JPH03139593A - Manufacture of electron beam sensor comprising oxide single crystal - Google Patents

Manufacture of electron beam sensor comprising oxide single crystal

Info

Publication number
JPH03139593A
JPH03139593A JP27579889A JP27579889A JPH03139593A JP H03139593 A JPH03139593 A JP H03139593A JP 27579889 A JP27579889 A JP 27579889A JP 27579889 A JP27579889 A JP 27579889A JP H03139593 A JPH03139593 A JP H03139593A
Authority
JP
Japan
Prior art keywords
single crystal
oxide single
electron beam
beam sensor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27579889A
Other languages
Japanese (ja)
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP27579889A priority Critical patent/JPH03139593A/en
Publication of JPH03139593A publication Critical patent/JPH03139593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • ing And Chemical Polishing (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an electron beam sensor comprising an oxide single crystal and having high luminous efficiency by machining an oxide single crystal doped with fluorescent ions into a thin disc of a specified thickness, and subjecting the disc to surface roughening and chemical etching. CONSTITUTION:An oxide single crystal doped with fluorescent ions such as Ce<3+> ions (e.g. Ce-YAG) is machined into a disc with a thickness of tens of 10mum. This thin disc is planished, and both of the surfaces are roughened and chemically etched with hot phosphoric acid at 180 deg.C to remove a strain layer caused by machining, thus giving an electron beam sensor comprising an oxide single crystal, used for a scanning electron microscope, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型電子顕微鏡(SEM)等に用いられる
電子線センサに関し、詳しくは薄板状の酸化物Ill結
晶蛍光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electron beam sensor used in a scanning electron microscope (SEM), etc., and more particularly to a method for manufacturing a thin plate-shaped oxide Ill crystal phosphor.

[従来の技術] 従来、電子線センサとして、蛍光体粉末(P−46)を
用いた場合、紫外線や電子線によって劣化するため数年
ごとに交換しなければならなかった。そのため、蛍光イ
オンをドーブした酸化物単結晶から切出し加工後、熱処
理し、メカノケミカルポリッシング法により表面を鏡面
仕上げて用いている。
[Prior Art] Conventionally, when phosphor powder (P-46) is used as an electron beam sensor, it has to be replaced every few years because it deteriorates due to ultraviolet rays and electron beams. Therefore, the material is cut out from an oxide single crystal doped with fluorescent ions, heat-treated, and finished with a mirror-like surface using a mechanochemical polishing method.

[発明が解決しようとする課題] 酸化物単結晶は、蛍光体粉末(製品名、P−46)に比
べて耐久力はあるが、一般に単結晶の屈折率が大きいた
めに、結晶内から十分な光信号を取り出せなかった。
[Problems to be Solved by the Invention] Oxide single crystals are more durable than phosphor powders (product name: P-46), but because the refractive index of single crystals is generally large, they cannot be easily removed from within the crystal. I couldn't get a proper optical signal.

即ち、電子線センサ材料として、酸化物単結晶板が用い
られているが、この酸化物単結晶板は屈折率が大きいた
めに、厚さが厚い程入射光線が全反射によって結晶内に
閉込められるので、できるだけ厚さが薄いもの程、光が
透過しやすく有利である。また、結晶内での反射に関し
ても薄いほど、その反射回数が多くなり感度を高めるこ
とができる。
In other words, an oxide single crystal plate is used as an electron beam sensor material, but since this oxide single crystal plate has a large refractive index, the thicker the thickness, the more the incident light rays are confined within the crystal due to total reflection. Therefore, the thinner the material is, the easier it is for light to pass through, which is advantageous. Also, regarding reflection within the crystal, the thinner the crystal, the more times the crystal will be reflected, and the sensitivity can be increased.

酸化物単結晶の厚さは、電子線の波長1μm程度が理想
的であるが、従来は研磨等の加工上の問題から厚さ10
0μm程度が限界であった。
The ideal thickness of an oxide single crystal is about 1 μm at the wavelength of the electron beam, but conventionally it has been reduced to a thickness of about 10 μm due to processing problems such as polishing.
The limit was about 0 μm.

そこで、本発明の技術的課題は、電子線センサとして耐
久力のある酸化物単結晶を加工法の改良により、高効率
化し、耐久力のある高効率な電子線センサを提供するこ
とにある。
Therefore, a technical problem of the present invention is to improve the efficiency of a durable oxide single crystal as an electron beam sensor by improving the processing method, and to provide a durable and highly efficient electron beam sensor.

[課題を解決するための手段] 本発明によれば、電子線センサに用いる蛍光イオンをド
ーブした酸化物単結晶からなる電子線センサの製造方法
において、該酸化物単結晶を機械加工により厚みを数十
μmの円板状に成形し、表面を鏡面仕上げした後、両面
を粗面仕上げし、熱リン酸でケミカルエツチングしたこ
とを特徴とする酸化物単結晶電子線センサの製造方法が
得られる。
[Means for Solving the Problems] According to the present invention, in a method for manufacturing an electron beam sensor made of an oxide single crystal doped with fluorescent ions for use in an electron beam sensor, the thickness of the oxide single crystal is reduced by machining. A method for manufacturing an oxide single crystal electron beam sensor is obtained, which is characterized in that it is formed into a disk shape of several tens of micrometers, the surface is mirror-finished, then both sides are rough-finished and chemically etched with hot phosphoric acid. .

本発明は、向上した研磨技術、即ち、酸化物単結晶板の
平面性と接着技術とにより、厚さ数十μm程度に形成さ
れた単結晶板を使用した。
The present invention uses a single-crystal plate formed to a thickness of about several tens of μm using improved polishing technology, that is, flatness of the oxide single-crystal plate and adhesion technology.

また、酸化物単結晶板は鏡面加工後、電子線照射面に粗
面加工を施すと、エネルギー効率が上昇する、即ち、カ
ソードルミネッセンス強度が増加することは、知られて
いる。
Furthermore, it is known that when an oxide single crystal plate is mirror-finished and then subjected to roughening on the electron beam irradiated surface, the energy efficiency increases, that is, the cathodoluminescence intensity increases.

本発明では、電子線照射面に対向する面に、即ち、両面
に粗面加工を施すことにより、カソードルミネッセンス
強度がさらに向上することを見出し、本発明を完成する
に至ったものである。
In the present invention, the present invention was completed based on the discovery that the cathode luminescence intensity can be further improved by roughening the surface facing the electron beam irradiation surface, that is, both surfaces.

[作 用] 本発明の電子線センサの両表面を荒らすことにより、電
子線の吸収量が大きくなり、高効率となる。
[Function] By roughening both surfaces of the electron beam sensor of the present invention, the amount of electron beam absorption increases, resulting in high efficiency.

さらに、加工歪層を除去することによって、結晶中での
エネルギーの伝播がスムーズになり、有効に発行イオン
を励起できるため、発光効率が向上する。
Furthermore, by removing the process-strained layer, energy propagation in the crystal becomes smoother and emitted ions can be excited effectively, resulting in improved luminous efficiency.

[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

蛍光イオンとして、Ce ”を有する酸化物単結晶であ
るCe:YAG原石より、超音波ロータリー加工機で打
抜いた単結晶(φ3X2mm)を素材として用いた。蛍
光イオンとしてCeを含有する酸化物単結晶であるCe
:YAG原石より、題名波ロータリ加工機で打抜いた単
結晶(φ3×1mm)を用いた。薄板状に加工する際、
問題となるのは、接着剤や加工歪層による板の反りで、
これを防ぐために次のような加工を行った。
As a fluorescent ion, we used a single crystal (φ3 x 2 mm) punched from Ce:YAG raw stone, which is an oxide single crystal containing Ce'', using an ultrasonic rotary processing machine.As a fluorescent ion, we used an oxide single crystal containing Ce. Crystal Ce
: A single crystal (φ3 x 1 mm) punched from YAG raw stone using a title wave rotary processing machine was used. When processing into a thin plate,
The problem is the warping of the board due to the adhesive and the processed strained layer.
To prevent this, the following processing was performed.

平面度λ/10(λ−0.63μm)で仕上げられたφ
1010X20のYAG円板上に、粘性の小さなワック
スを用いて、φ3X2mmのCe:YAGを接着してか
ら、平面度λ/10の精度でメカノケミカル仕上げを行
った。
φ finished with flatness λ/10 (λ-0.63μm)
Ce:YAG of φ3×2 mm was adhered onto a 1010×20 YAG disk using wax with low viscosity, and then mechanochemical finishing was performed with a flatness accuracy of λ/10.

この試料をYAG円板より取外して、裏返して接着した
。この場合、YAG円板及び試料の表面状態が、λ/1
0であるため、真空接着が可能であり、接着剤を使わず
に接着できる。
This sample was removed from the YAG disk, turned over, and bonded. In this case, the surface condition of the YAG disk and sample is λ/1
Since it is 0, vacuum bonding is possible and bonding can be performed without using adhesive.

但し、加工率に剥離する場合があるので、試料の側面だ
けをエポキシ系の接着剤で接着した。この結晶を粗加工
で100μmまで研磨した後、鏡面研磨で50μm薄く
してから、メカノケミカルポリッシングを行った。研磨
終了後、有機溶剤中で加熱剥離して、両面を#3000
の研磨材で加工した。
However, since peeling may occur due to the processing rate, only the sides of the sample were adhered with an epoxy adhesive. This crystal was roughly polished to a thickness of 100 μm, mirror polished to a thickness of 50 μm, and then mechanochemical polishing was performed. After polishing, heat peeling in an organic solvent and coat both sides with #3000.
Processed with abrasive material.

メカノケミカルポリッシング鏡面仕上げした試料1、こ
の単結晶板の両面(電子線照射面)を#400研磨材で
、厚さ数十μmに、粗削りした試料2、さらに粗削りし
た試料2を180℃の熱リン酸でエツチングし、該酸化
物単結晶蛍光体の表面を加工歪み層を取り除くことによ
って、φ3X25μmの両面が荒れた(e:YAG素子
試料3が得られた。
Sample 1 was mechanochemically polished to a mirror finish, Sample 2 was rough-ground to a thickness of several tens of micrometers on both sides (electron beam irradiated surface) of this single crystal plate with #400 abrasive, and Sample 2 was further rough-ground and heated at 180°C. By etching the surface of the oxide single crystal phosphor with phosphoric acid and removing the strained layer, both surfaces of φ3×25 μm were roughened (e: YAG element sample 3 was obtained).

さらに熱リン酸で3分間程度エツチングし、及び蛍光粉
末(P−46)の4種類を用意し、各々の電子線センサ
の電子線蛍光強度(カソードルミネッセンス)をEPM
A装置で評価した。
Furthermore, etching was performed for about 3 minutes with hot phosphoric acid, four types of fluorescent powder (P-46) were prepared, and the electron beam fluorescence intensity (cathode luminescence) of each electron beam sensor was measured by EPM.
Evaluation was made using A device.

尚、上記のエツチングした試料の表面は、荒削りした試
料よりも凹凸状態が更に、明確になっている。
It should be noted that the surface of the etched sample has more pronounced irregularities than the rough-cut sample.

電子線ビーム径は、100μm、繰返し100Hz、加
速電圧10kVで測定した。
The electron beam diameter was 100 μm, the repetition rate was 100 Hz, and the acceleration voltage was 10 kV.

その結果を第1図に示す。The results are shown in FIG.

尚、研磨は単結晶を接着し、平担面になるようにして、
平面性を高めた。
In addition, when polishing, the single crystal is glued together so that it becomes a flat surface.
Improved flatness.

ケミカルポリッシングした試料1のカソードルミネッセ
ンス強度を1とすると、荒削りした試料2では3、荒削
り後、エツチングした試料3で6、蛍光粉末体4で5.
1のカソードルミネセンス強度が得られた。
If the cathodoluminescence intensity of chemically polished sample 1 is 1, rough-cut sample 2 has an intensity of 3, rough-cut and etched sample 3 has an intensity of 6, and fluorescent powder 4 has an intensity of 5.
A cathodoluminescence intensity of 1 was obtained.

蛍光粉末体4は、測定開始時に、試料3と路間等のカソ
ードルミネッセンス強度を示すが、測定開始の3分後に
は、試料3の1/3までカソードルミネッセンス強度が
減少低下する。
The fluorescent powder 4 exhibits a cathodoluminescence intensity between the sample 3 and the path at the start of the measurement, but the cathodoluminescence intensity decreases to 1/3 of that of the sample 3 three minutes after the start of the measurement.

また、酸化物単結晶電子線センサ(試料1,2゜3)で
は、このような出力の低下が、全く見られなかった。
Further, in the oxide single crystal electron beam sensors (Samples 1 and 2°3), such a decrease in output was not observed at all.

[発明の効果コ 以上述べたように、本発明の電子線センサの製造方法に
よれば、酸化物単結晶を機械加工により厚みを数十μm
の円板状に成形した後、両面を粗面仕上げし、ケミカル
エツチングすることにより、蛍光体粉末に比べて高い発
光効率を呈する酸化物単結晶蛍光体?W板が得られる。
[Effects of the Invention] As described above, according to the method for manufacturing an electron beam sensor of the present invention, an oxide single crystal is machined to a thickness of several tens of μm.
An oxide single-crystal phosphor that exhibits higher luminous efficiency than phosphor powder by forming it into a disk shape, roughening both sides, and chemically etching it. A W plate is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカソードルミネッセンスの時間変化を示す図で
ある。 図中、1は表面を鏡面研磨したCe:YAG単結晶、2
は表面を#400研磨材で研磨したCe:Y A G 
111結晶、31;! # 400研磨材で研磨した後
、ケミカルエツチングしたCe:YAG単結晶、4は粉
末蛍光体(P−46)て夫々のカソードルミネッセンス
強度を示す。
FIG. 1 is a diagram showing changes in cathodoluminescence over time. In the figure, 1 is a Ce:YAG single crystal with mirror polished surface, 2
Ce: Y A G whose surface was polished with #400 abrasive
111 crystals, 31;! #4 shows the cathodoluminescence intensity of a chemically etched Ce:YAG single crystal after polishing with a 400 abrasive, and 4 is a powdered phosphor (P-46).

Claims (1)

【特許請求の範囲】[Claims] 1 電子線センサに用いる蛍光イオンをドーブした酸化
物単結晶からなる電子線センサの製造方法において、該
酸化物単結晶を機械加工により厚みを数十μmの円板状
に成形し、表面を鏡面仕上げした後、両面を粗面仕上げ
し、熱リン酸でケミカルエツチングしたことを特徴とす
る酸化物単結晶電子線センサの製造方法。
1. In a method for manufacturing an electron beam sensor made of an oxide single crystal doped with fluorescent ions used in an electron beam sensor, the oxide single crystal is formed into a disk shape with a thickness of several tens of micrometers by machining, and the surface is mirror-finished. A method for manufacturing an oxide single crystal electron beam sensor, characterized in that after finishing, both surfaces are roughened and chemically etched with hot phosphoric acid.
JP27579889A 1989-10-25 1989-10-25 Manufacture of electron beam sensor comprising oxide single crystal Pending JPH03139593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27579889A JPH03139593A (en) 1989-10-25 1989-10-25 Manufacture of electron beam sensor comprising oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27579889A JPH03139593A (en) 1989-10-25 1989-10-25 Manufacture of electron beam sensor comprising oxide single crystal

Publications (1)

Publication Number Publication Date
JPH03139593A true JPH03139593A (en) 1991-06-13

Family

ID=17560562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27579889A Pending JPH03139593A (en) 1989-10-25 1989-10-25 Manufacture of electron beam sensor comprising oxide single crystal

Country Status (1)

Country Link
JP (1) JPH03139593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105751A (en) * 1988-05-05 1992-04-21 Pfaff Industriemaschinen Gmbh Process for carrying out a sewing operation with a sewing machine with needle feed
CZ305614B6 (en) * 2014-11-07 2016-01-06 Crytur, Spol.S R.O. Modification method of monocrystalline scintillator surface and monocrystalline scintillator with surface modified by such a method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105751A (en) * 1988-05-05 1992-04-21 Pfaff Industriemaschinen Gmbh Process for carrying out a sewing operation with a sewing machine with needle feed
CZ305614B6 (en) * 2014-11-07 2016-01-06 Crytur, Spol.S R.O. Modification method of monocrystalline scintillator surface and monocrystalline scintillator with surface modified by such a method

Similar Documents

Publication Publication Date Title
US11150285B2 (en) Photonic-crystal vapor cells for imaging of electromagnetic fields
KR101240063B1 (en) Device and device manufacturing method
KR102133336B1 (en) Composite substrate, method for fabricating same, and elastic wave device
JP6551404B2 (en) Optical glass and method of cutting glass substrate
CN102046552A (en) Adhesive, hermetic oxide films for metal fluoride optics
JP2007043063A (en) Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus
JPWO2006093055A1 (en) Optical analysis chip and manufacturing method thereof, optical analysis device, and optical analysis method
JP5173435B2 (en) X-ray monochromator or neutron monochromator
JPH03139593A (en) Manufacture of electron beam sensor comprising oxide single crystal
US20050128588A1 (en) Ultra-thin glass polarizers and method of making same
EP0968081A1 (en) Flattening process for bonded semiconductor substrates
US10249664B2 (en) Optical glass
CN102081178B (en) Method for manufacturing micro ladder reflecting mirror by sequentially arranging substrates on wedge block
RU2137259C1 (en) Multicomponent photodetector manufacturing process
JP2001208672A (en) Probe, its manufacturing method, probe array, and its manufacturing method
JP2006281328A (en) Method for manufacturing workpiece
KR100994278B1 (en) Optical element, light emitting device, and method of manufacturing optical element
BE1007781A3 (en) Method for connecting two optical surfaces, thus formed optical assembly and particle-optical device with such assembly.
TWI845377B (en) Semiconductor manufacturing method
CN220323570U (en) Stress-relieved spherical bending analysis crystal and Roland circular spectrometer
JP3230665B2 (en) Sample production method for transmission electron microscope
JPH039287A (en) Electron beam sensor
CN108247874A (en) A kind of processing method of yttrium luetcium silicate crystal cuboid device
JP2000081512A (en) Etalon filter and its production
JP2002203772A (en) Method for manufacturing mask for electron beam exposure and method for forming thin film