JPH03141189A - Quartz crucible for lifting silicon single crystal - Google Patents

Quartz crucible for lifting silicon single crystal

Info

Publication number
JPH03141189A
JPH03141189A JP27873489A JP27873489A JPH03141189A JP H03141189 A JPH03141189 A JP H03141189A JP 27873489 A JP27873489 A JP 27873489A JP 27873489 A JP27873489 A JP 27873489A JP H03141189 A JPH03141189 A JP H03141189A
Authority
JP
Japan
Prior art keywords
silicon single
single crystal
quartz crucible
group
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27873489A
Other languages
Japanese (ja)
Other versions
JPH07102999B2 (en
Inventor
Yoshiyuki Tsuji
義行 辻
Masanori Kato
正典 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1278734A priority Critical patent/JPH07102999B2/en
Publication of JPH03141189A publication Critical patent/JPH03141189A/en
Publication of JPH07102999B2 publication Critical patent/JPH07102999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a quartz crucible substantially not affected by impurities by adding the group V element for forming an n type semiconductor and the group III element for forming a p type semiconductor in a specific ratio. CONSTITUTION:The quartz crucible contains the group V element for forming an n type semiconductor and the group III element for forming a p type semiconductor in a ratio of 1:0.5-5. The group III element such as B and the group V element such as P or As are dopants for forming p type and n type semiconductors, respectively, and have a p, n compensation relation in a silicon single crystal. Since it is expected that the coexistence of the elements cancels the effect of the other element each other, the group III and V elements are added in such amounts as cancelling the effects each other, thereby providing a quartz crucible capable of neglecting the effects of the elements. When the above-mentioned ratio is 1:<0.5, the compensation effect is insufficient, while the ratio of 1:>5 is undesirable because the silicon single crystal causes p-n reversion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPN補償型シリコン単結晶引上げ用石英ルツボ
に関し、特に高抵抗で良質のシリコン単結晶を引上げる
ための、安価な石英ルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a PN-compensated quartz crucible for pulling silicon single crystals, and particularly to an inexpensive quartz crucible for pulling high-resistance, high-quality silicon single crystals.

〔従来技術とその課題〕[Conventional technology and its issues]

半導体素子の製造には、シリコン単結晶に3族元素をド
ープしたn型シリコン基板と、シリコン単結晶に5族元
素をドープしたn型シリコン基板とが用いられる。シリ
コン単結晶はこれらの各元素をごく少量ドープすること
によりその抵抗値が極端に低下する。
In the manufacture of semiconductor devices, an n-type silicon substrate in which a silicon single crystal is doped with a Group 3 element and an n-type silicon substrate in which a silicon single crystal is doped with a Group 5 element are used. By doping a silicon single crystal with a very small amount of each of these elements, its resistance value is extremely reduced.

一方、シリコン単結晶は通常石英ルツボを用いてCZ法
により引上げられるが、ルツボの石英がシリコン融液に
溶は込むため、石英中の不純物もシリコン単結晶の抵抗
値を低下させる。
On the other hand, silicon single crystals are usually pulled by the CZ method using a quartz crucible, but since the quartz in the crucible dissolves into the silicon melt, impurities in the quartz also reduce the resistance value of the silicon single crystal.

したがって、特に高抵抗かつ高品質のシリコン単結晶を
製造する場合には、ドープ剤のみでなく石英ルツボに帰
因する不純物も考慮しなければ、所定の特性を有するシ
リコン単結晶を得ることができない。
Therefore, especially when manufacturing high-resistivity and high-quality silicon single crystals, it is not possible to obtain silicon single crystals with desired characteristics unless not only the dopant but also the impurities caused by the quartz crucible are taken into consideration. .

従来5石英ルツボに起因する不純物を極力少くする手段
として、シリコン融液に磁場を印加しながらシリコン単
結晶を引上げる方法、あるいは石英ルツボを高純度とし
、その粘性を高くしてルツボの浸食を抑制する方法が知
られている。 しかし、磁場を印加する方法では、シリ
コン融液の量に応じて磁場の強さを変動させる必要があ
るなど制御が複雑であり、所定の特性を得るための条件
の設定が難かしい。また装置も複雑となり、製造コスト
が非常に高価となる。
Conventional 5 As a means of minimizing impurities caused by quartz crucibles, there is a method of pulling silicon single crystals while applying a magnetic field to silicon melt, or a method of making a quartz crucible of high purity and increasing its viscosity to prevent erosion of the crucible. There are known ways to suppress it. However, in the method of applying a magnetic field, control is complicated, such as the need to vary the strength of the magnetic field depending on the amount of silicon melt, and it is difficult to set conditions for obtaining predetermined characteristics. Furthermore, the device becomes complicated and the manufacturing cost becomes very high.

また、石英を高純度とすることにより粘性を高くするこ
とはできるが、浸食量との相関は少ない。同一量の浸食
が発生しても高純度のルツボの方が当然それだけ不純物
の溶は込みは少なくなるが、高純度ルツボは、原料石英
粉の製造が難しく、非常に高価なものとなる。
Furthermore, although it is possible to increase the viscosity by making quartz highly pure, there is little correlation with the amount of erosion. Naturally, even if the same amount of erosion occurs, a crucible with high purity will have less penetration of impurities, but high purity crucibles are difficult to produce raw quartz powder and are extremely expensive.

〔課題の解決手段:発明の構成〕[Means for solving the problem: Structure of the invention]

本発明は、不純物の影響が少ない石英ルツボを提供する
ことを目的とする。
An object of the present invention is to provide a quartz crucible that is less affected by impurities.

本発明によれば、シリコン半導体において、n型半導体
を形成する第5族元素がn型半導体を形成する第3族元
素の0.5〜5倍含有されているシリコン単結晶引き上
げ用石英ルツボが提供される。
According to the present invention, there is provided a quartz crucible for pulling a silicon single crystal in which a group 5 element forming an n-type semiconductor is contained 0.5 to 5 times as much as a group 3 element forming an n-type semiconductor in a silicon semiconductor. provided.

B等の第3族元素はn型半導体を形成するドーパントで
あり、またP、Asはn型半導体を形成するドーパント
であり、シリコン単結晶中において互いに逆の作用を営
む。従ってこれら元素が共存すると互いに他方の影響を
打ち消すことが期待される。そこで、本発明においては
第3族元素と第5族元素をその影響が互いに打ち消され
る量を含有させることにより、実質的にこれら元素の影
響が無視できる石英ルツボとした。
Group 3 elements such as B are dopants that form an n-type semiconductor, and P and As are dopants that form an n-type semiconductor, and have opposite effects to each other in a silicon single crystal. Therefore, when these elements coexist, it is expected that they will cancel each other's influence. Therefore, in the present invention, a quartz crucible is created in which the influence of these elements can be substantially ignored by containing Group 3 elements and Group 5 elements in such amounts that their influences cancel each other out.

一般に、シリコン融液中の不純物元素がシリコン単結晶
中に混入する割合は各元素の偏析係数(分配係数)に依
存する。第3族元素および第5族元素の偏析係数は夫々
次のとおりである。
Generally, the proportion of impurity elements in a silicon melt mixed into a silicon single crystal depends on the segregation coefficient (distribution coefficient) of each element. The segregation coefficients of Group 3 elements and Group 5 elements are as follows.

たとえばBの偏析係数は8X10−”であるから溶融シ
リコン中にlppmのBが含まれる場合には、0.8p
pmのBがシリコン単結晶中に取り込まれる。
For example, the segregation coefficient of B is 8X10-'', so if lppm of B is contained in molten silicon, 0.8p
pm of B is incorporated into the silicon single crystal.

本発明の石英ルツボは上記偏析係数を考慮して5族元素
が3族元素の0.5倍〜5倍含有される。特に5族がP
およびAsであり、3族がBであって、かつP+0.4
Asの含有量がBの含有量の0.5倍〜4倍であること
が好ましい。石英ルツボが浸漬されて溶融シリコン中に
混入すると、B、PおよびAsが前記偏析係数に応じて
シリコン単結晶中に取り込まれる。単結晶中においてB
とP、AsとはP+n補償関係にあるから1画成分の原
子数がほぼ同じであれば互いに他方の影響を打消すp、
n補償効果が生ずる。石英ルツボ中のP+0.4As含
有量がBの含有量の0.5倍以下であるとこの補償効果
が不十分である。
The quartz crucible of the present invention contains 0.5 to 5 times as much Group 5 elements as Group 3 elements, considering the above segregation coefficient. Particularly, group 5 is P
and As, Group 3 is B, and P+0.4
It is preferable that the content of As is 0.5 to 4 times the content of B. When the quartz crucible is immersed into molten silicon, B, P, and As are incorporated into the silicon single crystal according to the segregation coefficient. B in single crystal
and P and As have a P+n compensation relationship, so if the number of atoms in one image component is almost the same, p and As cancel each other's influence.
n compensation effect occurs. If the P+0.4As content in the quartz crucible is less than 0.5 times the B content, this compensation effect will be insufficient.

またP+0.4As含有量がBのき有量の5倍を越える
とシリコン単結晶がp、n反転を生じて好ましくない。
Furthermore, if the P+0.4As content exceeds five times the B content, p and n inversion occurs in the silicon single crystal, which is not preferable.

上記の関係はこれらの不純物の1度の絶対値によらず同
一である。ただし、石英ルツボのB含有量が0.22P
II+以上の場合には、P+0.4Asを加えると不純
物(B + P +As)の合計量が多量にシリコン単
結晶中に混入することになって、他の半導体特性を損な
う虞れがあるので好ましくない。
The above relationship is the same regardless of the absolute value of these impurities. However, the B content in the quartz crucible is 0.22P.
In the case of II+ or more, adding P+0.4As will cause a large amount of the total amount of impurities (B + P + As) to be mixed into the silicon single crystal, which may impair other semiconductor properties, so it is preferable. do not have.

〔発明の効果〕〔Effect of the invention〕

本発明の石英ルツボは従来のルツボに較べ原料石英の精
製コストを削減し、かつ引上げるシリコン単結晶の特性
に対するルツボの影響が無視できるので、ドーパントを
添加する場合の添加量の調整も容易であり、高抵抗の良
好な特性を有するシリコン単結晶を得ることができる偏
れた石英ルツボである。
The quartz crucible of the present invention reduces the cost of refining raw quartz compared to conventional crucibles, and the effect of the crucible on the properties of the silicon single crystal to be pulled can be ignored, making it easy to adjust the amount of dopant added. It is a biased quartz crucible that can obtain silicon single crystals with good properties of high resistance.

〔実施例〕〔Example〕

以下実施例および比較例により本発明を具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

(実施例1〜4および比較例1〜3) Bの含有量の比較的多い石英粉に、PおよびAsの含有
量が比較的多い石英粉を混合して1表に示すB、Pおよ
びAsを含有する石英ルツボ(直径16インチ)を作製
した。B、PおよびAs以外の主な不純物はいずれのル
ツボにおいても、AQ約6 ppm、Fe約0.4pp
m、 Na#J0.4ppm、K約0.3ppm、 C
a約0.5ppmであり、各ルツボを用いて引上げたシ
リコン単結晶の特性に及ぼすこれらの不純物の影響は少
ない。
(Examples 1 to 4 and Comparative Examples 1 to 3) Quartz powder with a relatively high content of B is mixed with quartz powder with a relatively high content of P and As to produce B, P, and As shown in Table 1. A quartz crucible (16 inches in diameter) containing the following was prepared. The main impurities other than B, P and As in all crucibles are AQ approximately 6 ppm and Fe approximately 0.4 ppm.
m, Na#J0.4ppm, K approx. 0.3ppm, C
a is about 0.5 ppm, and the influence of these impurities on the characteristics of silicon single crystals pulled using each crucible is small.

原料シリコン40kgを各ルツボに投入して溶解し、シ
リコン単結晶を引上げた。引上げた単結晶はいずれの場
合も約30kgで、投入したシリコンの約75%であっ
た。得られたシリコン単結晶の頂部(表中「上」で表わ
す)、中部(表中r中」で表わす)および底部(表中「
下」で表わす)から得たウェハーの結晶タイプと比抵抗
を測定して表に示した。
40 kg of raw silicon was put into each crucible and melted, and a silicon single crystal was pulled. In each case, the pulled single crystal weighed approximately 30 kg, which accounted for approximately 75% of the silicon input. The top (indicated by "upper" in the table), middle part (indicated by "r" in the table) and bottom (indicated by "r" in the table) of the obtained silicon single crystal
The crystal type and resistivity of the wafers obtained from the wafers (denoted below) were measured and shown in the table.

表に示されるように、Bに対してP、Asの含有量が少
ないと、シリコン単結晶の比抵抗が小さく(比較例1)
、一方、Bに対してP、Asの含有量が多すぎると、シ
リコン単結晶がn型に反転する(比較例2.3)。
As shown in the table, when the content of P and As is small relative to B, the specific resistance of the silicon single crystal is small (Comparative Example 1)
On the other hand, if the content of P and As is too large relative to B, the silicon single crystal is inverted to n-type (Comparative Example 2.3).

Claims (1)

【特許請求の範囲】 1、シリコン半導体において、n型半導体を形成する第
5族元素がp型半導体を形成する第3族元素の0.5〜
5倍含有されているシリコン単結晶引き上げ用石英ルツ
ボ。 2、リンとヒ素の総量(P+0.4As)が、ホウ素の
含有量の0.5〜4倍である第1請求項の石英ルツボ。
[Scope of Claims] 1. In a silicon semiconductor, the Group 5 element forming the n-type semiconductor is 0.5 to 0.5 to 0.5 to the Group 3 element forming the p-type semiconductor.
A quartz crucible for pulling silicon single crystals containing 5 times the amount of silicon. 2. The quartz crucible according to claim 1, wherein the total amount of phosphorus and arsenic (P+0.4As) is 0.5 to 4 times the boron content.
JP1278734A 1989-10-27 1989-10-27 Quartz crucible for pulling silicon single crystal Expired - Lifetime JPH07102999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278734A JPH07102999B2 (en) 1989-10-27 1989-10-27 Quartz crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278734A JPH07102999B2 (en) 1989-10-27 1989-10-27 Quartz crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JPH03141189A true JPH03141189A (en) 1991-06-17
JPH07102999B2 JPH07102999B2 (en) 1995-11-08

Family

ID=17601462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278734A Expired - Lifetime JPH07102999B2 (en) 1989-10-27 1989-10-27 Quartz crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JPH07102999B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296388A (en) * 1985-10-23 1987-05-02 Toshiba Ceramics Co Ltd Quartz glass crucible for pulling up silicon single crystal
JPS62226890A (en) * 1986-03-27 1987-10-05 Komatsu Denshi Kinzoku Kk Single crystal and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296388A (en) * 1985-10-23 1987-05-02 Toshiba Ceramics Co Ltd Quartz glass crucible for pulling up silicon single crystal
JPS62226890A (en) * 1986-03-27 1987-10-05 Komatsu Denshi Kinzoku Kk Single crystal and its production

Also Published As

Publication number Publication date
JPH07102999B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
EP2584070B1 (en) Method of manufactoring a p-type silicon single crystal
EP2418173A2 (en) Method for controlling resistivity in ingots made of compensated feedstock silicon
US20210071315A1 (en) Methods for forming single crystal silicon ingots with improved resistivity control
US7202146B2 (en) Process for producing doped semiconductor wafers from silicon, and the wafers produced thereby
US20070227440A1 (en) Arsenic dopants for pulling of silicon single crystal, process for producing thereof and process for producing silicon single crystal using thereof
KR20190043626A (en) Compound semiconductor and method for manufacturing compound semiconductor single crystal
US7220308B2 (en) Manufacturing method of high resistivity silicon single crystal
JPH03141189A (en) Quartz crucible for lifting silicon single crystal
JP3931956B2 (en) Method for growing silicon single crystal
JP2562579B2 (en) Single crystal manufacturing method
JPH08756B2 (en) Inorganic compound single crystal growth method
JP2527718B2 (en) Sealant for liquid capsule pulling method and single crystal growth method
CN86100854B (en) Method for making heavy sb-admixed silicon monocrystal
JP2593148B2 (en) Method for growing single crystal of compound semiconductor
JPH0544438B2 (en)
RU2014372C1 (en) Process for germanium single crystal growth
CA1214381A (en) Method of growing gallium arsenide crystals using boron oxide encapsulant
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JPS61155296A (en) Gallium arsenide single crystal having low dislocation density and its growing method
JP3451658B2 (en) Growth method of mixed crystal semiconductor single crystal
SU970906A1 (en) Semiconductor material for microwave transistors
JPS6240844B2 (en)
JPS6389496A (en) Production of compound semiconductor
JPS6259886B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

EXPY Cancellation because of completion of term