JPH03141646A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03141646A
JPH03141646A JP20255989A JP20255989A JPH03141646A JP H03141646 A JPH03141646 A JP H03141646A JP 20255989 A JP20255989 A JP 20255989A JP 20255989 A JP20255989 A JP 20255989A JP H03141646 A JPH03141646 A JP H03141646A
Authority
JP
Japan
Prior art keywords
region
insulating film
contact
wiring
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20255989A
Other languages
Japanese (ja)
Inventor
Hideto Goto
秀人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11238780A external-priority patent/JPS5736865A/en
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20255989A priority Critical patent/JPH03141646A/en
Publication of JPH03141646A publication Critical patent/JPH03141646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To improve the reliability in connection by extending the end side of a diffused layer for wiring in contact with a field insulating film, and using a part which is separated from the field insulating film as a connecting region with a lead-out electrode. CONSTITUTION:A diffused region 6 for wiring and a lead-out electrode 4 are orthogonally intersected at a part which is separated from a field insulating film 7, and a deep embedded contact region 9 is formed. The lead-out electrode 4 is made to pass a part of the region 6 and terminated at an end 4'. A gate electrode 3 and the lead-out electrode 4 are formed of polycrystalline silicon layers 3b and 4b containing impurities and heat resisting metal layers 3a and 4a. In this way, an end side 6' of the region 6 is made to extend in contact with the insulating film 7, and a part which is slightly separated from the insulating film 7 is used as a connecting region with the lead-out electrode 4. Therefore, the connection is highly reliable. Since the lead-out electrode 4 is made to pass a part of the region 6 and terminated at the end 4', the sufficient contact area can be secured even if deviation in alignment and the like occur.

Description

【発明の詳細な説明】 本発明は半導体装置に係り、特に抵抗が低くかつ拡散層
配線領域と直接接続できるゲート電極を有し安定な閾値
電圧を有する事により高速高集積化に適し、しかも上記
直接接続が安定に行なわれる半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and in particular has a gate electrode that has low resistance and can be directly connected to a diffusion layer wiring region, and has a stable threshold voltage, making it suitable for high speed and high integration. The present invention relates to a semiconductor device in which direct connection is stably performed.

従来旧S型半導体装置としては、不純物を含んだ多結晶
シリコンをゲート電極とするシリコンゲート製胴S半導
体装置が多用されてきた。特にリンを不純物として含有
したシリコンゲート製胴S半導体装置は、閾値電圧の安
定性が良好で、実用化されている旧S型半導体装置の大
部分が多結晶シリコンゲート中にリンを含有している。
Conventionally, as an old S-type semiconductor device, a silicon gate S-type semiconductor device in which a gate electrode is made of polycrystalline silicon containing impurities has been widely used. In particular, S-type semiconductor devices made of silicon gates containing phosphorus as an impurity have good threshold voltage stability, and most of the old S-type semiconductor devices in practical use contain phosphorus in the polycrystalline silicon gate. There is.

一方、多結晶シリコンによるゲート電極は、層抵抗が数
Ω10と比較的高い為に、回路の高速動作には好ましく
ない。一方、モリブデン、タングステン等の耐熱金属を
ゲート電極として用いた、いわゆるR−MOS(Rer
ractlve−metal MOS)構造は、ゲート
電極の層抵抗が、1Ω/口以下になり、高速動作には適
しているが、以下に述べる欠点を有していた。
On the other hand, a gate electrode made of polycrystalline silicon has a relatively high layer resistance of several Ω10, which is not preferable for high-speed operation of the circuit. On the other hand, so-called R-MOS (Rer
Although the ractlve-metal MOS structure has a gate electrode layer resistance of 1 ohm or less and is suitable for high-speed operation, it has the following drawbacks.

すなわち耐熱金属を材料とするゲート電極は拡散層配線
領域との直接接続が不可能なことである。
That is, a gate electrode made of a heat-resistant metal cannot be directly connected to a diffusion layer wiring region.

シリコンゲート製胴S半導体装置においては、多結晶シ
リコンゲート電極と半導体基体を直接接触し、ソース、
ドレイン拡散層形成時に同時にシリコンゲート電極を貫
通して、前記シリコンゲート電極と直接接触した半導体
基体内に不純物を導入して、いわゆる埋め込みコンタク
ト方式により拡散層配線と多結晶シリコンゲート電極と
の直接接続が可能であったが、耐熱金属をゲート電極と
する場合には、不純物をゲート電極を貫通して拡散する
事が困難な為、ゲート電極が直接半導体基体に接触する
領域に、リーク電流の少い埋めこみコンタクト領域を形
成する事はできなかった。故に、・耐熱金属をゲート電
極として使用すると、ゲート電極と拡散層領域を回路構
成上接続する必要が成る際には、第2の金属配線層を介
して接続しなくてはならず、装置の集積度を大きく低下
させていた。又、閾値電圧の安定性が悪い事である。モ
リブデン、タングステン等の耐熱金属をゲート電極とし
て使用した場合、高温バイアス処理下では、ナトリウム
等の可動イオンのゲート絶縁膜中の拡散により、閾値電
圧がシフトし、リンを含有した多結晶シリコンをゲート
とする場合程の安定性は得られない。
In a silicon gate body S semiconductor device, the polycrystalline silicon gate electrode and the semiconductor substrate are brought into direct contact, and the source,
At the same time as the drain diffusion layer is formed, an impurity is introduced into the semiconductor substrate that penetrates the silicon gate electrode and is in direct contact with the silicon gate electrode, thereby directly connecting the diffusion layer wiring and the polycrystalline silicon gate electrode using a so-called buried contact method. However, when using a heat-resistant metal as the gate electrode, it is difficult to diffuse impurities through the gate electrode, so it is difficult to diffuse impurities through the gate electrode, so it is difficult to diffuse the impurity through the gate electrode. It was not possible to form a deep buried contact area. Therefore, if a heat-resistant metal is used as the gate electrode, when it is necessary to connect the gate electrode and the diffusion layer region in terms of the circuit configuration, the connection must be made through the second metal wiring layer, which causes problems in the device. This greatly reduced the degree of integration. Another problem is that the stability of the threshold voltage is poor. When a heat-resistant metal such as molybdenum or tungsten is used as a gate electrode, under high-temperature bias treatment, the threshold voltage shifts due to the diffusion of mobile ions such as sodium in the gate insulating film, and polycrystalline silicon containing phosphorus is used as the gate electrode. The stability cannot be obtained as much as in the case of .

一方これらの欠点を除去するために、多結晶シリコンと
耐熱金属との二層構造をゲート電極、引き出し電極に用
いていた。しかしながらこの引き出し電極をソース、ド
レイン等の素子領域に接続するときも、従来技術では厚
く一部埋設せるフィールド絶縁膜に隣接する個所で行な
われていた。
On the other hand, in order to eliminate these drawbacks, a two-layer structure of polycrystalline silicon and a heat-resistant metal was used for the gate electrode and extraction electrode. However, in the prior art, this lead-out electrode was connected to element regions such as the source and drain at a location adjacent to a partially buried field insulating film.

このようなフィールド絶縁膜に接するところは結晶がみ
だれているからリーク電流その他で信頼性の点に問題を
生じる。しかも従来技術では本来のソース、ドレイン領
域の深さよりも浅い埋込み拡散を行っていたから上記問
題はさらに重大となる。
Since crystals are thick in the area in contact with such a field insulating film, reliability problems arise due to leakage current and other problems. Moreover, in the prior art, the buried diffusion was performed to a depth shallower than the original depth of the source and drain regions, making the above problem even more serious.

本発明の目的は上記欠点を除去した有効な半導体装置を
提供することである。
An object of the present invention is to provide an effective semiconductor device that eliminates the above-mentioned drawbacks.

本発明の特徴は半導体基体の主表面に一部該試体に埋設
する厚いフィールド絶縁膜が選択的に設けられ、端辺を
該フィールド絶縁膜に接した細長い形状の配線用拡散領
域が一方向に延在し、半導体基体の主表面から部分的に
各々延在するソース領域及びドレイン領域を有し、これ
らソース領域とドレイン領域との間の領域上に、ゲート
絶縁膜を介してゲート電極を有した旧S型電界効果型の
半導体装置において、前記ゲート電極及び該ゲート電極
より延在する引き出し電極は、不純物を含有した多結晶
シリコンとこの上に位置する耐熱金属とからなる二層構
造を有し、かつ前記ゲート電極より延在する前記引き出
し電極は一定の巾を有して前記一方向とは直角の方向に
のびて前記配線用拡散領域と直交しかつ該配線用拡散領
域を通り過ぎたところにおいて終端し、これにより該配
線用拡散領域の前記フィールド絶縁膜と接した前記端辺
の近傍でかつ該端辺より離間した主表面の個所と、前記
引き出し電極の前記終端した端の近傍でかつ鎖端より離
間した個所とが接触している半導体装置にある。ここで
接触した前記配線用拡散領域の部分には、前記多結晶シ
リコンより拡散した不純物により形成されかつ前記ソー
ス、ドレイン領域および該配線用拡散領域の延在せる他
の部分よりも深く形成された埋め込みコンタクト領域を
有し、かかる構成により該深い埋め込みコンタクト領域
は、前記フィールド絶縁膜と接する前記配線用拡散領域
の端辺より離間した個所に設けられていることが好まし
い。埋込みコンタクト領域を除く配線用拡散領域の他の
部分は、ソース、ドレイン領域と同じ深さに形成される
ことができる。
A feature of the present invention is that a thick field insulating film is selectively provided on the main surface of the semiconductor substrate, partially buried in the specimen, and a long and narrow wiring diffusion region whose end side is in contact with the field insulating film is oriented in one direction. The semiconductor substrate has a source region and a drain region that extend and partially extend from the main surface of the semiconductor substrate, and a gate electrode is provided on the region between the source region and the drain region with a gate insulating film interposed therebetween. In the old S-type field effect semiconductor device, the gate electrode and the extraction electrode extending from the gate electrode have a two-layer structure consisting of polycrystalline silicon containing impurities and a heat-resistant metal located thereon. and the extraction electrode extending from the gate electrode has a certain width, extends in a direction perpendicular to the one direction, intersects at right angles with the wiring diffusion region, and passes through the wiring diffusion region. terminating at a location on the main surface near the edge of the wiring diffusion region in contact with the field insulating film and spaced apart from the edge; and near the terminated end of the lead-out electrode. This occurs in a semiconductor device in which a point spaced apart from the end of the chain is in contact with the other end. The portion of the wiring diffusion region contacted here is formed of impurities diffused from the polycrystalline silicon and is formed deeper than the source, drain region and other extending portions of the wiring diffusion region. Preferably, the semiconductor device has a buried contact region, and with such a structure, the deep buried contact region is provided at a location spaced apart from an edge of the wiring diffusion region in contact with the field insulating film. The other portions of the wiring diffusion region except for the buried contact region may be formed at the same depth as the source and drain regions.

又、配線用拡散領域の引き出し電極と接触する部分およ
びその近傍を除く他の部分上には、フィールド絶縁膜よ
りもうすい絶縁膜を設けることができる。
Further, an insulating film thinner than the field insulating film can be provided on other parts of the wiring diffusion region except for the part in contact with the extraction electrode and the vicinity thereof.

第1図(a)に本発明の実施例の構成の平面図を、第1
図(b)に第1図(a)のA−Bの断面図を示す。
FIG. 1(a) shows a plan view of the configuration of the embodiment of the present invention.
FIG. 1(b) shows a sectional view taken along line AB in FIG. 1(a).

これらの図に於て、1は半導体基体、2はゲート絶縁膜
、2′はうすい絶縁膜、3はゲート電極、4はゲート電
極3より延在した引き出し電極、5a  5bはソース
又はドレイン拡散層、6は配線用拡散領域、7は厚いフ
ィールド絶縁膜、8は引きだし電極4と拡散領域6との
接続部のうすい絶縁膜の開孔領域、9は開孔領域8を通
じて、引き出し電極4より拡散された不純物により形成
された埋め込みコンタクト領域を示す。図から明らかの
ように配線用拡散領域6は同じ111をもってX方向に
延在しこれと引き出し電極4のY方向に同じ111をも
って延在する部分とはフィールド絶縁膜7より図で右側
に離れたところで直交しており、この離れたところで深
い埋込みコンタクト領域9を形成している。すなわち配
線用拡散領域6はその端辺6′をフィールド絶縁膜7に
接してX方向に延在し、フィールド絶縁膜7よりも少し
離れたいる。したがって0合せずれ等が生しても十分の
接触面積が確保される。又、ゲート電極3及び引き出し
電極4は下地に不純物を含有した多結晶からなる3b、
4b、及びその上に位置するモリブデン、タングステン
等の耐熱金属JW3a、4aからなる2層構造を有して
いるので、抵抗は抵抗率の小さい耐熱金属層で決定され
、層抵抗1Ω10以下にする事が容易である。又、閾値
電圧の安定性に関しては、ゲート絶縁膜2に接触するの
は、ゲート電極3の下部の不純物を含有した多結晶3b
であるので、シリコンゲート型電界効果半導体装置と同
等の特性が得られる。引き出し電極4と半導体基体1が
直接接触する領域では開孔部8を通じて、引き出し電極
4の下部の不純物を含有した多結晶シリコン4bから拡
散した不純物により、他の部分6よりも深い埋め込みコ
ンタクト領域9が形成されている為に信頼性の良いコン
タクト構造となり、又、前記多結晶シリコン3b。
In these figures, 1 is a semiconductor substrate, 2 is a gate insulating film, 2' is a thin insulating film, 3 is a gate electrode, 4 is an extraction electrode extending from the gate electrode 3, and 5a and 5b are source or drain diffusion layers. , 6 is a wiring diffusion region, 7 is a thick field insulating film, 8 is an aperture region in the thin insulating film at the connection between the extraction electrode 4 and the diffusion region 6, and 9 is a diffusion region from the extraction electrode 4 through the aperture region 8. 3 shows a buried contact region formed by doped impurities. As is clear from the figure, the wiring diffusion region 6 extends in the X direction with the same 111, and this and the part of the extraction electrode 4 extending in the Y direction with the same 111 are separated from the field insulating film 7 to the right in the figure. By the way, they are perpendicular to each other, and a deep buried contact region 9 is formed at this remote location. That is, the wiring diffusion region 6 extends in the X direction with its end side 6' in contact with the field insulating film 7, and is a little farther from the field insulating film 7. Therefore, even if misalignment occurs, a sufficient contact area is ensured. Further, the gate electrode 3 and the extraction electrode 4 are made of polycrystalline material 3b containing impurities in the base,
4b, and heat-resistant metal JW3a and 4a such as molybdenum and tungsten located above it, the resistance is determined by the heat-resistant metal layer with low resistivity, and the layer resistance should be 1Ω10 or less. is easy. Regarding the stability of the threshold voltage, the polycrystal 3b containing impurities at the bottom of the gate electrode 3 is in contact with the gate insulating film 2.
Therefore, characteristics equivalent to those of a silicon gate field effect semiconductor device can be obtained. In the area where the extraction electrode 4 and the semiconductor substrate 1 are in direct contact, impurities diffused from the impurity-containing polycrystalline silicon 4b at the lower part of the extraction electrode 4 through the opening 8 form a buried contact region 9 deeper than other parts 6. Since the polycrystalline silicon 3b is formed, it becomes a highly reliable contact structure.

4b中に含有している不純物の極性を、拡散層領域6と
同型に選んでおけば引き出し電極4と配線用拡散層領域
6との電気的接続を、埋めこみコンタクト領域9を介し
て、他の金属配線層等の介助を要さずに形成する事がで
きるので、集積度の大幅な向上が計れる。
If the polarity of the impurity contained in 4b is selected to be the same as that of the diffusion layer region 6, the electrical connection between the extraction electrode 4 and the wiring diffusion layer region 6 can be established via the buried contact region 9. Since it can be formed without the aid of a metal wiring layer or the like, the degree of integration can be significantly improved.

次に、第2図(a)乃至第2図(e)に従って、本発明
の実施例としてNチャンネル型MO3電界効果半導体装
置について、その代表的な製造方法に沿って説明する。
Next, referring to FIGS. 2(a) to 2(e), an N-channel type MO3 field effect semiconductor device as an embodiment of the present invention will be described along with a typical manufacturing method thereof.

P型シリコン基体11の表面に公知の酸化法により厚い
フィールド酸化膜17と薄いゲート酸化膜12、それと
同じうすい酸化膜12′を同時に形成し、埋め込みコン
タクト領域に開孔部18を設ける(第2図(a))。次
いで、リンをドープした多結晶シリコン層20を形成し
、熱処理する事により、開孔部18を通して多結晶シリ
コン層20よりシリコン基体11内にリンを拡散し深い
埋めこみコンタクト領域19を形成する(第2図(b)
)。次いで、モリブデン層よりなるゲート電極13a及
び配線用の引き出し電極14aを連続的に形成する(第
2図(C))。次にモリブデン層よりなるゲート電極1
3a及び引き出し電極14aをマスクとして、多結晶シ
リコン層20の不要部をエツチング除去することにより
、モリブデン層よりなるゲート電極13a及び引き出し
電極14aの下部に位置するリンを含有した多結晶シリ
コン層よりなるゲート電極13b及び引き出し電極14
bを形成し、ゲート電極及び引き出し電極をモリブデン
とリンを含有した多結晶シリコンの二層構造とする。次
いで、ゲート電極13a、13b及び引き出し電極14
a、  14bをマスクとして、ヒ素をイオン注入し活
性化熱処拡散領域16を形成する。これにより両者は同
じ接合深さになる。配線用拡散領域16及び埋め込みコ
ンタクト領域19は接続するように、開孔部18と引き
出し電極14a、14bの位置決めが行なわれている(
第2図(d))。第2図(d)の段階は、第1図(b)
に示した構造と対応する。一般にはこの後、絶縁膜21
を形成し、ソース、ドレイン拡散領域15a、15bに
達するコンタクト開孔部23a、23bを形成した後、
金属配線層22a、22bを形成して、半導体装置を完
成する(第2図(e))。
A thick field oxide film 17, a thin gate oxide film 12, and the same thin oxide film 12' are simultaneously formed on the surface of the P-type silicon substrate 11 by a known oxidation method, and an opening 18 is provided in the buried contact region (a second Figure (a)). Next, a polycrystalline silicon layer 20 doped with phosphorus is formed and heat treated to diffuse phosphorus from the polycrystalline silicon layer 20 into the silicon substrate 11 through the opening 18 to form a deep buried contact region 19 (first step). Figure 2 (b)
). Next, a gate electrode 13a and a wiring lead electrode 14a made of a molybdenum layer are successively formed (FIG. 2(C)). Next, a gate electrode 1 made of a molybdenum layer
By etching and removing unnecessary parts of the polycrystalline silicon layer 20 using the gate electrode 13a and the extraction electrode 14a as a mask, a polycrystalline silicon layer containing phosphorus is formed under the gate electrode 13a made of a molybdenum layer and the extraction electrode 14a. Gate electrode 13b and extraction electrode 14
b, and the gate electrode and the extraction electrode have a two-layer structure of polycrystalline silicon containing molybdenum and phosphorus. Next, gate electrodes 13a, 13b and extraction electrode 14
Using a and 14b as a mask, arsenic ions are implanted to form an activation heat treatment diffusion region 16. This results in both having the same bonding depth. The opening 18 and the extraction electrodes 14a, 14b are positioned so that the wiring diffusion region 16 and the buried contact region 19 are connected (
Figure 2(d)). The stage in Figure 2(d) is the stage in Figure 1(b).
Corresponds to the structure shown in . Generally, after this, the insulating film 21
After forming contact openings 23a and 23b reaching the source and drain diffusion regions 15a and 15b,
Metal wiring layers 22a and 22b are formed to complete the semiconductor device (FIG. 2(e)).

この実施例ではNチャンネル型MO3電界効果半導体装
置について述べたが、本発明はこれに限定されるもので
はない。例えば半導体基体11をN型、多結晶シリコン
層20が含有する不純物及びソース、ドレイン拡散領域
15a、15bを形成するための不純物をP型とすれば
、Pチャンネル型電界効実装置が得られる。又、ゲート
絶縁膜12の材料としてはシリコンの酸化物にとどまら
ず、例えばシリコン窒化物、或いはシリコン窒化物とシ
リコン酸化物の複合膜とする事もできる。
Although this embodiment describes an N-channel type MO3 field effect semiconductor device, the present invention is not limited thereto. For example, if the semiconductor substrate 11 is of N type and the impurities contained in polycrystalline silicon layer 20 and the impurities for forming source and drain diffusion regions 15a and 15b are of P type, a P channel type field effect device can be obtained. Furthermore, the material of the gate insulating film 12 is not limited to silicon oxide, but may also be, for example, silicon nitride or a composite film of silicon nitride and silicon oxide.

又、埋めこみコンタクト拡散領域19を、多結晶シリコ
ンによるゲート電極13b及び引出し電極14bの成形
以前に行っているが、これに限るものではなく多結晶シ
リコン層20を、モリブデンによるゲート電極13a1
引き出し電極1.4 aをマスクとして形成した後に、
即ち第2図(C)の段惜で、熱処理して埋めこみコンタ
クト拡散領域を形成する事が可能である。又、第2図で
はモリブデンをゲート電極13a、引き出し電極14a
として利用する例について示しであるが、例えばタング
ステン等の耐熱金属を利用することもできる。
Further, although the buried contact diffusion region 19 is formed before forming the gate electrode 13b and the lead electrode 14b made of polycrystalline silicon, the invention is not limited to this.
After forming the extraction electrode 1.4 a as a mask,
That is, it is possible to form a buried contact diffusion region by heat treatment in the step shown in FIG. 2(C). In addition, in FIG. 2, molybdenum is used for the gate electrode 13a and the extraction electrode 14a.
Although the example is shown in which it is used as a metal, a heat-resistant metal such as tungsten can also be used.

以上述べた様に、本発明によればシリコンゲート型MO
3電界効実装置と同等の安定な閾値電圧と、シリコンゲ
ート型に比して約1/10以下の抵抗値を有するゲート
電極と、ゲート電極或いはゲート電極からの引き出し電
極と配線用拡散領域との電気的接続を、他の金属配線層
の介助なしに十分の信頼性をもって実現できる手段とが
得られるから、もって半導体装置の集積度と高速性を向
上される事ができる。
As described above, according to the present invention, silicon gate type MO
3. A gate electrode that has a stable threshold voltage equivalent to that of a field effect device and a resistance value that is about 1/10 or less compared to a silicon gate type, and a gate electrode or an extraction electrode from the gate electrode and a wiring diffusion region. Since a means for realizing electrical connections with sufficient reliability without the aid of other metal wiring layers can be obtained, the degree of integration and high speed of semiconductor devices can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例の構成を示す平面図で、
第1図(b)は第1図(a)のA−B線の断面図である
。第2図(a)乃至第2図(e)は本発明の実施例を実
現する為の代表的な製造方法を工程順に示した断面図で
ある。 尚、図において、1・・・半導体基板、2・・・ゲート
絶縁膜、2′・・・うすい絶縁膜、3・・・ゲート電極
、4・・・引き出し電極、4′・・・引き出し電極の端
、5a、5b・・・ソース又はドレイン拡散層、6・・
・配線用拡散領域、6′・・・配線用拡散領域の端辺、
7゜17・・・フィールド絶縁膜、8,18・・・開孔
領域、9.19・・・埋め込みコンタクト領域、11・
・・P型シリコン基体、12・・・ゲート酸化膜、12
′・・・うすい酸化膜、20・・・多結晶シリコン層、
16・・・配線用拡散領域、21・・・絶縁膜、23a
、23b・・・コンタクト開孔部、22a、22b・・
・金属配線層。 第 1 図(α) 第 図(b)
FIG. 1(a) is a plan view showing the configuration of an embodiment of the present invention.
FIG. 1(b) is a sectional view taken along line A-B in FIG. 1(a). FIGS. 2(a) to 2(e) are cross-sectional views showing a typical manufacturing method for realizing an embodiment of the present invention in the order of steps. In the figure, 1... semiconductor substrate, 2... gate insulating film, 2'... thin insulating film, 3... gate electrode, 4... lead-out electrode, 4'... lead-out electrode ends, 5a, 5b... source or drain diffusion layer, 6...
・Diffusion area for wiring, 6′... Edge of diffusion area for wiring,
7゜17... Field insulating film, 8, 18... Opening region, 9.19... Buried contact region, 11.
... P-type silicon substrate, 12 ... Gate oxide film, 12
′... Thin oxide film, 20... Polycrystalline silicon layer,
16... Wiring diffusion region, 21... Insulating film, 23a
, 23b... contact opening portion, 22a, 22b...
・Metal wiring layer. Figure 1 (α) Figure (b)

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基体の主表面に一部該基体に埋設する厚い
フィールド絶縁膜が選択的に設けられ、端辺を該フィー
ルド絶縁膜に接した細長い形状の配線用拡散領域が一方
向に延在し、半導体基体の主表面から部分的に各々延在
するソース領域及びドレイン領域を有し、これらソース
領域とドレイン領域との間の領域上に、ゲート絶縁膜を
介してゲート電極を有した半導体装置において、前記ゲ
ート電極及び該ゲート電極より延在する引き出し電極は
、不純物を含有した多結晶シリコンとこの上に位置する
耐熱金属とからなる二層構造を有し、かつ前記ゲート電
極より延在する前記引き出し電極は前記一方向とは直角
の方向にのびて前記配線用拡散領域と直交しかつ該配線
用拡散領域を通り過ぎたところにおいて終端し、これに
より該配線用拡散領域の前記フィールド絶縁膜と接した
前記端辺の近傍でかつ該端辺より離間した主表面の個所
と、前記引き出し電極の前記終端した端の近傍でかつ該
端より離間した個所とが接触してここで前記引き出し電
極と前記配線用拡散領域とが接続していることを特徴と
する半導体装置。
(1) A thick field insulating film partially buried in the main surface of the semiconductor substrate is selectively provided, and an elongated diffusion region for wiring extends in one direction with its edge in contact with the field insulating film. A semiconductor having a source region and a drain region each extending partially from the main surface of a semiconductor substrate, and having a gate electrode on a region between the source region and the drain region with a gate insulating film interposed therebetween. In the device, the gate electrode and the extraction electrode extending from the gate electrode have a two-layer structure consisting of polycrystalline silicon containing impurities and a heat-resistant metal located thereon, and the extraction electrode extends from the gate electrode. The extraction electrode extends in a direction perpendicular to the one direction, intersects the wiring diffusion region at right angles, and terminates at a point passing through the wiring diffusion region, whereby the field insulating film of the wiring diffusion region A portion of the main surface near the edge that is in contact with and spaced from the edge contacts a portion of the main surface near the terminated end of the extraction electrode and spaced from the end, where the extraction electrode and the wiring diffusion region are connected to each other.
(2)前記引き出し電極が接触している前記配線用拡散
領域の部分には、前記多結晶シリコンより拡散した不純
物により形成されかつ前記ソース、ドレイン領域および
該配線用拡散領域の延在せる他の部分よりも深く形成さ
れた埋め込みコンタクト領域を有し、かかる構成により
該深い埋め込みコンタクト領域は、前記フィールド絶縁
膜と接する前記配線用拡散領域の端辺より離間した個所
に設けられている事を特徴とする特許請求の範囲第(1
)項に記載の半導体装置。
(2) The portion of the wiring diffusion region that is in contact with the lead-out electrode is formed of impurities diffused from the polycrystalline silicon, and the source, drain region, and other wiring diffusion regions are formed of impurities diffused from the polycrystalline silicon. The device has a buried contact region formed deeper than the other portion, and with this configuration, the deep buried contact region is provided at a location spaced apart from an edge of the wiring diffusion region in contact with the field insulating film. Claim No. 1 (1)
) The semiconductor device described in item 1.
(3)前記埋め込みコンタクト領域を除く前記配線用拡
散領域の他の部分は、前記ソース、ドレイン領域と同じ
深さに形成されていることを特徴とする特許請求の範囲
第(2)項に記載の半導体装置。
(3) As set forth in claim (2), the other portions of the wiring diffusion region excluding the buried contact region are formed at the same depth as the source and drain regions. semiconductor devices.
(4)前記配線用拡散領域の前記引き出し電極と接触す
る部分およびその近傍を除く他の部分上には前記フィー
ルド絶縁膜よりもうすい絶縁膜が設けられていることを
特徴とする特許請求の範囲第(1)項に記載の半導体装
置。
(4) An insulating film thinner than the field insulating film is provided on other parts of the wiring diffusion region other than the part in contact with the extraction electrode and the vicinity thereof. The semiconductor device according to item (1).
JP20255989A 1980-08-14 1989-08-03 Semiconductor device Pending JPH03141646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255989A JPH03141646A (en) 1980-08-14 1989-08-03 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11238780A JPS5736865A (en) 1980-08-14 1980-08-14 Semiconductor device
JP20255989A JPH03141646A (en) 1980-08-14 1989-08-03 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11238780A Division JPS5736865A (en) 1980-08-14 1980-08-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03141646A true JPH03141646A (en) 1991-06-17

Family

ID=26451563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255989A Pending JPH03141646A (en) 1980-08-14 1989-08-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03141646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855853A (en) * 1994-08-15 1996-02-27 Yamaha Corp Formation method of conductive layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855853A (en) * 1994-08-15 1996-02-27 Yamaha Corp Formation method of conductive layer

Similar Documents

Publication Publication Date Title
US4219835A (en) VMOS Mesa structure and manufacturing process
KR890004962B1 (en) Semiconductor device manufacturing method
JPS586177A (en) Method of producing metal-oxide-semiconductor (mos)integrated circuit on silicon substrate
JPH09199730A (en) Semiconductor device and its manufacture
KR20000006579A (en) Semiconductor device and method for producing the same
JP2914798B2 (en) Semiconductor device
JP3253986B2 (en) Method of forming capacitor on same substrate as MOS transistor, capacitor formed by the method, and method of forming electrical structure
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US4397076A (en) Method for making low leakage polycrystalline silicon-to-substrate contacts
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
JPH03141646A (en) Semiconductor device
US8329548B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
KR910009353B1 (en) Semiconductor device and its method of manufacturing
JPH0340514B2 (en)
JPS6138858B2 (en)
JPS6245071A (en) Manufacture of semiconductor device
JPS6340374A (en) Mos-type semiconductor device and manufacture thereof
JP2654056B2 (en) Method for manufacturing semiconductor device
JPS6161548B2 (en)
JPS5842252A (en) Manufacture of semiconductor device
JPH03241870A (en) Semiconductor device
JP2864581B2 (en) Method for manufacturing semiconductor device
JPH0366166A (en) Semiconductor device
JP3147374B2 (en) Semiconductor device
JPS625657A (en) Semiconductor integrated circuit device