JPH0313785A - Control system of drying of grain drier - Google Patents

Control system of drying of grain drier

Info

Publication number
JPH0313785A
JPH0313785A JP14713989A JP14713989A JPH0313785A JP H0313785 A JPH0313785 A JP H0313785A JP 14713989 A JP14713989 A JP 14713989A JP 14713989 A JP14713989 A JP 14713989A JP H0313785 A JPH0313785 A JP H0313785A
Authority
JP
Japan
Prior art keywords
air temperature
hot air
drying
detected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14713989A
Other languages
Japanese (ja)
Inventor
Eiji Nishino
栄治 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP14713989A priority Critical patent/JPH0313785A/en
Publication of JPH0313785A publication Critical patent/JPH0313785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To prevent the loss of fuel while obviating the deterioration of the quality of grains by lowering and controlling a hot-air temperature to a fixed temperature on the basis of grain density and the temperature difference of the hot-air temperature and an exhaust-air temperature and increasing and controlling air quantity only by a fixed quantity and drying grains. CONSTITUTION:Grain density is detected by a density detector 5, a dried hot-air temperature before passage through a drying chamber 2 is detected by a hot-air temperature sensor 3, and an exhaust-air temperature after passage through the drying chamber 2 is detected by an exhaust-air temperature sensor 4. The dried hot-air temperature is lowered and controlled to a fixed-temperature low-temperature by these detected grain density and temperature difference between the dried hot-air temperature and the exhaust-air temperature while the outside air is increased and controlled only by a fixed air quantity and grains are dried. Accordingly, the loss of fuel is prevented, and the deterioration of the quality of grains can be obviated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、穀粒乾燥機の乾燥制御方式に関する。[Detailed description of the invention] Industrial applications The present invention relates to a drying control method for a grain dryer.

従来の技術 従来は、穀粒は乾燥室内を流下させて循環を繰返しなが
ら、この乾燥室ヘバーナから発生する熱風と外気風とを
通過させてこの乾燥熱風に晒して乾燥させるが、この乾
燥の初期に穀粒水分が高水分であると、乾燥開始から所
定時間内は熱風温度は低目に制御されると同時に、吸入
される外気風量は多目に制御されて穀粒は乾燥される乾
燥制御方式であった。
Conventional technology Conventionally, grains are dried by flowing them down in a drying chamber and repeatedly circulating them, passing hot air generated from the drying chamber Heburner and outside air, and exposing them to this drying hot air. When the grain moisture content is high, the hot air temperature is controlled to be low for a predetermined period of time from the start of drying, and at the same time, the intake air volume is controlled to be high to dry the grains.Drying control It was a method.

発明が解決しようとする課題 穀粒は乾燥室内を流下させて循環を繰返しながら、この
乾燥室ヘバーナから発生する熱風と吸入された外気風と
が混合した乾燥熱風が通過することにより、この乾燥室
内を流下中のこの穀粒はこの乾燥熱風に晒されて乾燥さ
れる。
Problems to be Solved by the Invention While the grains are repeatedly circulated by flowing down inside the drying chamber, the drying hot air, which is a mixture of the hot air generated from the drying chamber Heburner and the sucked outside air, passes through the drying chamber. The grains flowing down are exposed to this drying hot air and dried.

この乾燥開始のときの穀粒水分によって、例えば、穀粒
水分が高水分であると、乾燥開始から所定時間内は熱風
温度は低目に制御されると同時に、吸入される外気風量
は多目に制御されて穀粒は乾燥されるが、乾燥初期は穀
粒に枝梗が多量付着していたり、又挾雑物が多量混入し
ていることがあると穀粒密度が粗であり、このように穀
粒密度が粗の状態であると、乾燥熱風の該乾燥室への通
過状態がよすぎることとなって この乾燥室内の穀粒に
十分な熱が与えられないことになり、このため乾燥熱風
がロスになって燃料がロスになることがあった。
Depending on the grain moisture at the start of drying, for example, if the grain moisture is high, the hot air temperature will be controlled to a low level for a predetermined period of time from the start of drying, and at the same time the amount of outside air taken in will be controlled at a low level. The grain is dried under controlled conditions, but in the early stage of drying, if the grain has a large amount of stems attached to it or a large amount of foreign matter is mixed in, the density of the grain is coarse. If the grain density is coarse, as in There were times when dry hot air was lost and fuel was wasted.

課題を解決するための手段 この発明は、穀粒を流下させながらバーナ(11氏 )による熱風と外気風とを通番させて乾燥する乾燥室(
2)と、この乾燥室(2)を通風前の熱風温度を検出す
る熱風温度センサ(3)、この乾燥室(2)を通風後の
排風温度を検出する排風温度センサ(4)、及び乾燥穀
粒の密度を検出する密度検出装置! (5)とを設けた
穀粒乾燥機において、該密度検出装置t (5)が検出
する穀粒密度、及び該熱風温度センサ(3)が検出する
熱風温度と該排風温度センサ(4)が検出する排風温度
との温度差にもとづいて該熱風温度を所定温度下降制御
すると共に、風量を所定量増加制御して乾燥することを
特徴とする乾燥制御方式の構成とする。
Means for Solving the Problems This invention provides a drying chamber (a drying chamber) in which grains are dried by passing hot air from a burner (Mr. 11) and outside air while flowing down the grains.
2), a hot air temperature sensor (3) that detects the hot air temperature before ventilation in this drying chamber (2), an exhaust air temperature sensor (4) that detects the exhaust air temperature after ventilation in this drying chamber (2), And a density detection device that detects the density of dried grains! (5) In a grain dryer equipped with the following, the grain density detected by the density detection device (5), the hot air temperature detected by the hot air temperature sensor (3), and the exhaust air temperature sensor (4) The drying control method is characterized in that the temperature of the hot air is controlled to decrease by a predetermined temperature based on the temperature difference between the exhaust air temperature and the exhaust air temperature detected by the hot air, and the air volume is controlled to increase by a predetermined amount for drying.

発明の作用 穀粒は乾燥室(2)内を流下させて循環を繰返しながら
、バーナ(1)から発生する熱風と吸入された外気風と
が混合した乾燥熱風が該乾燥室(2)を通過することに
より、この乾燥室(2)内を流下中の穀粒はこの乾燥熱
風に晒されて乾燥される。
Effect of the invention While the grains are repeatedly circulated by flowing down inside the drying chamber (2), dry hot air, which is a mixture of the hot air generated from the burner (1) and the drawn outside air, passes through the drying chamber (2). As a result, the grains flowing down in the drying chamber (2) are exposed to this drying hot air and dried.

この乾燥作業中は、穀粒密度は密度検出装置(5)で検
出され、該乾燥室(2)を通過前の乾燥熱風温度が熱風
温度センサ(3)で検出され、又この乾燥室(2)を通
過後の排風温度が排風温度センサ(4)で検出され、こ
れら検出された穀粒密度と乾燥熱風温度と排風温度との
温度差とによって、乾燥熱風温度が所定温度低温度に下
降制御されると共に、外気風が所定風量増加制御されて
穀粒は乾燥される。
During this drying operation, the grain density is detected by the density detection device (5), the temperature of the drying hot air before passing through the drying chamber (2) is detected by the hot air temperature sensor (3), and the temperature of the drying hot air before passing through the drying chamber (2) is detected by the hot air temperature sensor (3). ) is detected by the exhaust air temperature sensor (4), and based on the detected grain density and the temperature difference between the dry hot air temperature and the exhaust air temperature, the dry hot air temperature is set to a predetermined low temperature. At the same time, the outside air is controlled to increase by a predetermined amount, and the grains are dried.

発明の効果 この発明により、穀粒密度と乾燥熱風温度と排風温度と
の温度差とによって、乾燥熱風温度を低下制御し、吸入
外気風を増加制御する低温大風量方式に制御して穀粒を
乾燥することにより、燃料のロスの防止ができると同時
に、乾燥初期は低温大風量であることにより、穀粒の品
質低下の防止ができる。
Effects of the Invention According to the present invention, the drying hot air temperature is controlled to be lowered and the intake outside air is controlled to be increased based on the grain density and the temperature difference between the drying hot air temperature and the exhaust air temperature. By drying the grains, it is possible to prevent fuel loss, and at the same time, by using a large air volume at a low temperature in the early stage of drying, it is possible to prevent the quality of the grains from deteriorating.

実施例 なお、区側において、(6)は穀粒乾燥機であり、この
乾燥機(6)の機構(7)は前後方向に長い長方形状で
、前後壁板及び左右壁板よりなりこの前壁板にはこの乾
燥機(6)を始動及び停止操作する操作装N(8)及び
バーナ(1)を内装したバーナケース(9)を設け、こ
のバーナケース(9)下板外側には燃料バルブを有する
燃料ポンプ(10)を設け、この燃料バルブの開閉によ
りこの燃料ポンプ(10)で燃料タンク(11)内の燃
料を吸入して該バーナ(1)へ供給する構成であり、上
板外側には送風機(12)及び変速する送風機モータ(
13)を設け、この送風機モータ(13)の回転により
該送風It(12)を回転駆動して供給燃料に見合った
燃焼用空気を該バーナ(1)へ供給する構成であり、該
後壁板には排風機(14)この排風機(10を変速回転
駆動する排風機モータ(15)、バルブモータ(18)
及び減速機構(17)等を設けた構成である。
Example On the ward side, (6) is a grain dryer, and the mechanism (7) of this dryer (6) has a rectangular shape that is long in the front and back direction, and consists of front and rear wall plates and left and right wall plates. A burner case (9) containing an operating device N (8) for starting and stopping the dryer (6) and a burner (1) is installed on the wall plate, and the outside of the lower plate of this burner case (9) is equipped with a fuel A fuel pump (10) having a valve is provided, and by opening and closing the fuel valve, the fuel pump (10) sucks fuel in the fuel tank (11) and supplies it to the burner (1). On the outside, there is a blower (12) and a variable speed blower motor (
13), and the rotation of the blower motor (13) drives the blower It (12) to supply combustion air commensurate with the supplied fuel to the burner (1), and the rear wall plate There is an exhaust fan (14), an exhaust fan motor (15) that drives the exhaust fan (10) with variable speed rotation, and a valve motor (18).
This configuration includes a deceleration mechanism (17) and the like.

該Ja壁(7)内下部の中央部には前後方向に亘り移送
螺旋を内装した集穀樋(18)を設け、この集穀樋(1
8)上側には通気網間に形成した乾燥室(2)を並設し
て連通させ、この各乾燥室(2)下部には穀粒を繰出し
流下させる繰出バルブ(19)を内装した構成であり、
この各乾燥室(2)内側間には熱風室(20)を形成し
て該バーナ(1)と連通させ、この熱風室(20)内に
はこの熱風室(20)内の熱風温度を検出する熱風温度
センサ(3)及び密度検出装N(5)の内の該熱風室(
3)内の圧力(Pin)を検出する圧力センサ(21)
を設け、該各乾燥室(2)外側には排風室(22)を形
成してこの各排風室(22)と該排風機(14)とを連
通させた構成であり、この排風室(22)にはこの排風
室(22)内の排風温度を検出する排風温度センサ(4
)及び該密度検出装置(5)の内の該排風室(22)内
の圧力(P o u t)を検出する圧力センサ(23
)を設けた構成であり、該バルブモータ(16)で該減
速機構(17)を介して該各繰出へルブ(19)を回転
駆動する構成であり。
A grain collection gutter (18) equipped with a transfer spiral in the front-rear direction is provided in the center of the inner lower part of the Ja wall (7).
8) On the upper side, drying chambers (2) formed between the ventilation networks are arranged in parallel and communicated with each other, and in the lower part of each drying chamber (2) there is installed a feeding valve (19) for feeding and flowing down the grains. can be,
A hot air chamber (20) is formed between the inner sides of each drying chamber (2) and is communicated with the burner (1), and the hot air temperature inside the hot air chamber (20) is detected. The hot air chamber (of the hot air temperature sensor (3) and density detection device N (5)
3) Pressure sensor (21) that detects the internal pressure (Pin)
A ventilation chamber (22) is formed outside each drying chamber (2), and each ventilation chamber (22) and the ventilation fan (14) are communicated with each other. The chamber (22) is equipped with an exhaust air temperature sensor (4) that detects the temperature of the exhaust air inside the exhaust chamber (22).
) and a pressure sensor (23) that detects the pressure (P out ) in the exhaust chamber (22) of the density detection device (5).
), and each feeding valve (19) is rotationally driven by the valve motor (16) via the deceleration mechanism (17).

該バーナ(1)から発生する熱風とこのバーナ(1)周
囲を通過する外気風とが混合して乾燥熱風となり、この
乾燥熱風が該各乾燥室(2)を横断通風する構成である
The hot air generated from the burner (1) and the outside air passing around the burner (1) are mixed to form dry hot air, and this dry hot air is circulated across each of the drying chambers (2).

該各乾燥室(1)上側には貯留室(24)を形成して連
通させ、この貯留室(20上側には天井板(25)及び
移送螺旋を内装した移送樋(26)を設け、この移送樋
(26)中央部には移送穀粒をこの貯留室(20内へ供
給する供給口を設け、この供給口の下側には該貯留室(
20内へ穀粒を均等に拡散還元する拡散盤(27)を設
けた構成である。
A storage chamber (24) is formed on the upper side of each drying chamber (1) and communicated with each other, and a ceiling plate (25) and a transfer gutter (26) equipped with a transfer spiral are provided on the upper side of this storage chamber (20). A supply port for supplying the transferred grains into the storage chamber (20) is provided in the center of the transfer gutter (26), and a supply port for supplying the transferred grains into the storage chamber (20) is provided below the supply port.
This configuration includes a diffusion plate (27) that uniformly diffuses and returns grains into the inside of the container.

昇穀機(28)は、前記前壁板前方部に設け、内部には
パケットコンベア(29)ベルトを上下プーリ間に張設
し、上端部と該移送樋(2B)始端部との間には投出筒
(30)を設けて連通させ、下端部と前記集穀樋(18
)終端部との間には供給樋(31)を設けて連通させた
構成であり、この昇殻機(28)上部には昇穀機モータ
(32)を設け、この昇穀機モータ(32)で該パケッ
トコンベア(2i3)ベルト、該移送樋(26)内の該
移送螺旋、該°拡散盤(27)及び該パケットコンベア
(23)ベルトラ介して該集穀樋(18)内の前記移送
螺旋等を回転駆動する構成であり、又上下方向はぼ中央
部には該パケットコンベア(29)で上部へ搬送中に落
下する穀粒を受け、この穀粒を挟圧粉砕すると同時にこ
の粉砕穀粒の水分を検出する水分センサ(33)を設け
、この水分センサ(33)の各部は内部に設けた水分モ
ータ(30で回転駆動する構成である。
The grain raising machine (28) is installed in the front part of the front wall plate, and inside the packet conveyor (29) belt is stretched between the upper and lower pulleys, and between the upper end and the starting end of the transfer gutter (2B). A discharging tube (30) is provided and communicated with the lower end and the grain collection gutter (18).
) A supply gutter (31) is provided to communicate with the terminal end of the shell. ) in the packet conveyor (2i3) belt, the transfer spiral in the transfer trough (26), the spreader plate (27) and the packet conveyor (23), and the transfer in the grain trough (18) via the belt tracker. It has a configuration in which a spiral or the like is rotationally driven, and the center part in the vertical direction receives grains that fall while being conveyed to the upper part by the packet conveyor (29). A moisture sensor (33) for detecting moisture in grains is provided, and each part of this moisture sensor (33) is rotated by a moisture motor (30) provided inside.

前記操作装置(8)は、箱形状でこの箱体の表面板には
、前記乾燥aI!(6)を張込、乾燥及び排出の各作業
別に始動操作する各始動スイッチ(35)、停止操作す
る停止スイッチ(36) 、前記バーナ(1)から発生
する熱風温度を操作位置によって設定する各温度設定諷
み(37) 、仕上目標水分を操作位置によって設定す
る水分設定機み(38)、該水分センサ(33)が検出
する穀粒水分、前記熱風温度センサ(3)が検出する熱
風温度、乾燥残時間等を交互に表示する表示窓(3B)
及びモニター表示等を設け、内部には乾燥制御装置(4
0)及び燃焼制御装! (41)を設けた構成であり、
該各設定猟み(3?) 、  (37)、(38)はロ
ータリスイッチ方式であり、操作位置によって所定の数
値が設定される構成である。
The operating device (8) has a box shape, and the surface plate of the box has the dry aI! Each start switch (35) is operated to start the burner (6), the stop switch (36) is operated to stop it, and each switch is operated to set the temperature of the hot air generated from the burner (1) according to the operating position. Temperature setting adjustment (37), moisture setting machine (38) that sets the finishing target moisture according to the operating position, grain moisture detected by the moisture sensor (33), and hot air temperature detected by the hot air temperature sensor (3). , display window (3B) that alternately displays remaining drying time, etc.
and a monitor display, etc., and a drying control device (4
0) and combustion control equipment! (41),
Each of the settings (3?), (37), and (38) is of a rotary switch type, and is configured to set a predetermined value depending on the operating position.

該燃焼制御装置(41)は、前記熱風温度センサ(3)
、前記排風温度センサ(4)及び前記密度検出装置(5
)の前記各圧力センサ(21) 、  (23)が検出
する検出値をA−D変換するA−D変換器(42) 、
このA−D変換器(42)で変換された変換値が入力さ
れる入力回路(43) 、該各温度設定孤み(37)の
操作が入力される入力回路(44)これら各入力回路(
43) 、  (44)から入力される各種入力値を算
術論理演算及び比較演算等を行なうCPU (45) 
、このCPU(45)から指令される各種指令を受けて
出力する出力回路(46)を設けた構成であり、この出
力回路(4B)により前記燃料ポンプ(10)、前記送
風機モータ(13)及び前記排風機モータ(15)等が
始動及び回転数制御される構成である。
The combustion control device (41) includes the hot air temperature sensor (3).
, the exhaust air temperature sensor (4) and the density detection device (5)
), an AD converter (42) that converts the detection values detected by the pressure sensors (21) and (23) from AD to AD;
An input circuit (43) to which the converted value converted by this A-D converter (42) is input, an input circuit (44) to which the operation of each temperature setting knob (37) is input;
43) A CPU (45) that performs arithmetic and logical operations, comparison operations, etc. on various input values input from (44).
The configuration includes an output circuit (46) that receives and outputs various commands from the CPU (45), and this output circuit (4B) controls the fuel pump (10), the blower motor (13), and the The configuration is such that the exhaust fan motor (15) and the like are started and the rotational speed is controlled.

前記乾燥制御装at (40)は、前記水分センナ(3
3)が検出する検出値をA−D変換するA−D変換器、
このA−D変換器で変換された変換値が入力される入力
回路、前記各スイッチ(35)、(35)、(35)、
(38)及び前記水分設定振み(38)の操作が入力さ
れる入力回路、これら各入力回路から人力される各種入
力値を算術論理演算及び比較演算等を行なう該CPU 
(45) 、このCPU(45)から指令される各種指
令を受けて出力する出力回路を設けた構成であり、この
出力回路により前記バルブモータ(1B)、前記昇穀機
モータ(32)及び前記水分モータ(30等が始動され
る構成である。
The drying control device at (40) includes the moisture sensor (3).
3) an A-D converter that converts the detected value detected by A-D converter;
An input circuit into which the converted value converted by this A-D converter is input, each of the switches (35), (35), (35),
(38) and an input circuit into which the moisture setting operation (38) is input, and the CPU which performs arithmetic and logical operations, comparison operations, etc. on various input values input manually from these input circuits.
(45) The configuration includes an output circuit that receives and outputs various commands from the CPU (45), and this output circuit operates the valve motor (1B), the grain raising machine motor (32), and the grain hoist motor (32). The configuration is such that a moisture motor (30, etc.) is started.

前記燃焼制御装!1(41)による燃焼制御と風量制御
とは下記の如く行なわれる構成であり、前記熱風温度セ
ンサ(3)が検出する熱風温度が前記CPU(45)へ
入力され、この検出熱風温度と前記各温度設定孤み(3
7)を操作して該CPU(45)へ入力された設定熱風
温度とが比較され、相違していると設定熱風温度と同じ
温度になるように、前記燃料バルブの開閉回数を制御し
て前記燃料ポンプ(10)で吸入する燃料量を制御する
構成である。前記各圧力センサ(21)、(23)が検
出した前記熱風室(20)内の圧力(Pin)が1例え
ば、920 mmAqと検出され、前記排風室(22)
内の圧力(Pout)が40 mmAqと検出されて該
CPU (45)へ人力されると、下記式(イ)より圧
力比率(H)が0.5と演算される構成であり、圧力比
率(H)=圧力(P i n) /圧力(Pout)・
・・(イ) この算出圧力比率(H)0.5とこのときの穀粒水分2
5%とから穀粒密度が検出される構成でありこの検出は
第2図の如く、該CPU(45)へ圧力比率(H)別と
穀粒水分別とによって設定して記憶させた穀粒密度から
穀粒密度は600 Kg1g’と第3図の如く、該CP
U(45)へ穀粒水分別によって設定して記憶させた穀
粒密度とが比較される構成であり、設定記憶の穀粒密度
は穀粒水分25%のとき650 Kg/7であり、設定
記憶の穀粒密度650 Kg/脂1より検出穀粒密度6
00 Kg/lIJの方が粗であり、乾燥熱風の通風が
よすざると該燃焼制御装置(41)で検出される構成で
ある。前記熱風温度センサ(3)が検出した該熱風室(
20)内の熱風温度(TB)が、例えば、55℃と検出
され、前記排風温度センサ(4)が検出した該排風室(
22)内の排風温度(TE)が、30℃と検出されて該
CPU(45)へ入力されると、下記式(ロ)より温度
差(T)が25℃であると算出される構成であり。
The combustion control device! The combustion control and air volume control according to No. 1 (41) are performed as follows. The hot air temperature detected by the hot air temperature sensor (3) is input to the CPU (45), and this detected hot air temperature and each of the above Temperature setting knob (3
7) is compared with the set hot air temperature input to the CPU (45), and if there is a difference, the number of openings and closings of the fuel valve is controlled so that the temperature becomes the same as the set hot air temperature. This configuration controls the amount of fuel sucked in by the fuel pump (10). The pressure (Pin) in the hot air chamber (20) detected by each of the pressure sensors (21) and (23) is 1, for example, 920 mmAq, and the pressure (Pin) in the hot air chamber (22) is detected as 1, for example, 920 mmAq.
When the internal pressure (Pout) is detected as 40 mmAq and inputted manually to the CPU (45), the pressure ratio (H) is calculated as 0.5 from the following formula (a), and the pressure ratio ( H) = Pressure (P in) / Pressure (Pout)・
...(a) This calculated pressure ratio (H) 0.5 and the grain moisture 2 at this time
The structure is such that the grain density is detected from 5%, and this detection is performed by setting and storing the grain density in the CPU (45) according to the pressure ratio (H) and grain moisture, as shown in Figure 2. From the density, the grain density is 600 Kg1g', and as shown in Figure 3, the CP
This is a configuration in which the grain density set and stored in U (45) by grain moisture classification is compared, and the stored grain density is 650 Kg/7 when the grain moisture is 25%. Memory grain density 650 Kg/fat 1 Detected grain density 6
00 Kg/lIJ is rougher, and is configured to be detected by the combustion control device (41) when the dry hot air is not properly ventilated. The hot air chamber (
20) is detected as, for example, 55°C, and the exhaust air temperature sensor (4) detects the hot air temperature (TB) in the exhaust chamber (
22) When the exhaust air temperature (TE) is detected to be 30°C and input to the CPU (45), the temperature difference (T) is calculated to be 25°C from the following formula (b). Yes.

温度差(T)=熱風温度(〒8) − 排風温度(Tり・・・(ロ) =55−35=20 この算出温度差(T)20℃とこのときの穀粒水分25
%と、第4図の如く、該CPU(45)へ穀粒水分別に
よって設定して記憶させた温度差(T)28℃とが比較
される構成であり、この算出温度差(T)20℃は設定
記憶の温度差(T)28℃とより小さく、このため乾燥
熱風が有効に使用されていないと該燃焼制御装置(41
)で検出される構成である。
Temperature difference (T) = Hot air temperature (〒8) - Exhaust air temperature (Tri... (B) = 55-35 = 20 This calculated temperature difference (T) 20℃ and grain moisture 25 at this time
% and the temperature difference (T) 28°C set and stored in the CPU (45) according to grain moisture classification as shown in Fig. 4, and this calculated temperature difference (T) 20°C is compared. ℃ is smaller than the setting memory temperature difference (T) of 28℃, so if the dry hot air is not used effectively, the combustion control device (41
).

又上記の如く、穀粒密度が所定値より粗であると検出さ
れると同時に、温度差(T)も所定値より小さいと検出
されると、前記燃焼制御装置(41)で前記各温度設定
孤み(37)を操作して設定した設定熱風温度(TB)
55℃を、例えば、4℃下降して51℃になるように前
記と同様に前記燃料バルブと前記燃料ポンプ(10)と
を制御すると同時に、前記排風機(10で吸引排風する
乾燥風量0.83謹ンSを前記CPU(45)へ設定し
て記憶させた0、88層J/Sに増加するように、前記
排風機モータ(15)の回転数を該CPU(45)へ設
定して記憶させた所定回転数を増速回転制御する構成で
ある。
Further, as described above, when it is detected that the grain density is coarser than a predetermined value and at the same time it is detected that the temperature difference (T) is also smaller than a predetermined value, the combustion control device (41) adjusts each temperature setting. Set hot air temperature (TB) set by operating Komi (37)
The fuel valve and the fuel pump (10) are controlled in the same manner as described above so that the temperature is lowered by 4 degrees Celsius to 51 degrees Celsius, for example, and at the same time, the amount of dry air sucked and discharged by the exhaust fan (10) is 0. .Set the rotation speed of the exhaust fan motor (15) in the CPU (45) so that it increases to the 0.88 layer J/S that was set and stored in the CPU (45). The configuration is such that the predetermined rotation speed stored in the memory is controlled to increase the rotation speed.

前記乾燥制御装置(40)による乾燥制御は、前記水分
設定機み(38)を操作して設定した穀粒の仕上目標水
分と同じ穀粒水分を、前記水分センサ(33)が検出す
ると、この乾燥制御装置(40)で自動制御して前記乾
燥機(6)を自動停止し、穀粒の乾燥を停止する構成で
ある。
The drying control by the drying control device (40) is performed when the moisture sensor (33) detects the same grain moisture as the grain finishing target moisture set by operating the moisture setting device (38). The dryer (6) is automatically controlled by a drying control device (40) to automatically stop the drying of the grains.

以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.

操作装! (8)の各設定振み(37)、(37)、(
38)を所定の位置へ操作し、乾燥作業を開始する始動
スイッチ(35)を操作することにより、穀粒乾燥機(
6)の各部、バーナ(1)及び水分センサ(33)等が
始動し、このバーナ(1)から熱風が発生しこの熱風と
外気風とが混合した乾燥熱風が熱風室(20)から乾燥
室(2)を横断通風し排風室(22)を経て排風Ja(
14)で吸引排風されることにより、この乾燥機(6)
の貯留室(24)内へ収容した穀粒は、この貯留室(2
0から該乾燥室(2)内を流下中にこの熱風に晒されて
乾燥され、繰出バルブ(19)で下部へと繰出されて流
下し集穀樋(18)内へ供給され、この集穀樋(18)
から供給樋(31)を経て昇穀機(28)内へ下部の移
送螺旋で移送供給され、パケットコンベア(29)で上
部へ搬送され投出筒(30)を経て移送樋(26)内へ
供給され、この移送樋(26)から拡散盤(27)上へ
上部の移送螺旋で移送供給され、この拡散盤(27)で
該貯留室(24)内へ均等に拡散還元され、循環乾燥さ
れて該水分センサ(33)が該水分設定撤み(38)を
操作して設定した仕上目標水分と同じ穀粒水分を検出す
ると、該操作装置(8)の乾燥制御袋21 (40)で
自動制御して該乾燥機(6)を自動停止す・る。
Control device! (8) Settings (37), (37), (
The grain dryer (
6), the burner (1), the moisture sensor (33), etc. are started, hot air is generated from the burner (1), and the dry hot air, which is a mixture of this hot air and outside air, is sent from the hot air chamber (20) to the drying chamber. (2) is cross-ventilated and passed through the ventilation chamber (22) to exhaust Ja(
14), this dryer (6)
The grains stored in the storage chamber (24) are stored in the storage chamber (24).
The grains are exposed to this hot air and dried while flowing down from the drying chamber (2) from 0 to the drying chamber (2), and are fed out to the lower part by the delivery valve (19) and flowed down to be supplied into the grain collection gutter (18). Gutter (18)
From there, it is transferred and supplied into the grain raising machine (28) through the supply gutter (31) by the lower transfer spiral, and then conveyed to the upper part by the packet conveyor (29), and then through the dispensing tube (30) and into the transfer gutter (26). The water is supplied from the transfer gutter (26) onto the diffusion plate (27) by the upper transfer spiral, and is evenly diffused and reduced into the storage chamber (24) by the diffusion plate (27), where it is circulated and dried. When the moisture sensor (33) detects the same grain moisture as the finishing target moisture set by operating the moisture setting/removal (38), the drying control bag 21 (40) of the operating device (8) automatically The dryer (6) is automatically stopped under control.

この乾燥作業中に、密度検出装置(5)の圧力センサ(
21)で該熱風室(20) (7)圧力(P i n)
が検出され、圧力センサ(23)で該排風室(22)の
圧力(Pout)が検出され、これら検出圧力の圧力比
率が算出され、この算出圧力比率とこのときの穀粒水分
とによって穀粒密度が検出され、この検出穀粒密度が設
定した穀粒密度より粗であると検出されると同時に、熱
風温度センサ(3)で熱風温度が検出され、排風温度セ
ンサ(4)で排風温度が検出され、これら検出熱風温度
と検出排風温度との温度差が算出され、この算出温度差
が設定の温度差より小さいと検出されると、設定された
設定熱風温度が、例えば、4℃低温度に制御されると同
時に、乾燥風量0.63■’/sを0 、88 raj
/sに増加制御され、この低温度に制御された熱風と増
加された乾燥風量とによって穀粒は乾燥されるゆ
During this drying operation, the pressure sensor (
21) The hot air chamber (20) (7) Pressure (P in)
is detected, the pressure (Pout) of the exhaust chamber (22) is detected by the pressure sensor (23), the pressure ratio of these detected pressures is calculated, and the grain is determined based on this calculated pressure ratio and the grain moisture at this time. The grain density is detected, and at the same time the detected grain density is detected to be coarser than the set grain density, the hot air temperature is detected by the hot air temperature sensor (3), and the exhaust air temperature sensor (4) is detected. The wind temperature is detected, the temperature difference between the detected hot air temperature and the detected exhaust air temperature is calculated, and if this calculated temperature difference is detected to be smaller than the set temperature difference, the set hot air temperature is changed to the set hot air temperature, for example. At the same time, the temperature is controlled to a low temperature of 4℃, and the drying air volume is 0.63cm/s, 88 raj
/s, and the grains are dried by the hot air controlled to a low temperature and the increased amount of drying air.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の一実施例を示すもので、第1図はブロ
ック図、第2図は圧力比率及び穀粒水分と穀粒密度との
関係図、第3図は穀粒水分と穀粒密度との関係図、第4
図は穀粒水分と温度差との関係図、第5図は一部破断せ
る穀粒乾燥機の全体側面図、第6図は第5図のA−A断
面図、第7図は第5図のB−B断面図、第8図は穀粒乾
燥機の一部の背面図、第9図は穀粒乾燥機の一部の一部
破断せる正面図である。 図中、符号(1)はバーナ、(2)は乾燥室、(3)は
熱風温度センサ、(4)は排風温度センサ、(5)は密
度検出装置を示す。
The figures show one embodiment of the present invention. Fig. 1 is a block diagram, Fig. 2 is a relationship diagram between pressure ratio, grain moisture, and grain density, and Fig. 3 is a diagram of the relationship between grain moisture and grain density. Relationship diagram with density, 4th
The figure is a diagram of the relationship between grain moisture and temperature difference, Figure 5 is an overall side view of the grain dryer that can be partially cut away, Figure 6 is a sectional view taken along line A-A in Figure 5, and Figure 7 is the FIG. 8 is a rear view of a portion of the grain dryer, and FIG. 9 is a partially cutaway front view of a portion of the grain dryer. In the figure, (1) is a burner, (2) is a drying chamber, (3) is a hot air temperature sensor, (4) is an exhaust air temperature sensor, and (5) is a density detection device.

Claims (1)

【特許請求の範囲】[Claims] 穀粒を流下させながらバーナ(1)による熱風と外気風
とを通風させて乾燥する乾燥室(2)と、この乾燥室(
2)を通風前の熱風温度を検出する熱風温度センサ(3
)、この乾燥室(2)を通風後の排風温度を検出する排
風温度センサ(4)、及び乾燥穀粒の密度を検出する密
度検出装置(5)とを設けた穀粒乾燥機において、該密
度検出装置(5)が検出する穀粒密度、及び該熱風温度
センサ(3)が検出する熱風温度と該排風温度センサ(
4)が検出する排風温度との温度差にもとづいて該熱風
温度を所定温度下降制御すると共に、風量を所定量増加
制御して乾燥することを特徴とする乾燥制御方式。
There is a drying chamber (2) in which grains are dried by passing hot air from a burner (1) and outside air while flowing down, and this drying chamber (2).
2) Hot air temperature sensor (3) that detects the hot air temperature before ventilation
), this drying chamber (2) is equipped with an exhaust air temperature sensor (4) that detects the exhaust air temperature after ventilation, and a density detection device (5) that detects the density of dried grains. , the grain density detected by the density detection device (5), the hot air temperature detected by the hot air temperature sensor (3), and the exhaust air temperature sensor (
4) A drying control method characterized by controlling the temperature of the hot air to decrease by a predetermined temperature based on the temperature difference with the exhaust air temperature detected by 4), and controlling the air volume to increase by a predetermined amount for drying.
JP14713989A 1989-06-09 1989-06-09 Control system of drying of grain drier Pending JPH0313785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14713989A JPH0313785A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14713989A JPH0313785A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Publications (1)

Publication Number Publication Date
JPH0313785A true JPH0313785A (en) 1991-01-22

Family

ID=15423461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14713989A Pending JPH0313785A (en) 1989-06-09 1989-06-09 Control system of drying of grain drier

Country Status (1)

Country Link
JP (1) JPH0313785A (en)

Similar Documents

Publication Publication Date Title
JPH0313785A (en) Control system of drying of grain drier
JPH02236436A (en) Detection of impurity in grain drier and drying control system
JPH01219491A (en) Control system for cereals grain drier
JPH04263781A (en) Control method of fuel supply for grain drier or the like
JPH01219493A (en) Drying control device for cereals grain drier
JPH03113279A (en) Dry control system for grain dryer
JPH03113282A (en) Dry control system for grain dryer
JPH04288473A (en) Control method of drying in grain drying machine
JPS62178879A (en) Cereal grain control system of cereal grain drier
JPH04244588A (en) Grain drying control system for grain dryer
JPH0313786A (en) Control system of drying of grain drier
JPH0350487A (en) Control system for grain drier
JPH04302989A (en) Dry control system for cereals drier
JPS6399484A (en) Cereal grain drying control system of cereal grain drier
JPS61240087A (en) Setter for temperature of hot air of cereal grain drier
JPH01244271A (en) Grain drier
JPS63101689A (en) Cereal grain drying control system of cereal graing drier
JPH0350485A (en) Control system for grain drier
JPS63306385A (en) Cereal grain drying control system of cereal grain drier
JPH03113286A (en) Dry control system for grain dryer
JPS62178880A (en) Cereal grain drying control system of cereal grain drier
JPH01219492A (en) Drying control device for cereals grain drier
JPH0350414A (en) Burner control device for grain particle drying machine
JPS6287780A (en) Drying control system of cereal grain for cereal grain drier
JPS6391480A (en) Burner-direction regulator for cereal grain drier