JPH0313915A - Production of electro-optical element of active matrix type - Google Patents

Production of electro-optical element of active matrix type

Info

Publication number
JPH0313915A
JPH0313915A JP1149071A JP14907189A JPH0313915A JP H0313915 A JPH0313915 A JP H0313915A JP 1149071 A JP1149071 A JP 1149071A JP 14907189 A JP14907189 A JP 14907189A JP H0313915 A JPH0313915 A JP H0313915A
Authority
JP
Japan
Prior art keywords
substrates
active matrix
vacuum
time
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149071A
Other languages
Japanese (ja)
Inventor
Tadahiro Kaneko
直裕 金子
Yukiyoshi Tsunoda
角田 幸義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1149071A priority Critical patent/JPH0313915A/en
Publication of JPH0313915A publication Critical patent/JPH0313915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent a switching element from being broken upon lapse of time at the time of driving by providing a stage for heating substrates in a vacuum just before sealing of a liquid crystal therebetween. CONSTITUTION:The substrates stuck to each other are put into a vacuum dryer and while the inside of the dryer is evacuated to a vacuum, the substrates are heated for 45 minutes at 125 deg.C. The vacuum degree of this time is from 1Torr to about 1X10<-3>Torr. The active matrix type electrooptical element produced by adding such stage to the conventional process for production has extremely high reliability. The reason thereof lies in that the moisture in the panel can be mostly removed by heating the substrates in the vacuum. The breaking of the switching element with lapse of time at the time of the driving which is heretofore of problem is prevented in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンピュータ用大型デイスプレィ、光学シャ
ッターなどに利用されるスイッチング素子を使ったアク
ティブマトリックス型電気光学素子の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing an active matrix electro-optical element using a switching element used in large-scale computer displays, optical shutters, and the like.

〔発明の概要〕[Summary of the invention]

本発明はアクティブマトリックス型電気光学素子の製造
方法において、基板間に液晶を14人する直前に基板を
真空を加熱する工程を設けることにより複数のスイッチ
ング素子の経時的な破壊を防止する製造方法である。
The present invention is a method for manufacturing an active matrix electro-optical element, in which a step of heating the substrate in a vacuum immediately before placing a liquid crystal between the substrates prevents the destruction of a plurality of switching elements over time. be.

〔従来の技術〕[Conventional technology]

近年になってカラー液晶TVやラップトノブコンピュー
タに使用されているアクティブマトリックス型鉄器光学
素子は基板表面上の各画素にスイッチング素子を形成す
ることで情1fflの増大化が可能になり、高速応答、
ハイコントラストなどの特徴があることから今後の発展
が期待されている。
In recent years, the active matrix iron optical elements that have been used in color LCD TVs and laptop-knob computers have made it possible to increase the optical density by forming a switching element in each pixel on the substrate surface, resulting in high-speed response and
Future developments are expected as it has features such as high contrast.

アクティブマトリックス型電気光学素子はMIM(門e
tal−1nsulator−Metal)やM S 
l (Metal−5emi−Insulator)な
どの二端子型とT P T (Thin−Film−T
ransistor)の三端子型に大別される。代表的
な二端子型アクティブマトリックス型電気光学素子であ
るMSIパネルの構造を第3図囚、Dを使って説明する
。第3図(支)はMISパネル画素部の平面図、DはM
SIパネル画素部の断面図である。第3図囚、IBにお
いて、1は上基板、2は列電極、3は下基板、4は行電
極、5は画素電極、6は非線形抵抗膜層、7は配向膜で
ある。スイッチング素子は行電極4と画素電極5の間に
非線形抵抗層6が挟まれた構造となっている。上基板1
と下基41i3は接着剤とスペーサ粒子により5から1
0ミクロンの間隔で対向して接着されており、その間に
は液晶が封入されている。非線形抵抗膜層6の両端に低
い電圧が印刷された状態ではスイッチング素子はOFF
状態となるが、印加電圧がある一定値以上になるとスイ
ッチング素子はON状態となり液晶に電圧が印加される
Active matrix electro-optical elements are MIM (gate
tal-1nsulator-Metal) and MS
Two-terminal type such as l (Metal-5emi-Insulator) and TPT (Thin-Film-T
It is roughly divided into three terminal type (transistor). The structure of an MSI panel, which is a typical two-terminal active matrix electro-optical element, will be explained using FIG. Figure 3 (support) is a plan view of the MIS panel pixel section, D is M
FIG. 3 is a cross-sectional view of a pixel section of an SI panel. In FIG. 3, IB, 1 is an upper substrate, 2 is a column electrode, 3 is a lower substrate, 4 is a row electrode, 5 is a pixel electrode, 6 is a nonlinear resistive film layer, and 7 is an alignment film. The switching element has a structure in which a nonlinear resistance layer 6 is sandwiched between a row electrode 4 and a pixel electrode 5. Upper board 1
and the lower group 41i3 are changed from 5 to 1 by adhesive and spacer particles.
They are bonded facing each other with a spacing of 0 microns, and a liquid crystal is sealed between them. The switching element is OFF when a low voltage is printed on both ends of the nonlinear resistive film layer 6.
However, when the applied voltage exceeds a certain value, the switching element turns on and voltage is applied to the liquid crystal.

次に第3図のアクティブマトリックス型電気光学素子の
従来の製造方法の概要を第2図のフローチャートに従い
以下に述べる。
Next, an outline of the conventional manufacturing method of the active matrix type electro-optical element shown in FIG. 3 will be described below in accordance with the flowchart shown in FIG.

fal  下基板2となるガラス基板上にITO層をス
パッタリングあるいは1着等によって成+19、バター
ニングして画素電極5を形成する。
fal An ITO layer is formed on a glass substrate that will become the lower substrate 2 by sputtering or coating (19), and then patterned to form a pixel electrode 5.

ib)  その上に非線形抵抗膜層6と行電極4となる
Crなどのメタルの層を成膜、バターニングして第3図
囚に示すようなスイッチング素子を形成する。
ib) A layer of metal such as Cr, which will become the nonlinear resistance film layer 6 and the row electrodes 4, is formed thereon and patterned to form a switching element as shown in FIG. 3.

fel  上基板1となるもう一方のガラス基板上に■
TO膜を成膜、バターニングして列電極2を形成する。
fel On the other glass substrate that will become upper substrate 1 ■
Column electrodes 2 are formed by forming and patterning a TO film.

fdl  両方のガラス基板に配向処理を行う。fdl Perform alignment treatment on both glass substrates.

fal  下基Fi2に接着剤を塗布、上基板】にスペ
ーサ粒子を散布し両凸仮を張り合わせる。
fal Apply adhesive to the lower substrate Fi2, sprinkle spacer particles on the upper substrate and attach both convex temporary parts.

ffl  パネルの隙間に液晶を封入する。ffl Liquid crystal is sealed in the gap between panels.

(gl  駆動用回路と接続する。(gl Connect with the drive circuit.

(alとfb+はスイッチング素子を持つ特殊な基板の
製造工程で(C1から(flまでは通常の電気光学素子
の製造工程と基本的には同様である。
(Al and fb+ are manufacturing processes for a special substrate having a switching element (C1 to (fl) are basically the same as the manufacturing process for normal electro-optical elements.

(発明が解決しようとする課題〕 しかし、上記のような製造方法で作られたアクティブマ
トリックス型電気光学素子は駆動すると経時的にスイッ
チング素子の破壊が発生するという欠点があった。この
素子の破壊は、行aのCrとパネル内に吸着している水
分が次式に示す電気化学反応を起こしているためと考え
られる。
(Problem to be Solved by the Invention) However, the active matrix type electro-optical element manufactured by the above manufacturing method has a drawback that the switching element breaks down over time when driven. This is thought to be due to an electrochemical reaction between Cr in row a and moisture adsorbed within the panel as shown in the following equation.

(2Cr + 7 HlO”HlCrlOl + 6 
Hz>この電気化学反応により行電極であるCrが溶解
し破壊された画素部の平面図を第4図に示す、第4図に
おいて、4は行電極、6は画素電極である。
(2Cr + 7 HlO”HlCrlOl + 6
Hz> FIG. 4 shows a plan view of the pixel portion where Cr, which is the row electrode, is dissolved and destroyed by this electrochemical reaction. In FIG. 4, 4 is the row electrode and 6 is the pixel electrode.

図のように破壊されたスイッチング素子は正常の動作を
しなくなり、ON状態となる電圧を印加しても画素はO
FF状態のまま番となってしまう。
As shown in the figure, a destroyed switching element no longer operates normally, and even if a voltage that turns it on is applied, the pixel remains OFF.
It ends up being the turn in the FF state.

C課題を解決するための手段〕 本発明は上記のような問題点を解決するためアクティブ
マトリックス型電気光学素子の製造工程において、基板
間に液晶を封入する直前にW仮を真空で加熱する工程を
設けた。
Means for Solving Problem C] In order to solve the above-mentioned problems, the present invention provides a step in the manufacturing process of an active matrix electro-optical element, in which W temporary is heated in a vacuum immediately before filling liquid crystal between the substrates. has been established.

〔作用〕[Effect]

問題点の項で説明したようにCrの行電極と製造工程内
で基板間に吸着した水分とが電気化学反応を起こすこと
により、第3図囚のスイッチング素子の行電極部分が第
4図のように熔解されて断線状態となり、スイッチング
素子は正常の動作をしなくなってしまう。そこで基板を
張り合わせる工程と液晶を封入する工程の間に基板を真
空で加熱する工程を設けることにより、製造工程内で基
板間に吸着した水分などを除去することでスイッチング
素子の破壊を防止することができる。
As explained in the problem section, an electrochemical reaction occurs between the Cr row electrode and the moisture adsorbed between the substrate during the manufacturing process, causing the row electrode part of the switching element in Figure 3 to become as shown in Figure 4. This causes the wire to melt and become disconnected, causing the switching element to no longer operate normally. Therefore, by providing a step in which the substrates are heated in a vacuum between the process of bonding the substrates and the process of sealing the liquid crystal, this prevents damage to the switching elements by removing moisture adsorbed between the substrates during the manufacturing process. be able to.

〔実施例〕〔Example〕

以下、本発明を従来の製造方法と比較しながら具体的に
説明する。
Hereinafter, the present invention will be specifically explained while comparing it with a conventional manufacturing method.

第1図は本発明の製造方法のフローチャートである。本
発明のアクティブマトリックス電気光学素子の製造方法
を第1図を使って説明する。
FIG. 1 is a flowchart of the manufacturing method of the present invention. A method for manufacturing an active matrix electro-optical element according to the present invention will be explained with reference to FIG.

(a゛)下基板3となるガラス基板上にITO層をスパ
ッタリングあるいは蒸着等によって成膜、バターニング
して画素電極5を形成する。
(a゛) An ITO layer is formed by sputtering or vapor deposition on a glass substrate serving as the lower substrate 3, and patterned to form the pixel electrode 5.

(b゛)その上に非線形抵抗膜であるSiNx層6と行
電極4となるCr層を成膜、バターニングしてスイッチ
ング素子を形成する。
(b) A SiNx layer 6, which is a nonlinear resistance film, and a Cr layer, which will become the row electrodes 4, are formed thereon and patterned to form a switching element.

(C゛)上基板1となるもう一方のガラス基板上にIT
O膜を成膜、バターニングして列電極2を形成する。
(C゛) IT is placed on the other glass substrate that will become upper substrate 1.
Column electrodes 2 are formed by forming and patterning an O film.

(do)両方のガラス基板に配向処理を行う。(do) Perform alignment treatment on both glass substrates.

(eo)下基板に接着剤を塗布、上基板にギャプ剤を散
布し側基板を張り合わせる。
(eo) Apply adhesive to the lower substrate, spray gap agent to the upper substrate, and attach the side substrates.

(fo)張り合わせた基板を真空乾燥機に入れて、真空
に引きながら温度125℃9時間45分で加熱する。
(fo) Place the bonded substrates in a vacuum dryer and heat at 125° C. for 9 hours and 45 minutes while drawing a vacuum.

この際の真空度はl TorrからI X 10−’T
orr程度である。
The degree of vacuum at this time is from l Torr to I x 10-'T.
It is about orr.

(go)前工程終了後、すみやかに(遅くとも1時間以
内)パネルの隙間に液晶を封入する。
(go) Immediately (within 1 hour at the latest) after completing the previous step, fill the gap between the panels with liquid crystal.

(ho)駆動用回路と接続する。(ho) Connect to the driving circuit.

これらかられかるように、本発明の製造方法は(fo)
の真空加熱の工程が加わった以外は、第2図に示す従来
の製造方法とほとんど同しである。
As can be seen from these, the manufacturing method of the present invention is (fo)
The manufacturing method is almost the same as the conventional manufacturing method shown in FIG. 2, except for the addition of the vacuum heating step.

上記の工程で製造したアクティブマトリックス型電気光
学素子の連Vi駆動テストを行ったところ、第4図のよ
うなスイッチング素子の経時的な破壊は発生せず、極め
て高い信顛性を示した。これは真空で加熱することによ
り、パネル内の水分がほとんど除去できたことによると
考えられる。
When the active matrix type electro-optical device manufactured by the above process was subjected to a continuous Vi drive test, the switching device did not break down over time as shown in FIG. 4, and showed extremely high reliability. This is thought to be because most of the moisture inside the panel was removed by heating in a vacuum.

なお、上述した真空加熱は温度を100’C,125’
C,150℃1時間を30分160分、90分で行った
がどれも同じ効果が確認された。
In addition, the vacuum heating mentioned above has a temperature of 100'C and 125'C.
C, 1 hour at 150°C, 30 minutes, 160 minutes, and 90 minutes, but the same effect was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上実施例にて具体的に説明したように本発明によれば
、基板間に液晶を封入する直前に基板を真空にしながら
加熱する工程を設けたことにより、従来問題となってい
た駆動時に経時的にスイッチング素子が破壊されるのを
防止することができ、信顛性が向上した。
As specifically explained in the embodiments above, according to the present invention, by providing a step of heating the substrate while evacuating it immediately before sealing the liquid crystal between the substrates, it is possible to reduce the aging time during driving, which has been a problem in the past. It is possible to prevent the switching elements from being destroyed, and reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造工程におけるフローチャート図、
第2図は従来の製造工程におけるフローチャート図、第
3図囚はMSIパネル画素部の平面図、DはMISパネ
ル画素部の断面図、第4図は破壊された画素部の平面図
である。 ■ ・ ・ ・ 上基尋反 2 ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ ・列電極 ・下基板 ・行電極 ・画素電極 ・非線形抵抗膜 ・配向膜 よ基板 下基オ反 以上
FIG. 1 is a flow chart diagram of the manufacturing process of the present invention,
FIG. 2 is a flowchart of a conventional manufacturing process, FIG. 3 is a plan view of a pixel portion of an MSI panel, D is a sectional view of a pixel portion of an MIS panel, and FIG. 4 is a plan view of a destroyed pixel portion. ■ ・ ・ ・ Upper substrate 2 ・ 3 ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ ・Column electrode, lower substrate, row electrode, pixel electrode, nonlinear resistance film, alignment film, substrate lower substrate that's all

Claims (2)

【特許請求の範囲】[Claims] (1)表面に電極が形成された2枚の基板の間に液晶が
封入され、少なくとも一方の基板表面上には複数のスイ
ッチング素子が形成されているアクティブマトリックス
型鉄器光学素子の製造方法おいて、基板間に液晶を封入
する直前に基板を真空で加熱する工程を設けたことを特
徴とするアクティブマトリックス型電気光学素子の製造
方法。
(1) In a method for manufacturing an active matrix iron optical element, in which a liquid crystal is sealed between two substrates with electrodes formed on their surfaces, and a plurality of switching elements are formed on the surface of at least one of the substrates. 1. A method of manufacturing an active matrix electro-optical element, comprising a step of heating the substrates in a vacuum immediately before sealing a liquid crystal between the substrates.
(2)前記スイッチング素子はSiN_x、SiO_x
、SiC_x等の電気的に非線形な特性をもつ膜で形成
された非線形素子である請求項1記載のアクティブマト
リックス型電気光学素子の製造方法。
(2) The switching element is SiN_x, SiO_x
2. The method for manufacturing an active matrix electro-optical element according to claim 1, wherein the nonlinear element is formed of a film having electrically nonlinear characteristics, such as SiC_x.
JP1149071A 1989-06-12 1989-06-12 Production of electro-optical element of active matrix type Pending JPH0313915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149071A JPH0313915A (en) 1989-06-12 1989-06-12 Production of electro-optical element of active matrix type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149071A JPH0313915A (en) 1989-06-12 1989-06-12 Production of electro-optical element of active matrix type

Publications (1)

Publication Number Publication Date
JPH0313915A true JPH0313915A (en) 1991-01-22

Family

ID=15467054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149071A Pending JPH0313915A (en) 1989-06-12 1989-06-12 Production of electro-optical element of active matrix type

Country Status (1)

Country Link
JP (1) JPH0313915A (en)

Similar Documents

Publication Publication Date Title
JP3406727B2 (en) Display device
US5548429A (en) Process for producing liquid crystal device whereby curing the sealant takes place after pre-baking the substrates
JP3579492B2 (en) Method for manufacturing display device
JP3454965B2 (en) Liquid crystal display device and manufacturing method thereof
US6304307B1 (en) Liquid crystal display and method of manufacturing the same
JP3177347B2 (en) Manufacturing method of liquid crystal display element
JPH0313915A (en) Production of electro-optical element of active matrix type
JP3410754B2 (en) Liquid crystal display
JP2002072905A (en) Producing method of thin film laminated device and producing method of liquid crystal display element
JP2000221521A (en) Liquid crystal display device and its production
JPH0475025A (en) Lcd panel
JP3040499B2 (en) Manufacturing method of liquid crystal display element
JPH11249124A (en) Production of liquid crystal display panel
JP3406894B2 (en) Method for manufacturing display device
TWI302210B (en)
JPH0611703A (en) Liquid crystal display device
JP4354572B2 (en) Liquid crystal display device and method for manufacturing liquid crystal display element
JP2001083532A (en) Liquid crystal element
JP3406893B2 (en) Method for manufacturing display device
JP3442726B2 (en) Method of mounting semiconductor integrated circuit for display device
JP2558920B2 (en) Method for manufacturing color liquid crystal display
JP2003195338A (en) Liquid crystal display device
JP3071982B2 (en) Manufacturing method of liquid crystal display element
JPH05232518A (en) Liquid crystal display panel
KR940009143B1 (en) Lcd