JPH031396B2 - - Google Patents

Info

Publication number
JPH031396B2
JPH031396B2 JP10843489A JP10843489A JPH031396B2 JP H031396 B2 JPH031396 B2 JP H031396B2 JP 10843489 A JP10843489 A JP 10843489A JP 10843489 A JP10843489 A JP 10843489A JP H031396 B2 JPH031396 B2 JP H031396B2
Authority
JP
Japan
Prior art keywords
plating
alloy
linear body
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10843489A
Other languages
Japanese (ja)
Other versions
JPH02138494A (en
Inventor
Takeshi Shiba
Toshiaki Shimizu
Fumihiro Yanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10843489A priority Critical patent/JPH02138494A/en
Publication of JPH02138494A publication Critical patent/JPH02138494A/en
Publication of JPH031396B2 publication Critical patent/JPH031396B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続的に線状体上に2種以上の金属か
らなる合金メツキ層を得るゴム補強用線状体の熱
拡散合金メツキ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a heat diffusion alloy plating device for rubber reinforcing linear bodies, which continuously forms an alloy plating layer made of two or more metals on the linear bodies. It is something.

(従来の技術および発明が解決しようとする課
題) 従来、線状体に連続的に2種以上の金属よりな
る合金メツキを施す装置としては、線状体に対し
目的の合金金属成分を同時に含むメツキ浴槽で熱
拡散を行なわずに合金としてメツキを施す装置
か、あるいは合金成分となる金属を順次層状にメ
ツキする2種以上のメツキ浴槽と熱拡散加熱装置
を順次配置し、合金メツキを施す装置があつた。
(Prior art and problems to be solved by the invention) Conventionally, as an apparatus for continuously applying alloy plating made of two or more metals to a linear body, a device that simultaneously coats the linear body with a target alloy metal component is used. A device that performs plating as an alloy without heat diffusion in a plating bath, or a device that performs alloy plating by sequentially arranging two or more types of plating baths and a thermal diffusion heating device that sequentially plate metals that are alloy components in layers. It was hot.

そして、上記線状体上にメツキされた合金の厚
み、もしくは合金組成比を、生産工程中において
非破壊で分析し、その結果にもとずいてリアルタ
イムで工程にフイードバツクさせ、メツキ電流等
を自動制御する手段を設け、メツキの品質精度を
上げることは各種検討されてきた。
Then, the thickness or alloy composition ratio of the alloy plated on the above-mentioned linear body is non-destructively analyzed during the production process, and based on the results, feedback is provided to the process in real time, and the plating current etc. are automatically adjusted. Various studies have been made to improve the quality and accuracy of plating by providing control means.

たとえば、特開昭54−29843号公報に示される
ように同時電着による合金メツキにおいては、完
全に合金メツキされた後、非破壊で精度良く分析
する方法が確立されており、実際の装置にも応用
が検討されているが、後者のような熱拡散方式に
よつて得られる合金メツキ装置では、メツキ液の
濃度変化、メツキ電圧の変化、電極棒の損耗状
態、電極板の状態等のメツキ電流率および拡散電
圧、電流の変化等の電気メツキ条件の変化によ
り、メツキ付着量、メツキ合金組成比(合金メツ
キを構成する各種金属の重量比(%))および熱
拡散合金メツキ方法特有のメツキ合金組成傾斜
(合金組成比がメツキ層の内層部から中間層部、
表層部へと連続的に変化すること)等にバラツキ
が生じ、従来のように完全に合金メツキされた後
に分析する装置では精度良く分析することが不可
能なため、目的とする合金メツキを精度良く、し
かも線状体に対し長手方向に均一に得ることが非
常に困難であつた。
For example, as shown in Japanese Patent Application Laid-Open No. 54-29843, in alloy plating by simultaneous electrodeposition, a method has been established to conduct a non-destructive and accurate analysis after complete alloy plating, and this method can be used in actual equipment. However, in the latter type of alloy plating equipment obtained by the thermal diffusion method, plating changes such as changes in the concentration of the plating solution, changes in the plating voltage, wear and tear of the electrode rod, and condition of the electrode plate, etc. Due to changes in electroplating conditions such as changes in current rate, diffusion voltage, and current, the amount of plating deposited, the plating alloy composition ratio (weight ratio (%) of various metals that make up the alloy plating), and the plating specific to the heat diffusion alloy plating method may change. Alloy composition gradient (alloy composition ratio changes from the inner layer of the plating layer to the middle layer,
(continuous changes to the surface layer), etc., and it is impossible to analyze with high precision using conventional equipment that analyzes after complete alloy plating. It was very difficult to obtain a good and uniform coating in the longitudinal direction of the linear body.

ところで、自動車用タイヤやコンベアベルト等
のゴム補強用に用いられる線状体においては、そ
の強度とともに、ゴムとの接着性が最重要品質と
して要求され、この種の合金メツキに要求される
精度は極めて厳しいものがある。
By the way, for linear bodies used to reinforce rubber in automobile tires, conveyor belts, etc., the most important qualities are required to have strength as well as adhesion to the rubber, and the precision required for this type of alloy plating is There are some extremely tough ones.

すなわち、上記線状体への合金メツキはゴムと
の接着性の影響からメツキ付着量、メツキ合金組
成比(例えばCuとZnとの重量比率)が厳しく制
限され、しかも、その値はゴムの種類によつて微
妙に変化するものである。
In other words, the amount of plating and plating alloy composition ratio (for example, the weight ratio of Cu and Zn) in alloy plating on the above-mentioned linear bodies is strictly limited due to the influence of adhesion with the rubber, and the value also depends on the type of rubber. It changes slightly depending on the situation.

しかも、これらの精度は合金メツキ後行なわれ
る伸線工程における伸線性にも大きく影響する。
特にメツキ合金組成比は伸線工程における断線に
関係する問題である。さらに、近年公害問題など
からシアン化浴等を用い、同時に電着により合金
メツキを行なう装置よりも、拡散により合金メツ
キを行なう装置がよく利用されるようになつてき
た。しかし上記従来の熱拡散合金メツキ装置によ
つて、例えばCu濃度65%の真鍮メツキ鋼線を製
造しようとしてもせいぜい62〜68%に抑えるのが
限度であり、Cu濃度において±3%のバラツキ
を生じることは不可避であつた。
Furthermore, these precisions greatly affect the wire drawability in the wire drawing process performed after alloy plating.
In particular, the plating alloy composition ratio is a problem related to wire breakage in the wire drawing process. Furthermore, in recent years, due to pollution problems, devices that use a cyanide bath or the like and simultaneously perform alloy plating by diffusion have come to be used more frequently than devices that perform alloy plating by electrodeposition. However, even if an attempt is made to manufacture a brass-plated steel wire with a Cu concentration of 65% using the above-mentioned conventional heat diffusion alloy plating equipment, the limit is at most 62 to 68%, and the variation in Cu concentration is ±3%. It was inevitable that this would happen.

(課題を解決するための手段) 本発明は上記問題点を除去するためになされた
ものであり、ゴム補強用線状体に対し連続的に熱
拡散による合金メツキをそのメツキ厚み及び合金
組成比が目的の値になるように精度よく施すこと
を目的としたものであり、線状体の繰出し装置
と、メツキ前処理装置と、2種以上の金属を個別
にメツキする複数の電気メツキ浴槽と、メツキ後
処理装置と、熱拡散加熱装置と、線状体の巻取り
装置とを順次配置し、さらに、上記メツキ後処理
装置と熱拡散加熱装置の間の所定位置に、線状体
表面に層状にメツキされた各金属からの二次X線
を検知する検知手段を有し、しかも上記二次X線
の強度比率から各金属の付着量、又は金属付着量
比を分析する分析手段とを有するエネルギー分散
型蛍光X線分析装置を設け、上記分析装置により
検知した値とあらかじめ設定した基準値とを比較
して修整値を演算する演算手段と、上記修整値を
各金属メツキのメツキ条件設定手段に連続的にフ
イードバツクし、メツキ条件を制御する制御手段
を接続してなることを特徴とするゴム補強用線状
体への熱拡散合金メツキ装置を提供するものであ
る。
(Means for Solving the Problems) The present invention has been made in order to eliminate the above-mentioned problems, and it is possible to continuously apply alloy plating to a rubber reinforcing linear body by heat diffusion, depending on the thickness of the plating and the alloy composition ratio. The purpose of this system is to accurately apply the metal to the desired value, and it is equipped with a wire feeding device, a plating pre-treatment device, and multiple electroplating baths for individually plating two or more types of metals. , a plating post-processing device, a thermal diffusion heating device, and a linear object winding device are arranged in sequence, and further, at a predetermined position between the above-mentioned plating post-processing device and the thermal diffusion heating device, a heating device is placed on the surface of the linear object. It has a detection means for detecting secondary X-rays from each metal plated in a layer, and an analysis means for analyzing the amount of each metal deposited or the ratio of the amount of metal deposited from the intensity ratio of the secondary X-rays. an energy-dispersive fluorescent X-ray analyzer having an energy-dispersive fluorescent The present invention provides an apparatus for plating a rubber reinforcing linear body with a heat diffusion alloy, characterized in that it is connected to a control means that continuously provides feedback to the means and controls the plating conditions.

(作用) 本発明のメツキ装置においてエネルギー分散型
蛍光X線分析装置を熱拡散加熱装置の前の所定位
置に、すなわちメツキが合金化される前の多層メ
ツキの状態である位置に配置して測定を行なうの
は、熱拡散により合金化された場合は、その熱の
加え方によつて、メツキ層の内層部から表層部に
かけて均一な合金層状態にならない場合、すなわ
ち合金組成比がメツキ層の内層部から中間層部、
表層部で異なる(いわゆる組成傾斜)場合がほと
んどであり、また拡散のための加熱量が不安定な
場合、もしくは意図的にその加熱量を変化させた
場合にも上記現象が生じると、蛍光X線分析にお
いて熱拡散による合金メツキ層を測定したとき、
その測定結果、特に合金組成比において大きな誤
差を生じるためである。
(Function) In the plating device of the present invention, the energy dispersive X-ray fluorescence analyzer is placed at a predetermined position in front of the thermal diffusion heating device, that is, at a position where the plating is in the state of multilayer plating before being alloyed. The reason for this is that when alloying is done by thermal diffusion, the alloy layer is not uniform from the inner layer to the surface layer of the plating layer due to the way the heat is applied, that is, the alloy composition ratio is different from that of the plating layer. From the inner layer to the middle layer,
In most cases, the difference occurs in the surface layer (so-called composition gradient), and if the above phenomenon occurs when the amount of heating for diffusion is unstable or when the amount of heating is intentionally changed, the fluorescence When measuring the alloy plating layer due to thermal diffusion in line analysis,
This is because large errors occur in the measurement results, especially in the alloy composition ratio.

例えば鋼線状に真鍮メツキした場合を例にとる
と、蛍光X線分析で直接線状体の状態で測定する
場合は、前もつて厚み及び合金組成のわかつてい
る真鍮メツキ鋼線を幾種類か測定し、得られた真
鍮メツキ中のCu、Zn及び下地鋼線のFeよりの二
次X線強度のそれぞれの比、すなわち厚みにおい
ては、 Icu/IFe+Izn/IFe Icu:Cuからの二次X線強度(cps) Izn:Znからの二次X線強度(cps) IFe:Feからの二次X線強度(cps) (cps)=Count per second 組成比においては、 Icu/(Icu+Izn) と、それらの実際のメツキ厚み及び組成比より第
2図イ,ロのように検量線を作成し、これより未
知試料測定で得た各二次X線の強度からそのメツ
キ厚み及び組成比(ここではCu濃度)を知る方
法がとられる。しかし、実際の熱拡散真鍮メツキ
鋼線では前述の如きメツキ層内部で組成比すなわ
ちCu−Znの濃度差を生じさせることがあり、た
とえば第3図ハに示す表層部、中間層部、内層部
でのCu組成比を61%、65%、69%等(組成比の
平均は65%)とすることがある。そしてこの場合
蛍光X線測定における特質上、メツキ層全体より
発生した二次X線は照射X線量と同量でなくメツ
キ内層部より発生した二次X線ほど第3図ハに示
すように検出器に至るまでにメツキ内部で多く吸
収され減衰するため情報源となる二次X線は最表
面より反射するものが最も多く含まれていること
になり、たとえばこの場合Cu組成比が63%と検
出され実際のCu組成比と異なる分析結果値とな
つてしまう。
For example, if a steel wire is plated with brass, in order to directly measure the linear body using fluorescent X-ray analysis, several types of brass-plated steel wire with known thickness and alloy composition must be used. The ratio of the secondary X-ray intensity from Cu, Zn in the brass plating and Fe of the underlying steel wire, that is, the thickness, is Icu/IFe + Izn/IFe Icu: Secondary X-ray from Cu Linear intensity (cps) Izn: Secondary X-ray intensity from Zn (cps) IFe: Secondary X-ray intensity from Fe (cps) (cps) = Count per second In terms of composition ratio, Icu/(Icu+Izn) From the actual plating thickness and composition ratio, a calibration curve is created as shown in Figure 2 A and B, and from this, the plating thickness and composition ratio (here, A method is used to find out the Cu concentration). However, in actual heat-diffusion brass-plated steel wire, a difference in composition ratio, that is, concentration of Cu-Zn, may occur inside the plating layer as described above. The Cu composition ratio is sometimes set to 61%, 65%, 69%, etc. (the average composition ratio is 65%). In this case, due to the characteristics of fluorescent X-ray measurement, the amount of secondary X-rays generated from the entire plating layer is not the same as the irradiated X-ray dose, but the secondary X-rays generated from the inner layer of the plating are detected as shown in Figure 3 C. Since a large amount of secondary X-rays, which serve as information sources, are absorbed and attenuated inside the metal plate before reaching the container, most of the secondary X-rays are reflected from the outermost surface.For example, in this case, the Cu composition ratio is 63%. This will result in an analysis result value that is different from the actual Cu composition ratio.

しかしながら、上記のような現象は従来の同時
電着の合金メツキのようにメツキ層内の各部で完
全にCu−Zn濃度が均一な真鍮メツキを施す装置
を用いた場合にはほとんど見られないのである。
However, the above-mentioned phenomenon is almost never observed when using a device that applies brass plating with a completely uniform Cu-Zn concentration in each part of the plating layer, such as conventional simultaneous electrodeposition alloy plating. be.

第3図イ・ロに鋼線上に第一層としてCuを、
第二層にZnをメツキして熱拡散の程度を変化さ
せた時に、あらかじめ均一な層状態の標準試料よ
り得た検量線を用いて蛍光X線分析した場合の組
成比を一例として示し、イは拡散における加熱量
の程度を変化させ、エネルギー分散型蛍光X線分
析装置により測定したものである。
Figure 3 shows Cu as the first layer on the steel wire,
The following is an example of the composition ratio when the second layer is plated with Zn and the degree of thermal diffusion is changed and fluorescent X-ray analysis is performed using a calibration curve obtained in advance from a standard sample in a uniform layer state. was measured by changing the degree of heating during diffusion and using an energy dispersive X-ray fluorescence analyzer.

たとえば、aのように熱拡散の為の鋼線表面へ
の加熱量が小さい場合(例えば400℃×4秒)で
は、拡散が不十分な為、メツキ層表層部において
Cu組成比が低く、中間層部、内層部においてCu
組成比の高い真鍮となつており、実際のメツキ層
全体のCu組成比が65%であつても鋼線を直接蛍
光X線分析した場合に、このCu組成比の濃度勾
配の影響をうけ、63%程度と言うように誤差のあ
る分析結果となる。また、cの場合は十分な熱量
(例えば500℃×4秒)により均一な拡散が得ら
れ、ほぼ実際の値に近い分析結果となる。なお、
bは中間状態の熱量(例えば450℃×4秒)の場
合である。
For example, when the amount of heating to the steel wire surface for heat diffusion is small (e.g. 400℃ x 4 seconds) as in case a, the diffusion is insufficient and the surface layer of the plating layer
The Cu composition ratio is low, and the Cu content is low in the intermediate layer and inner layer.
Brass has a high composition ratio, and even if the Cu composition ratio of the entire plating layer is 65%, when a steel wire is subjected to direct fluorescent X-ray analysis, it is affected by the concentration gradient of this Cu composition ratio. The analysis result has an error of about 63%. Furthermore, in the case of c, uniform diffusion can be obtained with a sufficient amount of heat (for example, 500° C. x 4 seconds), resulting in an analysis result that is almost close to the actual value. In addition,
b is a case of an intermediate state of heat (for example, 450° C. x 4 seconds).

このようなa,b,cのメツキをX線回折装置
にて測定すると、拡散の為の熱量が少ない真鍮ほ
どβ相の出現が大きくなり、合金メツキ層表層部
のCu組成比が少なくなることを裏付けている。
また、第3図ロは上記a,b,cのα相、β相を
X線分析基準により測定し、それが変化している
ことを示す図である。
When such plating of a, b, and c is measured using an X-ray diffraction device, it is found that the less heat is required for diffusion in brass, the more the β phase appears, and the lower the Cu composition ratio in the surface layer of the alloy plating layer. is supported.
Moreover, FIG. 3B is a diagram showing that the α phase and β phase of the above a, b, and c are measured using an X-ray analysis standard, and that they change.

以上のように本発明のメツキ装置においては、
熱拡散加熱装置の前にエネルギー分散型蛍光X線
分析装置を設け分析測定を行い、メツキ条件設定
手段にフイードバツクし自動制御しているので組
成傾斜の影響がなくなり、X線分析の減衰は前述
と同様に発生するが、Cu単独、Zn単独メツキ内
における減衰であるので、あらかじめその減衰率
は容易に計算でき、このため非常に精度のよい分
析測定を行うことが可能となる。
As described above, in the plating device of the present invention,
An energy dispersive fluorescent X-ray spectrometer is installed in front of the thermal diffusion heating device to perform analytical measurements, and feeds back to the plating condition setting means for automatic control, eliminating the influence of compositional gradients and reducing the attenuation of X-ray analysis as described above. Although it occurs in the same way, since the attenuation is within the plating of Cu alone or Zn alone, the attenuation rate can be easily calculated in advance, making it possible to perform highly accurate analytical measurements.

また、熱拡散加熱装置は上記分析装置の後に配
置しているため、拡散熱量を自在に変化させても
測定結果には全く影響しない。
Furthermore, since the thermal diffusion heating device is placed after the analysis device, even if the amount of diffusion heat is freely changed, it will not affect the measurement results at all.

(実施例) 以下本発明の一実施例を図面に基いて説明す
る。
(Example) An example of the present invention will be described below based on the drawings.

第1図に示すように、線状体11を繰出す繰出
し装置1に連続して、線状体に脱脂、水洗、酸洗
等の前処理を行うメツキ前処理装置2を配置し、
続いて各メツキ浴のメツキ電流等を制御するメツ
キ条件制御手段7を備えたCuメツキ浴槽3、お
よびZnメツキ浴槽4を配置し、さらに水洗装置
8、乾燥装置9等のメツキ後処理装置と、熱拡散
加熱装置5と、合金メツキされた線状体11を巻
取る巻取り装置12を順次配置する。
As shown in FIG. 1, a plating pretreatment device 2 that performs pretreatment such as degreasing, water washing, pickling, etc. on the linear body is disposed in succession to the feeding device 1 that feeds the linear body 11,
Next, a Cu plating bath 3 and a Zn plating bath 4 equipped with a plating condition control means 7 for controlling the plating current etc. of each plating bath are arranged, and further plating post-processing devices such as a water washing device 8 and a drying device 9 are installed. A thermal diffusion heating device 5 and a winding device 12 for winding up the alloy-plated linear body 11 are arranged in sequence.

そして、上記メツキ後処理装置と熱拡散加熱装
置5の間の線状体11の近傍にX線発生管13を
配したエネルギー分散型蛍光X線分析装置6を設
け、線状体表面に層状にメツキされた各金属から
の二次X線を検知し分折する検知、分析手段を構
成する。
Then, an energy dispersive X-ray fluorescence analyzer 6 having an X-ray generating tube 13 is installed near the linear body 11 between the plating post-processing device and the thermal diffusion heating device 5, and a layered structure is formed on the surface of the linear body. It constitutes a detection and analysis means that detects and separates secondary X-rays from each plated metal.

また、上記X線分析装置6と上記メツキ条件制
御手段7とをマイクロコンピユータ10を介して
接続することにより、上記検知、分析した値とあ
らかじめ設定した基準値とを比較して修整値を演
算する演算手段と、上記修整値を各金属メツキの
メツキ条件設定手段に連続的にフイードバツク
し、メツキ条件を制御するメツキ条件制御手段7
を具備して本発明のゴム補強用線状体への熱拡散
合金メツキ装置を構成する。
Furthermore, by connecting the X-ray analysis device 6 and the plating condition control means 7 via a microcomputer 10, a correction value is calculated by comparing the detected and analyzed values with a preset reference value. a calculation means, and a plating condition control means 7 that continuously feeds back the modified values to the plating condition setting means for each metal plating and controls the plating conditions.
An apparatus for plating a rubber reinforcing linear body with a heat diffusion alloy according to the present invention is comprised of the following.

なお、メツキ後処理装置としては乾燥装置9を
省略し、水洗装置8を湯洗装置に変えて設けるこ
ともある。
Note that the drying device 9 may be omitted as the plating post-processing device, and the water washing device 8 may be replaced with a hot water washing device.

次に、本発明の装置を用いた線状体のメツキ方
法によいて説明する。
Next, a method of plating a linear body using the apparatus of the present invention will be explained.

第1図に示すように、繰出しリール等よりなる
繰出し装置1より引き出された線状体11は脱
脂、水洗、酸洗等のメツキ前処理装置2を通り、
メツキ条件制御手段7によりメツキ電流が設定さ
れた第一層目のCuメツキ浴槽3及び第二層目の
Znメツキのためのメツキ浴槽4を通つて二層メ
ツキされ、さらに水洗装置8、乾燥装置9を通過
した後、熱拡散加熱装置5を通つて熱拡散処理さ
れ、合金メツキされた線状体11となつて巻取り
リール12に連続的に巻き取られる。
As shown in FIG. 1, a linear body 11 drawn out from a feeding device 1 consisting of a feeding reel or the like passes through a plating pre-treatment device 2 such as degreasing, water washing, pickling, etc.
The Cu plating bath 3 for the first layer and the Cu plating bath 3 for the second layer in which the plating current is set by the plating condition control means 7
The linear body 11 is plated in two layers through a plating bath 4 for Zn plating, further passed through a washing device 8 and a drying device 9, and then subjected to a thermal diffusion treatment through a thermal diffusion heating device 5 and alloy plated. The film is continuously wound onto the take-up reel 12.

上記のように配置された熱拡散合金メツキ工程
において、金属メツキ工程終了後熱拡散工程前の
所定位置の線状体の近傍にエネルギー分散型蛍光
X線分析装置6が配置され、その蛍光X線発生管
13よりX線を線状体11の表面に照射し、線状
体表面に二層メツキされた各金属からの特性X線
を同時に検出し、上記検出手段より検知した各金
属からの特性X線の強度比率より二層メツキの層
状態(メツキ付着量又は金属付着量比)を分析
し、上記検知した値とあらかじめ設定した基準値
とを比較して修整値をコンピユータ10において
演算し、上記修整値を各金属メツキのメツキ条件
設定手段に連続的にフイードバツクし、目的のメ
ツキ付着量、又は金属付着量比が線状体の長手方
向に均一に得られるようメツキ浴槽3,4のメツ
キ電流等のメツキ条件を自動制御する。
In the heat diffusion alloy plating process arranged as described above, an energy dispersive fluorescent X-ray analyzer 6 is disposed near the linear body at a predetermined position after the metal plating process is completed and before the heat diffusion process, and the fluorescent The generation tube 13 irradiates the surface of the linear body 11 with X-rays, simultaneously detecting the characteristic X-rays from each metal plated in two layers on the surface of the linear body, and detecting the characteristics of each metal detected by the detection means. Analyze the layer condition of the two-layer plating (plating adhesion amount or metal adhesion amount ratio) from the X-ray intensity ratio, compare the detected value with a preset reference value, and calculate a correction value on the computer 10, The above correction values are continuously fed back to the plating condition setting means for each metal plating, and the plating of the plating baths 3 and 4 is performed so that the desired plating amount or metal adhesion amount ratio is uniformly obtained in the longitudinal direction of the linear body. Automatically controls plating conditions such as current.

上記のように二層メツキされた線状体は熱拡散
装置5により合金メツキ化されるが、この合金メ
ツキ状態では、すでにメツキ厚み及び合金組成比
は目的の値に調節されたものとなつている。
The linear body plated in two layers as described above is alloy-plated by the heat diffusion device 5, but in this alloy-plated state, the plating thickness and alloy composition ratio have already been adjusted to the desired values. There is.

このようにして、運転を停止することなく連続
的に、しかも時間的に各メツキ電流効率が変化し
ても目的とする合金メツキが均一に精度よく得ら
れる。
In this way, the desired alloy plating can be uniformly and precisely obtained continuously without stopping operation, and even if the plating current efficiency changes over time.

(発明の効果) 本発明のゴム補強用線状体への熱拡散合金メツ
キ装置は上記構成よりなり、エネルギー分散型蛍
光X線分析装置を用いて線状体表面に照射された
各金属からの特性X線の検知、分析手段としてい
るため、線径が1mmφ程度の細に線状体で、しか
も微小振動をともなう連続運転中にも精度よく分
析が可能となる。
(Effects of the Invention) The heat diffusion alloy plating device for rubber reinforcing linear bodies of the present invention has the above-mentioned configuration, and the heat diffusion alloy plating device for rubber reinforcing linear bodies has the above-mentioned configuration. Since it uses characteristic X-rays as a means of detection and analysis, it is possible to analyze with high accuracy even when the wire is a thin wire with a diameter of about 1 mmφ and is continuously operated with minute vibrations.

また、スチールタイヤコードのようにゴム補強
用線状体においては、線状体に施した合金メツキ
のメツキ厚さ、及びメツキ合金比の精度が、ゴム
との接着性より非常に厳しく要求されており、た
とえば真鍮メツキ鋼線で65%のCu濃度を得るの
に従来の連続メツキ装置では、せいぜい62%〜68
%程度の精度であるが、本発明の装置では熱拡散
加熱装置の前の所定位置に検知、分析手段を配置
し、演算手段、メツキ条件設定手段等によりメツ
キ条件を自動制御しているので64%〜66%以内の
精度の真鍮メツキを得ることができ、精度の良い
合金メツキが得られる。
In addition, for linear bodies for reinforcing rubber such as steel tire cords, the plating thickness of the alloy plating applied to the linear body and the accuracy of the plating alloy ratio are more strictly required than the adhesion with the rubber. For example, to obtain a Cu concentration of 65% in brass-plated steel wire, conventional continuous plating equipment requires at most 62% to 68% Cu concentration.
Although the accuracy is about 64%, in the device of the present invention, the detection and analysis means are placed at a predetermined position in front of the heat diffusion heating device, and the plating conditions are automatically controlled by the calculation means, plating condition setting means, etc. Brass plating with an accuracy within 66% can be obtained, and alloy plating with good accuracy can be obtained.

さらに、従来、メツキ浴管理、電流管理、各種
分析等に多大の労力をかけていたが、本発明の装
置により自動制御が行われ、合金メツキの線状体
の操業率が向上し、歩留も向上し、生産性を大巾
に向上する等の優れた効果を有する発明である。
Furthermore, conventionally, a great deal of effort was required for plating bath management, current control, various analyses, etc., but the device of the present invention performs automatic control, improving the operation rate of alloy plating linear bodies and increasing yield. This invention has excellent effects such as improving productivity and greatly improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す概略説明図で
あり、第2図イ,ロは各々Feにメツキされた真
鍮メツキにおける蛍光X線分析の検量線を示す相
関図、第3図イは鋼線上の熱拡散真鍮メツキにお
ける加熱量による蛍光X線分析結果を示す相関
図、ロはイにおけるそれぞれのメツキの合金状態
の変化を示すX線分析図、ハは真鍮メツキ層への
蛍光X線分析の検量線の減衰程度を示す作用図で
ある。 1……繰出装置、2……メツキ前処理装置、
3,4……メツキ浴槽、5……熱拡散加熱装置、
6……エネルギー分散型蛍光X線分析装置、7…
…メツキ条件制御手段、8……水洗装置、9……
乾燥装置、10……マイクロコンピユータ、11
……線状体、12……巻取り装置、13……X線
発生管。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the present invention, FIGS. 2A and 2B are correlation diagrams showing the calibration curve of fluorescent X-ray analysis for brass plating plated with Fe, and FIG. 1 is a correlation diagram showing the results of fluorescent X-ray analysis depending on the amount of heating in the heat diffusion brass plating on the steel wire, B is an X-ray analysis diagram showing the change in the alloy state of each plating in A, and C is the fluorescent FIG. 3 is an action diagram showing the degree of attenuation of a calibration curve in line analysis. 1... Feeding device, 2... Plating pretreatment device,
3, 4...Metsuki bathtub, 5...Thermal diffusion heating device,
6...Energy dispersive X-ray fluorescence analyzer, 7...
... Plating condition control means, 8... Water washing device, 9...
Drying device, 10...Microcomputer, 11
... Linear body, 12 ... Winding device, 13 ... X-ray generating tube.

Claims (1)

【特許請求の範囲】[Claims] 1 線状体の繰出し装置と、メツキ前処理装置
と、2種以上の金属を個別にメツキする複数の電
気メツキ浴槽と、メツキ後処理装置と、熱拡散加
熱装置と、線状体の巻取り装置とを順次配置し、
さらに上記メツキ後処理装置と熱拡散加熱装置の
間の所定位置に、線状体表面に層状にメツキされ
た各金属からの二次X線を検知する検知手段を有
し、しかも上記二次X線の強度比率から各金属の
付着量、又は金属付着量比を分析する分析手段と
を有するエネルギー分散型蛍光X線分析装置を設
け、上記分析装置により検知した値とあらかじめ
設定した基準値とを比較して修整値を演算する演
算手段と、上記修整値を各金属メツキのメツキ条
件設定手段に連続的にフイードバツクし、メツキ
条件を制御する制御手段を接続してなることを特
徴とするゴム補強用線状体への熱拡散合金メツキ
装置。
1. A linear body feeding device, a plating pre-treatment device, a plurality of electroplating baths for individually plating two or more metals, a plating post-treatment device, a thermal diffusion heating device, and a linear body winding device. Place the devices in sequence,
Furthermore, at a predetermined position between the plating post-processing device and the thermal diffusion heating device, there is provided a detection means for detecting secondary X-rays from each metal plated in layers on the surface of the linear body, and An energy-dispersive fluorescent X-ray analyzer is provided which has an analysis means for analyzing the amount of each metal attached or the ratio of the amount of attached metal based on the intensity ratio of the rays, and the value detected by the above-mentioned analyzer is compared with a preset reference value. Rubber reinforcement characterized in that it is connected to a calculation means for comparing and calculating a modification value, and a control means for continuously feeding back the modification value to a plating condition setting means for each metal plating and controlling the plating conditions. Heat diffusion alloy plating device for linear objects.
JP10843489A 1989-04-27 1989-04-27 Thermally diffused alloy plated device to wire-shaped body for reinforcing rubber Granted JPH02138494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10843489A JPH02138494A (en) 1989-04-27 1989-04-27 Thermally diffused alloy plated device to wire-shaped body for reinforcing rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10843489A JPH02138494A (en) 1989-04-27 1989-04-27 Thermally diffused alloy plated device to wire-shaped body for reinforcing rubber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20339083A Division JPS6096753A (en) 1983-10-29 1983-10-29 Heat diffusion alloy plating method to wire body

Publications (2)

Publication Number Publication Date
JPH02138494A JPH02138494A (en) 1990-05-28
JPH031396B2 true JPH031396B2 (en) 1991-01-10

Family

ID=14484679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10843489A Granted JPH02138494A (en) 1989-04-27 1989-04-27 Thermally diffused alloy plated device to wire-shaped body for reinforcing rubber

Country Status (1)

Country Link
JP (1) JPH02138494A (en)

Also Published As

Publication number Publication date
JPH02138494A (en) 1990-05-28

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
US4659437A (en) Method of thermal diffusion alloy plating for steel wire on continuous basis
US4064437A (en) Method for measuring the degree of alloying of galvannealed steel sheets
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPH031396B2 (en)
JPH0149796B2 (en)
JP4736440B2 (en) Apparatus and method for measuring surface treatment film adhesion amount of metal strip
KR20200000699A (en) method of estimating at least one of coating weight and alloy degree of zinc alloy plated sheet
JP2932110B2 (en) Thermal diffusion alloy plating equipment for raw material of steel cord for rubber reinforcement
JPH0699797B2 (en) Method for plating thermal diffusion alloy on rubber-reinforced wire
JP2873125B2 (en) Method and apparatus for measuring coating weight
JPH056139B2 (en)
KR20000025344A (en) Method for measuring coating amount and alloy degree using fluorescent x-rays
JPS63140950A (en) X-ray measuring instrument for plating film
KR900002160B1 (en) Method of thermal diffusion alloy plating for steel wire
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
JP2018173378A (en) Method for evaluating quality of water vapor treatment product
JPS62127619A (en) Method for measuring plating thickness
JPH05264481A (en) On-line measuring method for amount of adhered cr to chromate-treated film on plated steel plate
JPH0118373B2 (en)
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPS62135755A (en) Method for quantitative determination of plating film on metallic material