily, and the separated matter is mixed into the GaAs single crystal to contaminate it. (Ii) Graphite is porous in nature, has the property of diffusing very easily to the surface due to heat even in the presence of trace amounts of impurity elements, and is susceptible to so-called "out gas". However, there is a disadvantage that the GaAs single crystal is contaminated.

このGaAs単結晶引き上げ装置用黒鉛材料としての上記
難点はGaAs単結晶引き上げばかりに生ずるものではな
く、広くGa化合物単結晶引き上げ装置用黒鉛材料にも生
じ、例えばGaP単結晶、GaSb単結晶引き上げ装置用黒鉛
材料等に於いても同様の難点が生ずるものである。
This difficulty as a graphite material for a GaAs single crystal pulling device occurs not only in a GaAs single crystal pulling device but also widely in a graphite material for a Ga compound single crystal pulling device, for example, for a GaP single crystal and a GaSb single crystal pulling device. Similar difficulties arise in graphite materials and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明が解決しようとする問題点は、従来のGa化合物
単結晶引き上げに於いて使用される黒鉛材料の上記難点
を解消することであり、更に詳しくは黒鉛微粒子の脱落
に基づく汚染がなく、且つ“out gas"に基づく汚染のな
い黒鉛材料を開発することである。
The problem to be solved by the present invention is to eliminate the above-mentioned disadvantages of the graphite material used in the conventional pulling of a Ga compound single crystal.More specifically, there is no contamination based on the falling off of graphite fine particles, and To develop a pollution-free graphite material based on "out gas".

〔問題点を解決するための手段〕[Means for solving the problem]

この問題点は、等方性黒鉛基材の表面上に及びその内
部に、高純度且つ不浸透性の緻密な熱分解炭素被膜を形
成せしめ、及び浸透せしめて成る黒鉛材料をGa化合物の
単結晶引き上げ装置に使用することによって達成され
る。即ち、本発明者は従来のGa化合物単結晶引き上げ装
置用黒鉛材料の上記難点を解決する為に、鋭意研究を重
ねた結果、等方性で好ましくは更に高純度の黒鉛基材の
表面上に及び内部に、炭化水素ガスもしくは炭化水素化
合物等を熱分解させて得られる熱分解炭素(以下PyCと
表記する)の被膜を形成せしめ、及び浸透せしめる時
は、高純度でガス不浸透性の特長を有し、カーボン粉を
飛散しないGa化合物単結晶引き上げ装置用黒鉛材料が得
られることを見出し、ここに本発明を完成するに至っ
た。
The problem is that a high-purity, impermeable, dense pyrolytic carbon coating is formed on and in the surface of an isotropic graphite substrate, and the graphite material formed by infiltration is converted into a single crystal of a Ga compound. This is achieved by using a lifting device. That is, the present inventor has conducted intensive studies in order to solve the above-mentioned difficulties of the conventional graphite material for a Ga compound single crystal pulling apparatus, and as a result, the isotropic and preferably higher purity graphite surface was obtained. When a film of pyrolytic carbon (hereinafter referred to as PyC) obtained by pyrolyzing a hydrocarbon gas or hydrocarbon compound is formed and penetrated inside, it is characterized by high purity and gas impermeability. And found that a graphite material for a Ga compound single crystal pulling apparatus that does not disperse carbon powder can be obtained, and thus completed the present invention.

〔発明の構成並びに作用〕[Configuration and operation of the invention]

以下に本発明を説明するが、説明の便宜上Ga化合物単
結晶引き上げ装置用黒鉛材料として以下にGaAs単結晶引
き上げ装置用黒鉛材料をその代表例として説明する。た
だし、本発明はこれに限定されるものでないことは勿論
である。
Hereinafter, the present invention will be described. For convenience of description, a graphite material for a GaAs single crystal pulling apparatus will be described below as a typical example as a graphite material for a Ga compound single crystal pulling apparatus. However, needless to say, the present invention is not limited to this.

本発明のGaAs単結晶引き上げ装置用黒鉛材料は、熱膨
張係数が0.5×10-6/℃〜6.0×10-6/℃(室温〜400℃)
の等方性黒鉛を高純度化処理(全灰分量が20ppm以下)
し、その黒鉛基材の表面上に及びその内部に不浸透性の
PyCを5〜250μmの膜厚で形成させて及び100μm以上
浸透させて成るものである。そしてこの際のPyC膜は特
に高純度で且つ、不浸透性の緻密で高強度なものである
ことが必要である。ここで、不浸透性とは水銀圧入法で
測定した平均細孔半径が0.1μmを越えないことを意味
し、また高純度とは全灰分量が20ppm以下であることを
意味する。
Graphite material for GaAs single crystal pulling apparatus of the present invention, the thermal expansion coefficient of 0.5 × 10 -6 /℃~6.0×10 -6 / ℃ ( room temperature to 400 ° C.)
Purification of Isotropic Graphite (Total ash content is 20ppm or less)
Impervious on and within the surface of the graphite substrate
PyC is formed by forming a film having a thickness of 5 to 250 μm and penetrating 100 μm or more. The PyC film in this case needs to be particularly high-purity, impermeable, dense and high-strength. Here, impermeability means that the average pore radius measured by the mercury intrusion method does not exceed 0.1 μm, and high purity means that the total ash content is 20 ppm or less.

本発明に於いてはPyC膜は上記の要件を共に具備する
必要があり、これ等のいずれの要件の一つでも満足しな
い時は所期の効果が充分に達成され難い。その膜厚は5
〜250μm程度が適当である。
In the present invention, the PyC film needs to satisfy both of the above-mentioned requirements, and if any one of these requirements is not satisfied, the desired effect is hardly sufficiently achieved. Its film thickness is 5
About 250 μm is suitable.

尚、本発明者が先に出願した特願昭60−98291号に於
いては、黒鉛基材の熱膨張係数(以下CTEという)が0.5
〜3.0×10-6/℃の範囲内であり、且つPyC被覆の膜厚が2
0〜250μmが好ましいものであるが、その後更に鋭意研
究を重ねた結果、黒鉛基材のCTEが3.0〜3.0×10-6/℃の
範囲のものについてPyC被覆せしめてもPyC膜と黒鉛基材
とのCTEの差によるPyC膜の亀裂もしくは剥離を緩和する
ことが可能なものであることを見出したものである。更
に詳しく述べれば本発明に於いては比較的低温低圧つま
り1300℃以下及び50Torr以下で緩徐にPyCを生成せしめ
ることにより、黒鉛基材内部に深くPyCを含浸させるこ
とが出来、且つその上にPyC被膜を形成せしめることに
より、黒鉛基材とPyC被膜の機械的かみ合わせが強固に
なり、黒鉛基材とPyC膜とのCTE差によるPyC膜の亀裂及
び剥離を抑制出来る重要な技術を見出したものである。
またPyCが黒鉛基材内部に含浸されることにより黒鉛基
材表面が緻密になり、機械的強度並びに耐衝撃性に優
れ、カーボン粉の離脱を抑え得ることが出来、著しく耐
久性が向上するものである。
In the Japanese Patent Application No. 60-98291 filed by the present inventors, the coefficient of thermal expansion (hereinafter referred to as CTE) of a graphite base material is 0.5.
~ 3.0 × 10 -6 / ° C and the thickness of the PyC coating is 2
Although 0 to 250 μm is preferable, after further intensive studies, the CTE of the graphite substrate is 3.0 to 3.0 × 10 -6 / ° C. It has been found that cracking or peeling of the PyC film due to the difference in CTE from the above can be alleviated. More specifically, in the present invention, PyC can be impregnated deeply inside the graphite substrate by generating PyC slowly at a relatively low temperature and low pressure, that is, 1300 ° C. or less and 50 Torr or less, and PyC can be further impregnated on the graphite substrate. By forming a film, the mechanical engagement between the graphite substrate and the PyC film is strengthened, and an important technology that can suppress cracking and peeling of the PyC film due to the CTE difference between the graphite substrate and the PyC film was discovered. is there.
In addition, PyC impregnated inside the graphite substrate makes the surface of the graphite substrate dense, has excellent mechanical strength and impact resistance, can suppress the detachment of carbon powder, and significantly improves durability. It is.

而して本発明に於ける黒鉛基材のCTEの範囲としては
0.5〜6.0×10-6/℃が好ましく、この範囲内ではPyCの基
材への浸透、表面被覆が完全となる。通常黒鉛のCTEが
低くなる程異方性が漸増し、機械的強度が減少すること
が認められており、0.5×10-6/℃よりも低いCTEをもつ
黒鉛ではGaAs単結晶引き上げ装置用黒鉛材料に適した機
械的強度が得られ難い。逆にCTEが6.0×10-6/℃よも大
きくなりすぎると、黒鉛基材が緻密になり、結果として
黒鉛基材の細孔が少なく、PyCの浸入が難しくなり、そ
れに伴い上記で述べた黒鉛基材とPyC被膜との機械的か
み合わせが弱くなり、加熱−冷却のサイクル間に黒鉛基
材とPyC膜とのCTE差によりPyC膜の亀裂及び剥離が発生
し保護作用が低下する傾向が現れる。
Thus, the range of CTE of the graphite substrate in the present invention is as follows.
It is preferably from 0.5 to 6.0 × 10 −6 / ° C., and within this range, the penetration of PyC into the substrate and the surface coating are complete. It is generally recognized that the lower the CTE of graphite, the more the anisotropy increases and the mechanical strength decreases.It is recognized that graphite with a CTE lower than 0.5 × 10 -6 / ° C is a graphite material for GaAs single crystal pulling equipment. It is difficult to obtain suitable mechanical strength. Conversely, if the CTE is too large than 6.0 × 10 −6 / ° C., the graphite substrate becomes denser, and as a result, the pores of the graphite substrate are reduced, making it difficult for PyC to infiltrate. The mechanical interlock between the graphite substrate and the PyC film becomes weaker, and the CTE difference between the graphite substrate and the PyC film during the heating-cooling cycle tends to cause cracking and exfoliation of the PyC film, resulting in a lower protective effect. .

一方特公昭47−1003号により黒鉛サセプターに関する
発明が提案されており、また特公昭51−13754号に「熱
分解グラファイトで物品を被覆する方法」が開示されて
いる。しかし乍らこれ等上記2つの発明に於いてはいず
れも所謂含浸工程の際には黒鉛基材内部への含浸だけを
行うことは不可能であり、通常含浸反応と同時にPyC被
膜形成に関与する反応が起こる為、結果的には生成温度
の違うPyC膜が積層することになる。即ち実質的に生成
温度の異なるPyC膜が積層された構造を有するものであ
る。このような生成温度の異なるPyC膜が積層された構
造ではPyC膜どうしのCTE差によりPyC膜の亀裂及び剥離
を生じる。また、生成温度が異なるためPyCの粒径の大
きさが異なり低温と高温とで生成されたPyC層との間に
隙間を生じ、ますます剥離しやすくなる傾向がある。し
かるに本発明に於いては、同一生成温度でPyCの含浸及
びPyC被膜形成の反応を一段で行うことにより上記難点
が生ぜず、その結果黒鉛基材とPyC被膜の機械的かみ合
わせを強固にさせ得るものでありこの事実は本発明者に
よりはじめて見出されたことである。
On the other hand, Japanese Patent Publication No. 47-1003 proposes an invention relating to a graphite susceptor, and Japanese Patent Publication No. 51-13754 discloses a "method of coating an article with pyrolytic graphite". However, in the above two inventions, it is impossible to impregnate only the inside of the graphite substrate during the so-called impregnation step, and it is usually involved in the formation of the PyC film simultaneously with the impregnation reaction. Since a reaction occurs, PyC films having different formation temperatures are eventually stacked. That is, it has a structure in which PyC films having substantially different generation temperatures are stacked. In such a structure in which PyC films having different formation temperatures are stacked, cracks and peeling of the PyC film occur due to the CTE difference between the PyC films. In addition, since the formation temperature is different, the size of the particle size of PyC is different, and a gap is generated between the PyC layer generated at a low temperature and a high temperature, and the PyC layer tends to be more easily peeled. However, in the present invention, by performing the reaction of the impregnation of PyC and the formation of the PyC film at the same formation temperature in one step, the above-described difficulties do not occur, and as a result, the mechanical engagement between the graphite substrate and the PyC film can be strengthened. This fact has been found for the first time by the present inventors.

本発明に於いて黒鉛基材内部へのPyCの含浸深さは所
期の目的を達成させる為に100μm以上が好ましい。こ
れに適しないと黒鉛基材とPyC被膜との機械的かみ合わ
せの強度が低下する傾向がある。そしてPyC膜厚として
は黒鉛基材のCTEが0.5〜3.0×10-6/℃の範囲内ではPyC
膜厚は5〜250μm程度であることが望ましい。この膜
厚があまりにも大きくなり過ぎると加熱−冷却のサイク
ルを急速に行うと亀裂もしくは剥離を生じる傾向があ
り、黒鉛基材が露出し被膜形成の効果が不充分となる場
合がある。また逆にあまり膜厚が小さくなりすぎると被
膜形成に基づく所期の効果が充分に発揮され難い。また
本発明者による先の出願たる特願昭60−98291号によれ
ば黒鉛基材のCTEが0.5〜3.0×10-6/℃で、そのPyC被覆
せしめる膜厚が20〜250μmであることが望ましいとな
っているが、本発明に於けるPyCを黒鉛基材内部へ含浸
せしめることにより、耐熱衝撃性等の特性が更に向上す
る為、PyCを5μm程度被覆せしめることにより、ただ
単に20μmのPyC被膜を形成せしめたものと比較して同
等以上の効果を発揮するものである。また、黒鉛基材の
CTEが3.0〜6.0×10-6/℃と大きい範囲内では、PyC膜厚
は5〜60μmであることが望ましい。PyCを黒鉛基材内
部に含浸することにより、黒鉛基材とPyC被膜の機械的
かみ合わせが向上するにもかかわらず、約60μmを越え
る範囲でPyC被覆せしめると加熱−冷却の際に黒鉛基材
とPyC被膜とのCTE差によりPyC膜の亀裂及び剥離を生じ
る傾向にある。
In the present invention, the depth of impregnation of PyC into the graphite substrate is preferably 100 μm or more in order to achieve the intended purpose. If it is not suitable for this, the strength of mechanical engagement between the graphite substrate and the PyC coating tends to decrease. And, as for the PyC film thickness, when the CTE of the graphite base material is in the range of 0.5 to 3.0 × 10 −6 / ° C.,
The thickness is desirably about 5 to 250 μm. If the film thickness is too large, cracking or peeling tends to occur if the heating-cooling cycle is performed rapidly, and the graphite substrate may be exposed, and the effect of film formation may be insufficient. Conversely, if the film thickness is too small, the desired effect based on the film formation cannot be sufficiently exerted. According to the Japanese Patent Application No. 60-98291 filed by the present inventor, the CTE of the graphite base material is 0.5 to 3.0 × 10 −6 / ° C., and the thickness of the PyC coating is 20 to 250 μm. Although it is desirable, by impregnating the inside of the graphite base material with PyC in the present invention, properties such as thermal shock resistance are further improved. It exerts an effect equal to or greater than that obtained by forming a film. In addition, graphite base
When the CTE is as large as 3.0 to 6.0 × 10 −6 / ° C., the PyC film thickness is desirably 5 to 60 μm. By impregnating PyC inside the graphite substrate, the mechanical interlock between the graphite substrate and the PyC film is improved. The CTE difference from the PyC film tends to cause cracking and peeling of the PyC film.

以上を要約すると黒鉛基材のCTEは0.5〜6.0×10-6/℃
の範囲内が好ましく、その時のPyC膜厚は特に黒鉛基材
のCTEが、0.5〜3.0×10-6/℃の範囲内では5〜250μm
程度、CTEが3.0〜6.0×10-6/℃の範囲内では5〜60μm
程度であることが好ましい。
To summarize the above, the CTE of a graphite substrate is 0.5 to 6.0 × 10 -6 / ° C.
Is preferred, the PyC film thickness at that time, especially the CTE of the graphite substrate, is in the range of 0.5 to 3.0 × 10 -6 / ° C. 5-250 μm
Degree, 5-60 μm when CTE is in the range of 3.0-6.0 × 10 -6 / ° C
It is preferred that it is about.

尚、上記特公昭47−1003号や特公昭51−13754号と本
発明とを比較した場合、特に注目すべきことは本発明に
於いて使用する黒鉛基材は、高純度黒鉛であることであ
る。高純度黒鉛を使用することにより基材からの不純物
の影響が少なく、PyC膜厚を上記2つの発明でのPyCより
も薄く出来ることである。従ってPyC被覆に要する時間
が短縮出来、即ち、製造コストを安く出来るという利点
をもっている。
It should be noted that, when comparing JP-B-47-1003 and JP-B-51-13754 with the present invention, it is particularly notable that the graphite substrate used in the present invention is high-purity graphite. is there. By using high-purity graphite, the influence of impurities from the base material is small, and the thickness of PyC can be made smaller than that of PyC in the above two inventions. Therefore, there is an advantage that the time required for PyC coating can be reduced, that is, the manufacturing cost can be reduced.

ここで特開昭60−103087号によれば、「異方性の小さ
いアモルファスなPyCを被覆することによりPyC膜の亀裂
及び剥離を防止する。」と開示されているが、本発明に
於いてはCTEが0.5〜3.0×10-6/℃と低い範囲の黒鉛基材
を用いるか、或いはCTEが3.0〜6.0×10-6/℃の高い範囲
の黒鉛基材を用いる場合には、先ずPyCを基材内部に100
μm以上含浸し、更にその上にPyC被膜を形成すること
により、機械的かみ合わせが強固になり、PyC膜の亀裂
及び剥離を防止出来る為、異方性の小さいアモルファス
なPyCを被覆する必要がない。
Here, according to Japanese Patent Application Laid-Open No. 60-103087, it is disclosed that "Crack and peeling of the PyC film are prevented by coating with amorphous PyC having small anisotropy." If the CTE uses a graphite substrate with a low range of 0.5 to 3.0 × 10 −6 / ° C. or a CTE has a high range of graphite substrate of 3.0 to 6.0 × 10 −6 / ° C., first use PyC 100 inside the substrate
By impregnating more than μm and further forming a PyC film thereon, the mechanical engagement becomes strong and cracking and peeling of the PyC film can be prevented, so there is no need to coat amorphous PyC with small anisotropy .

本発明に於いて形成するPyC被膜のPyC自体は、従来か
ら良く知られているものであり、炭素質材料例えばC3H8
等の炭化水素ガスもしくは炭化水素化合物等を熱分解す
ることにより生成する炭素であることもまた良く知られ
ている。
PyC itself of the PyC film formed in the present invention is well known in the art, and is a carbonaceous material such as C 3 H 8.
It is also well known that carbon is generated by thermally decomposing a hydrocarbon gas or a hydrocarbon compound.

本発明に於いて上記PyC被膜を黒鉛基材の表面に形成
させる方法自体は何等限定されず、上記所定の要件を有
するPyC被膜が形成される限り何等その方法は限定され
るものではなく、各種の形成方法がいずれも適用出来
る。
In the present invention, the method of forming the PyC film on the surface of the graphite substrate itself is not limited at all, and the method is not limited in any way as long as the PyC film having the predetermined requirements is formed. Any method can be applied.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を更に具体的に説明する
が、本発明はこれ等の例に限定されるものではない。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1 使用した基材である黒鉛ルツボの特性は次の様なもの
であった。
Example 1 The characteristics of the graphite crucible used as the base material were as follows.

CTE;2.1×10-6/℃、5.3×10-6/℃(室温〜400℃) 嵩比重;1.50(CTEが2.1の黒鉛) 1.77(CTEが5.3の黒鉛) 異方比;1.01、1.01 灰分;20ppm< 寸法;ODφ60×IDφ50×l50mmルツボ(OD;外径、ID;内
径) 上記の黒鉛基材を1280℃に加熱してC3H8ガスを18/m
in(S.T.P.)、H2ガスを30/min(S.T.P.)の流速で流
し炉内圧を34Torrに保持して、PyCを黒鉛基材内部に約1
28μm含浸させた後、PyC被膜を形成させた。被膜の厚
さは生成時間を変えて第1表(CTEが2.1の黒鉛基材の場
合)、第2表(CTEが5.3の黒鉛基材の場合)それぞれに
示す膜厚に調整した。
CTE; 2.1 × 10 -6 /℃,5.3×10 -6 / ℃ ( room temperature to 400 ° C.) bulk density; 1.50 (graphite CTE is 2.1) 1.77 (graphite CTE is 5.3) anisotropic ratio: 1.01,1.01 Ash ; 20ppm <Dimension; ODφ60 × IDφ50 × l50mm crucible (OD; OD, ID; ID) The above graphite base material is heated to 1280 ℃ and C 3 H 8 gas is 18 / m
in (STP), and holds the flow furnace pressure of H 2 gas at a flow rate of 30 / min (STP) to 34Torr, about 1 PyC inside graphite substrate
After impregnation of 28 μm, a PyC coating was formed. The thickness of the film was adjusted to the film thickness shown in Table 1 (in the case of a graphite substrate having a CTE of 2.1) and Table 2 (in the case of a graphite substrate having a CTE of 5.3) by changing the generation time.

ここでPyC含浸及び被覆は第1図の装置を使用し、こ
の黒鉛基材を第1図に示す通り、試料置き台の上にセッ
トして行った。加熱方法は黒鉛ヒーターの抵抗加熱によ
り行い、C3H8ガス、H2ガスは第1図に示す通り、試料室
の下から導入し、上へと排出した。但し第1図中(1)
は真空容器、(2)はガス排出管、(3)は断熱材、
(4)は黒鉛ヒーター、(5)は黒鉛サセプター、
(6)は断熱材載置台、(7)は黒鉛サポートポスト、
(8)はガス導入管、(9)は試料載置台、(10)は試
料、(11)はガス排気管を示す。
Here, PyC impregnation and coating were carried out by using the apparatus shown in FIG. 1 and setting this graphite substrate on a sample table as shown in FIG. The heating method was performed by resistance heating of a graphite heater, and C 3 H 8 gas and H 2 gas were introduced from below the sample chamber and discharged upward as shown in FIG. However, (1) in FIG.
Is a vacuum vessel, (2) is a gas exhaust pipe, (3) is a heat insulating material,
(4) is a graphite heater, (5) is a graphite susceptor,
(6) is a heat insulating material mounting table, (7) is a graphite support post,
(8) shows a gas introduction pipe, (9) shows a sample mounting table, (10) shows a sample, and (11) shows a gas exhaust pipe.

上記実施例1で得られたPyC被覆黒鉛材料について各
種物性を測定した。
Various physical properties of the PyC-coated graphite material obtained in Example 1 were measured.

<金属Gaとの反応性> 最も過酷な条件として溶融Gaとの反応性を測定した。
即ち上記の方法で得られたPyC被覆黒鉛ルツボに金属Ga
を入れ、高周波炉で1300℃まで加熱し、Gaを溶融させ、
1時間反応させた。試料数は夫々5ケである。
<Reactivity with Metal Ga> The reactivity with molten Ga was measured as the most severe condition.
That is, metallic Ga is added to the PyC-coated graphite crucible obtained by the above method.
And heated to 1300 ° C in a high frequency furnace to melt Ga,
The reaction was performed for 1 hour. The number of samples is 5 each.

<急熱急冷試験> 実施例1で得られたPyC被覆黒鉛ルツボを用いて急熱
急冷試験を行った。即ち5分間に1300℃に加熱した黒鉛
ルツボを、次に、水中に投じてPyC被膜の剥離状況を調
べた。試料数は夫々5ケである。
<Quick Heat Quenching Test> A rapid heat quenching test was performed using the PyC-coated graphite crucible obtained in Example 1. That is, the graphite crucible heated to 1300 ° C. for 5 minutes was then thrown into water to examine the peeling state of the PyC coating. The number of samples is 5 each.

<不浸透性> 上記の黒鉛ルツボと同時にφ10×20mmの寸法に加工し
た黒鉛基材を入れ、同様の方法でPyC被覆し、水銀圧入
法により、平均細孔半径を測定し、不浸透性の評価を行
った。これ等の結果を第1及び第2表に示す。
<Impermeable> A graphite base machined into a size of φ10 × 20 mm was placed at the same time as the above graphite crucible, coated with PyC by the same method, and the average pore radius was measured by a mercury intrusion method. An evaluation was performed. The results are shown in Tables 1 and 2.

第1、第2表より黒鉛基材のCTEが0.5〜3.0×10-6/℃
の範囲内ではPyC被覆せしめる膜厚は5〜250μm程度、
CTEが3.0〜6.0×10-6/℃の範囲内では5〜60μm程度
が、カーボン微粉が飛散せず不浸透性である。従ってこ
れ等は極めて効果的である事がわかる。
From Tables 1 and 2, the CTE of the graphite substrate is 0.5-3.0 × 10 -6 / ° C.
Within the range, the film thickness to be coated with PyC is about 5 to 250 μm,
When the CTE is in the range of 3.0 to 6.0 × 10 −6 / ° C., about 5 to 60 μm is impermeable because the carbon fine powder does not scatter. Therefore, it can be seen that these are extremely effective.

実施例2 下記第3表に示す通り、CTEを変えた黒鉛基材を実施
例1と同じ条件で50μmのPyCを被覆して急熱急冷試験
を行った。この結果を第3表に示す。
Example 2 As shown in Table 3 below, a graphite substrate having a different CTE was coated with 50 μm of PyC under the same conditions as in Example 1 to perform a rapid heating and quenching test. Table 3 shows the results.

第3表よりPyCを被覆する上で剥離や亀裂を生じない
0.5〜6.0×10-6/℃の範囲のCTEをもつ黒鉛基材を使用す
ることが好ましいものであることが判る。
Table 3 shows that there is no peeling or cracking when coating PyC.
It turns out that it is preferable to use a graphite substrate having a CTE in the range of 0.5 to 6.0 × 10 −6 / ° C.

以上より、C3H8ガス等の炭化水素ガスもしくは炭化水
素化合物を高純度の等方性黒鉛基材上で熱分解せしめな
るGa化合物単結晶引き上げ装置用黒鉛材料は高純度でし
かも不浸透性でカーボン微粉の付着・飛散しない優れた
黒鉛材料であると言える。
From the above, the graphite material for the Ga compound single crystal pulling device, which thermally decomposes a hydrocarbon gas such as C 3 H 8 gas or a hydrocarbon compound on a high-purity isotropic graphite substrate, is high-purity and impervious Therefore, it can be said that it is an excellent graphite material which does not adhere and scatter carbon fine powder.

〔発明の効果〕〔The invention's effect〕

本発明に於いては熱膨張係数が0.5×10-6/℃〜6.0×1
0-6/℃(室温〜400℃)の等方性高純度黒鉛基材の表面
上に及びその内部に緻密でしかも高強度なPyCを、その
膜厚を5〜250μmで形成させて及び100μm以上含浸さ
せることにより、例えば実施例1で示した様に高純度で
且つ不浸透性の特長を有し、カーボン分が飛散付着しな
い等優れた効果を発揮する。このため反覆使用にも長時
間耐え、且つ高い耐久性を有するものであり、産業上の
効果は極めて大きい。
In the present invention, the coefficient of thermal expansion is 0.5 × 10 −6 / ° C. to 6.0 × 1
A dense and high-strength PyC having a thickness of 5 to 250 μm is formed on the surface of and within the isotropic high-purity graphite substrate of 0 −6 / ° C. (room temperature to 400 ° C.), and 100 μm By impregnation as described above, for example, as shown in Example 1, it has the characteristics of high purity and impermeability, and exhibits excellent effects such as no scattering of carbon components. Therefore, it can withstand repeated use for a long time and has high durability, and the industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明材料を製造する際に使用する装置の一例
を示す図面である。 1……真空容器 2……ガス排出管 3……断熱材 4……黒鉛ヒーター 5……黒鉛サセプター 6……断熱材載置台 7……黒鉛サポートポスト 8……ガス導入管 9……試料載置台 10……試料 11……ガス排気管
FIG. 1 is a drawing showing an example of an apparatus used for producing the material of the present invention. DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Gas discharge pipe 3 ... Heat insulation material 4 ... Graphite heater 5 ... Graphite susceptor 6 ... Heat insulation material mounting table 7 ... Graphite support post 8 ... Gas introduction pipe 9 ... Sample mounting Table 10 …… Sample 11 …… Gas exhaust pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−103087(JP,A) 特開 昭61−256993(JP,A) 特開 昭62−252394(JP,A) 特開 昭63−79761(JP,A) 特公 昭47−1003(JP,B2) 特公 昭51−13754(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-103087 (JP, A) JP-A-61-256993 (JP, A) JP-A-62-252394 (JP, A) JP-A 63-252394 79761 (JP, A) JP-B 47-1003 (JP, B2) JP-B 51-13754 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】室温から400℃までの熱膨張係数が0.5×10
-6/℃〜6.0×10-6/℃及び全灰分量が20ppm以下の高純度
の等方性黒鉛基材の表面上に、全灰分量が20ppm以下の
高純度の、且つ水銀圧入法で測定した平均細孔半径が0.
1μmを超えない不浸透性の緻密な熱分解炭素を5〜250
μmの厚みで被覆して被膜を形成せしめ、及び前記等方
性黒鉛基材の内部に前記熱分解炭素を表面から100μm
以上まで浸透せしめて成るGa化合物単結晶引き上げ装置
用黒鉛材料。
1. The thermal expansion coefficient from room temperature to 400 ° C. is 0.5 × 10
-6 / ℃ ~ 6.0 × 10 -6 / ℃ and the total ash content is 20ppm or less on the surface of a high-purity isotropic graphite substrate, the total ash content is 20ppm or less high purity, and mercury intrusion method The measured average pore radius is 0.
5-250 impervious dense pyrolytic carbon not exceeding 1 μm
to form a film by coating with a thickness of μm, and the pyrolytic carbon is 100 μm from the surface inside the isotropic graphite substrate.
A graphite material for a Ga compound single crystal pulling device that has been impregnated to the above.
JP62072686A 1987-03-25 1987-03-25 Graphite material for Ga compound single crystal pulling device Expired - Lifetime JP2620075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072686A JP2620075B2 (en) 1987-03-25 1987-03-25 Graphite material for Ga compound single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072686A JP2620075B2 (en) 1987-03-25 1987-03-25 Graphite material for Ga compound single crystal pulling device

Publications (2)

Publication Number Publication Date
JPS63236798A JPS63236798A (en) 1988-10-03
JP2620075B2 true JP2620075B2 (en) 1997-06-11

Family

ID=13496501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072686A Expired - Lifetime JP2620075B2 (en) 1987-03-25 1987-03-25 Graphite material for Ga compound single crystal pulling device

Country Status (1)

Country Link
JP (1) JP2620075B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684276B2 (en) * 1989-03-02 1994-10-26 イビデン株式会社 Gas rectifying member for single crystal pulling device
JPH069290A (en) * 1992-06-26 1994-01-18 Hitachi Cable Ltd Method for growing compound semiconductor single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103087A (en) * 1983-11-08 1985-06-07 日立化成工業株式会社 Graphite member for heating
JPS61256993A (en) * 1985-05-09 1986-11-14 Toyo Tanso Kk Graphite crucible and heater for silicon single crystal pulling device
JPH0662355B2 (en) * 1986-04-23 1994-08-17 イビデン株式会社 Method for manufacturing graphite member for semiconductor melting device
JPS6379761A (en) * 1986-09-19 1988-04-09 東洋炭素株式会社 Graphitic material for melting metal

Also Published As

Publication number Publication date
JPS63236798A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US3925577A (en) Silicon carbide coated graphite members and process for producing the same
EP0149044B1 (en) Boron nitride containing titanium nitride, method of producing the same and composite ceramics produced therefrom
KR100310317B1 (en) apparatus for pulling silicon single crystall
JP2004525050A (en) Thermal conductive material
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
US3385723A (en) Carbon article coated with beta silicon carbide
US4816338A (en) Glassy carbon-coated article
KR100427118B1 (en) Heat treatment jig and its manufacturing method
JPS61256993A (en) Graphite crucible and heater for silicon single crystal pulling device
JP2620075B2 (en) Graphite material for Ga compound single crystal pulling device
JP2000302577A (en) Graphite member coated with silicon carbide
EP0759416B1 (en) Vessel of pyrolytic boron nitride
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JPH0825838B2 (en) Graphite material for epitaxial growth
US6054187A (en) Method of manufacturing a boron carbide film on a substrate
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JP2519071B2 (en) Method for producing carbon material with low outgas
RU2370568C1 (en) Method of fabrication of quartz containers
JPH0617236A (en) Vessel for molten metal
JPH0583517B2 (en)
JPH05310487A (en) Production of sic-coated graphite material
JP3146737B2 (en) Plasma facing material for fusion devices
JPS6379761A (en) Graphitic material for melting metal
JPH0788233B2 (en) Graphite jig for glass molding
WO1996006202A1 (en) Apparatus and method for making metal oxide sputtering targets

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11