JPH03137226A - High strength, high modulus fiber with excellent fatigue resistance - Google Patents

High strength, high modulus fiber with excellent fatigue resistance

Info

Publication number
JPH03137226A
JPH03137226A JP27314889A JP27314889A JPH03137226A JP H03137226 A JPH03137226 A JP H03137226A JP 27314889 A JP27314889 A JP 27314889A JP 27314889 A JP27314889 A JP 27314889A JP H03137226 A JPH03137226 A JP H03137226A
Authority
JP
Japan
Prior art keywords
component
fiber
polymer
strength
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27314889A
Other languages
Japanese (ja)
Other versions
JP2744303B2 (en
Inventor
Toru Saneto
徹 実藤
Junyo Nakagawa
潤洋 中川
Yoichi Yamamoto
洋一 山本
Yoshio Kishino
岸野 喜雄
Yukio Sugita
杉田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27314889A priority Critical patent/JP2744303B2/en
Publication of JPH03137226A publication Critical patent/JPH03137226A/en
Application granted granted Critical
Publication of JP2744303B2 publication Critical patent/JP2744303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide the title fiber useful for friction materials, etc., consisting of a polymer made up of specific recurring unit as the sheath component and another polymer capable of forming anisotropic molten phase as the core component. CONSTITUTION:The objective fiber consisting of (A) as the core component A, an aromatic polyester capable of forming anisotropic molten phase and (B) as the sheath component, a polymer with recurring constituent of formula I (R1 to R4 are each H, alkyl or halogen) accounting for >=80wt.% of the total constituent units with the cross section area for the component B accounting for 5-40% of that for said fiber. For example, it is preferable that the polyester for the core component be made up of recurring constituents of formulas II and III, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐疲労性に優れた高強力高弾性率繊維に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-strength, high-modulus fiber with excellent fatigue resistance.

(従来の技術) 1− 従来、有機系の高強度高弾性率繊維を得る技術が種々検
討され、強度や弾性率を高くするため罠はポリマー分子
鎖を繊維軸方向に高度に配向させることが効果的である
ことは知られている。例えば、ナイロン繊維、ポリエス
テル繊維の紡糸において、延伸工程での延伸倍率を冒く
することにより、得られる延伸糸の引張強度、引張弾性
率を大きくすることが可能である。これは延伸により、
繊維を構成する結晶部、非晶部の分子配向度が増加する
ためである。
(Prior art) 1- Various techniques for obtaining organic high-strength, high-modulus fibers have been studied, and in order to increase the strength and modulus of elasticity, traps have been developed to highly orient polymer molecular chains in the direction of the fiber axis. It is known to be effective. For example, in spinning nylon fibers and polyester fibers, it is possible to increase the tensile strength and tensile modulus of the resulting drawn yarn by changing the draw ratio in the drawing step. This is due to stretching,
This is because the degree of molecular orientation of the crystalline and amorphous portions constituting the fiber increases.

またパラ配向型のアラミド繊維(ケブラー等)は紡糸口
金から吐出し、脱溶媒してそのまま巻取るだけで、延伸
工程を経ずして、高い弾性率と強度に達することがよく
知られている(例えば、特公昭47−2489号公報)
。これも紡糸原液が特定条件下で液晶構造を形成し、口
金の孔から吐出される際、すり応力により液晶が繊維軸
方向に配列するため(ポリマー分子鎖が高配向する)と
考えられている。
In addition, it is well known that para-oriented aramid fibers (such as Kevlar) can achieve high elastic modulus and strength by simply discharging them from a spinneret, removing the solvent, and winding them without going through a stretching process. (For example, Japanese Patent Publication No. 47-2489)
. This is also thought to be because the spinning stock solution forms a liquid crystal structure under specific conditions, and when it is discharged from the hole of the spinneret, the liquid crystals are aligned in the fiber axis direction due to frictional stress (polymer molecular chains become highly oriented). .

最近では、加熱溶融時に液晶を形成させる芳香一 族系の共重合ポリエステル(ボリアリレート)を溶融紡
糸し、配向度の高い繊維を形成せしめた後、長時間の加
熱で固相重合を進めることにより、高強度高弾性率の繊
維が得られることも知られている(例えば、特開昭61
−174408号公報)。
Recently, by melt-spinning aromatic family-based copolyester polyester (bolyarylate) that forms liquid crystals when heated and melted, forming highly oriented fibers, and then proceeding with solid phase polymerization by heating for a long time, It is also known that fibers with high strength and high elastic modulus can be obtained (for example, JP-A-61
-174408).

(発明が解決しようとする課題) 前述の繊維化方法、特に液晶からの紡糸によると従来の
汎用合成繊維に比べ著しく高い強度と弾性率を有する有
機繊維を得ることができるが、これらの繊維は何ずれも
ポリマー分子鎖が繊維軸方向に高度に配向している。一
方、繊維軸に対し直角の断面方向では、弱い分子間力が
働くだけで力学的に弱い繊維構造となる。このように、
繊維の強度、弾性率を上げるため、ポリマー分子鎖の配
向度を極度に向上させると、繊維軸方向にフィブリルが
発達する。フィブリル間の相互作用は小さいため、繰返
し屈曲変形や摩擦の負荷がかかるようなところで使用さ
れる用途分野においては耐久性の点で問題となる。
(Problems to be Solved by the Invention) According to the above-mentioned fiberizing method, especially spinning from liquid crystal, organic fibers having significantly higher strength and elastic modulus than conventional general-purpose synthetic fibers can be obtained. In both cases, the polymer molecular chains are highly oriented in the fiber axis direction. On the other hand, in the cross-sectional direction perpendicular to the fiber axis, only weak intermolecular forces act, resulting in a mechanically weak fiber structure. in this way,
In order to increase the strength and elastic modulus of fibers, when the degree of orientation of polymer molecular chains is extremely improved, fibrils develop in the fiber axis direction. Since the interaction between fibrils is small, durability becomes a problem in applications where the material is subjected to repeated bending deformation or frictional loads.

ナイロン繊維、ポリエステル繊維は比較的屈曲3− 変形、摩擦に対して優れた耐久性を示すが、引張強度、
弾性率等の力学的性質が液晶繊維等と比較すると著しく
低い。
Nylon fibers and polyester fibers exhibit relatively excellent durability against bending, deformation, and friction, but their tensile strength and
Mechanical properties such as elastic modulus are significantly lower than liquid crystal fibers.

ロープ、ホース、コード、ベルト、縫糸、漁網等の産業
資材分野で、従来の汎用ポリマー繊維(ビニロン、アク
リル、ナイロン、ポリエステル等)よりも高い強度、弾
性率の繊維素材が要求され、これに応じた各種高性能繊
維素材が開発されているが、何れも疲労に関する耐久性
の点で問題があった。
In the field of industrial materials such as ropes, hoses, cords, belts, sewing threads, and fishing nets, fiber materials with higher strength and elasticity than conventional general-purpose polymer fibers (vinylon, acrylic, nylon, polyester, etc.) are required, and in response to this demand. Various high-performance fiber materials have been developed, but all of them have problems in terms of durability with respect to fatigue.

本発明者らは、上述した高強度高弾性率を保持させたま
ま、屈曲変形、摩擦等の耐疲労性に優れた繊維について
鋭意研究を進めて本発明を見出したものである。
The present inventors have conducted extensive research into fibers that have excellent fatigue resistance such as bending deformation and friction while maintaining the above-mentioned high strength and high modulus, and have discovered the present invention.

以下、本発明をさらに詳細かつ具体的に説明する0 (課題を解決するための手段) 本発明は芯成分Aが異方性溶融相を形成し得る芳香族ポ
リエステル、鞘成分Bがその80重量%以上が下記構造
(I)のくり返し単位よりなるポリ4− マーからなる複合繊維であって、該繊維の横断面に占め
るB成分の面積比B/(A十B)が0.05〜0,4で
あることを特徴とする耐疲労性に優れた高強力高弾性率
繊維である。
The present invention will be described in more detail and specifically below.0 (Means for Solving the Problems) The present invention is characterized in that the core component A is an aromatic polyester capable of forming an anisotropic melt phase, and the sheath component B is an aromatic polyester capable of forming an anisotropic melt phase. % or more of the following structure (I) is a composite fiber consisting of a polymer 4-mer consisting of repeating units, and the area ratio B/(A + B) of the B component in the cross section of the fiber is 0.05 to 0. , 4, and is a high-strength, high-modulus fiber with excellent fatigue resistance.

本発明に言う異方性溶融相を形成し得る芳香族ポリエス
テルとは、芳香族ジオール、芳香族ジカルボン酸、芳香
族ヒドロキシカルボン酸等よす得られるポリマーであり
、溶融相で光学的異方性(液晶性)を示すものである。
The aromatic polyester capable of forming an anisotropic melt phase as used in the present invention refers to polymers obtained from aromatic diols, aromatic dicarboxylic acids, aromatic hydroxycarboxylic acids, etc., which exhibit optical anisotropy in the melt phase. (liquid crystallinity).

このような特性はホットステージ上の試料を窒素雰囲気
下で昇温しその透過光を観察することにより容易に認定
することができる。
Such characteristics can be easily recognized by heating a sample on a hot stage in a nitrogen atmosphere and observing the transmitted light.

本発明に用いられる異方性溶融成分Aは下記に示す反復
成分の組合せからなるものである。
The anisotropic melt component A used in the present invention consists of a combination of repeating components shown below.

5− 6− B成分とはその80重量−以上を下記構造(I)のくり
返し単位よりなるポリマーである。
5-6- Component B is a polymer in which 80 or more by weight consists of repeating units of the following structure (I).

特に好ましくは、次に示す(uL  (III)の反復
構成単位から成る部分が65重量%以上であるポリマー
であり、特に(I[I)の成分が5〜45%であるR1
. &、 R3,R4の具体的な例としては、−CH5
Particularly preferred are polymers in which the proportion of repeating structural units of (uL (III)) shown below is 65% by weight or more, particularly R1 in which the component (I [I) is 5 to 45%].
.. &, As a specific example of R3, R4, -CH5
.

−CH2CH3,−CH2CH2CH3,−CH2CH
3,−F、 −Ql、 Br。
-CH2CH3, -CH2CH2CH3, -CH2CH
3, -F, -Ql, Br.

Ha −Hが挙げられる。特に好ましくはR1−R4が−Hの
芳香族ポリエステルが好ましい。
Examples include Ha-H. Particularly preferred is an aromatic polyester in which R1 to R4 are -H.

A成分中には、その強力が実質的に低下しない範囲で他
のポリマーあるいは添加剤等を含んでいても良い。
Component A may contain other polymers or additives as long as its strength is not substantially reduced.

7− 重合物、添加物を含んでいても良いが、その融点は18
0〜320℃であることが好ましい。
7- It may contain polymers and additives, but its melting point is 18
It is preferable that it is 0-320 degreeC.

本発明に言う複合繊維とは、芯成分が前述のA成分から
なり、鞘成分が前述のB成分から成るものであり、横断
面における鞘成分(B成分)の面積比B/(A+B)が
0.05〜0,4好ましくは0.05〜0.3の範囲に
あるものである。面積比は、繊維構8 断面の顕微鏡写真から求めた芯、鞘部の面積から求める
。ここで面積比が0.05未満では鞘成分による被榎が
十分でなく、−邪恋が露出したり、摩擦、摩耗により容
易に鞘成分が剥れたりする。
The composite fiber referred to in the present invention is one in which the core component consists of the above-mentioned A component and the sheath component consists of the above-mentioned B component, and the area ratio of the sheath component (B component) in the cross section is B/(A + B). It is in the range of 0.05 to 0.4, preferably 0.05 to 0.3. The area ratio is determined from the areas of the core and sheath portions determined from a microscopic photograph of the cross section of the fiber structure 8. If the area ratio is less than 0.05, the cover by the sheath component will not be sufficient, and the sheath component will be exposed or easily peeled off due to friction and abrasion.

逆に0.4を越えると芯成分の比率が減少し、結果とし
て強度、弾性率が低下し本発明の主旨からはずれる。
On the other hand, if it exceeds 0.4, the ratio of the core component decreases, resulting in a decrease in strength and elastic modulus, which deviates from the gist of the present invention.

複合繊維を得るには、公知の方法、例えば、第1図の装
置で紡糸される。芯成分の好ましい条件は、紡糸温度は
、A%B各成分の融点の高い方より更に10℃以上高い
温度で、また、芯成分は、高配向度を得るため吐出時の
剪断速度(テ)を103BeC”以上にすることが好ま
しい。
Composite fibers can be obtained by spinning in a known manner, for example in the apparatus shown in FIG. The preferable conditions for the core component are that the spinning temperature is at least 10°C higher than the higher melting point of each component A, B, and the shear rate (Te) at the time of discharge to obtain a high degree of orientation. It is preferable to make it 103BeC'' or more.

本発明に言う剪断速度(r)とは、ノズル径をr(cn
l)、単孔当りのポリマー吐出量をQ (77sec 
)とするとき で計算される。
The shear rate (r) referred to in the present invention refers to the nozzle diameter r (cn
l), polymer discharge amount per single hole is Q (77sec
) is calculated when

複合繊維の断面形状は、単純な芯鞘型の他、第9− 2図に示す如き、各種のものが可能である。The cross-sectional shape of the composite fiber is a simple core-sheath type, as well as a Various types are possible, as shown in Figure 2.

本発明の複合繊維は、紡糸押出時に分子鎖が繊維軸方向
に配列し既に十分な強度、弾性率を発現するが、熱処理
、延伸熱処理により性能をさらに向上することもできる
。熱処理は窒素等の不活性雰囲気や空気の如き酸素含有
の活性雰囲気中または減圧下で行なえる。
The conjugate fiber of the present invention has molecular chains aligned in the fiber axis direction during spinning and extrusion and already exhibits sufficient strength and elastic modulus, but the performance can be further improved by heat treatment and stretching heat treatment. The heat treatment can be carried out in an inert atmosphere such as nitrogen, an active atmosphere containing oxygen such as air, or under reduced pressure.

好ましい温度条件は、A成分の融点をMPとするときM
P−60℃からMP+20℃の範囲で、MP−40℃以
下から順次昇温して行くパターンがより好ましい。処理
時間は、目的の性能により数秒から数十時間行うことが
出来る。
Preferred temperature conditions are M, where MP is the melting point of component A.
A pattern in which the temperature is gradually increased from below MP-40°C within the range of P-60°C to MP+20°C is more preferable. The processing time can range from several seconds to several tens of hours depending on the desired performance.

熱の供給は、気体等の媒体を行う場合、加熱板、赤外ヒ
ーター等による輻射を利用する方法、熱ローラ、プレー
ト等に接触して行う方法、高周波等を利用した内部加熱
方法等がある。
When heat is supplied using a medium such as gas, there are methods such as using radiation from a heating plate, infrared heater, etc., methods by contacting with a heat roller, plate, etc., and internal heating methods using high frequency, etc. .

処理は、目的により、緊張下あるいは無緊張下で行なわ
れる。処理の形状は、カセ状、チーズ状、トウ状(例え
ば金網等にのせて行う)、あるいはローラ間の連続処理
によって行なわれる。繊維の0− 形態は、フィラメント、カットファイバーいずれも可能
である。
Processing is carried out under tension or without tension, depending on the purpose. The shape of the treatment may be a skein, a cheese, a tow (for example, placed on a wire mesh, etc.), or continuous treatment between rollers. The fiber can be either a filament or a cut fiber.

延伸はA成分の融点より60℃以上低い温度で、切断伸
度の10〜60チ行うことが好都合である。
It is convenient to carry out the stretching at a temperature that is 60° C. or more lower than the melting point of component A and a cutting elongation of 10 to 60 inches.

この処理により弾性率が向上するら 本発明は、芯−成分に溶融液晶ポリマー、鞘成分に前記
構造式(I)のポリマーを用いることにより、芯成分で
ある溶融液晶ポリマーからなる繊維の最大の特徴である
、高強度、高弾性率、寸法安定性、耐熱性をそのまま保
持し、最大の欠点である表面フィブリル化、耐圧縮疲労
性、耐摩耗性を著しく改良したものである。
Although the elastic modulus is improved by this treatment, the present invention uses a molten liquid crystal polymer for the core component and a polymer of the structural formula (I) for the sheath component, thereby increasing the maximum of the fiber made of the molten liquid crystal polymer as the core component. It maintains the characteristics of high strength, high modulus of elasticity, dimensional stability, and heat resistance, while significantly improving the major drawbacks of surface fibrillation, compression fatigue resistance, and abrasion resistance.

本発明繊維を用いた産業上の利用例としては次の様なも
のが挙げられる。
Examples of industrial applications using the fiber of the present invention include the following.

1、樹脂補強用(カーボン、ガラス繊維との複合化)K
使用されるもの スキー板、ゴルフクラブやゲートボールのヘッドおよび
シャフト、テニスやバドミントンのラケットフレーム、
ヘルメット、バット、メガネフレーム、プリント基盤、
モーター回転子のスロット、絶縁物、パイプ、高圧容器
、自動車、自動二輪車、二輪車、列車、船、飛行機、宇
宙船等の一次あるいは二次構造体 2、 ゴム補強用に使用されるもの タイヤ、ベルト、各種タイミングベルト、ホースのゴム
補強用資材 3、バルブ状で使用されるもの 1)摩耗材(他繊維との混合使用、樹脂の補強)、ブレ
ーキライニング、クラッチフェーシング、軸受け 2)その他 パツキン材、ガスケット、ろ過材、研磨材4、 カット
ファイバー チョツプドヤーン状で使用されるもの 紙(絶縁紙、耐熱紙)、スピーカー用振動材、セメント
補強材、樹脂補強材 5、 フィラメント、紡績糸ヤーン状で使用されるもの テンションメンバー(光ファイバー等)ローフ、コード
、ザイル、命綱、釣糸、延線 6、織物あるいは編物状で使用されるもの防弾チョッキ
、安全手袋、安全ネット、耐熱耐炎服、前掛は等保護具
、自動車、列車、船、飛行機、宇宙船等の内張等が挙げ
られる。
1. For resin reinforcement (composite with carbon and glass fiber) K
Things used Skis, golf club and gateball heads and shafts, tennis and badminton racket frames,
Helmets, bats, glasses frames, printed circuit boards,
Primary or secondary structures such as motor rotor slots, insulators, pipes, high-pressure vessels, automobiles, motorcycles, two-wheeled vehicles, trains, ships, airplanes, spacecraft, etc. 2 Things used for rubber reinforcement Tires, belts , Various timing belts, rubber reinforcing materials for hoses 3, Items used in valve shapes 1) Wear materials (mixed with other fibers, reinforcing resin), brake linings, clutch facings, bearings 2) Other packing materials, Gaskets, filter media, abrasive materials4, cut fibers Used in chopped yarn form Paper (insulating paper, heat-resistant paper), vibration materials for speakers, cement reinforcing materials, resin reinforcing materials5, filaments, spun yarn Used in yarn form Tension members (optical fibers, etc.) Loafs, cords, cables, lifelines, fishing lines, wire extensions6, woven or knitted items Bulletproof vests, safety gloves, safety nets, heat-resistant and flame-resistant clothing, aprons, etc. Protective equipment, Examples include the lining of automobiles, trains, ships, airplanes, spacecraft, etc.

本発明に言うフィブリル化とは、ヤーンを1002の張
力下で三点のチタンガイドに通し、100m/m l 
nで1時間短行させた時のガイドに付着するフィブリル
の量により、多いものを×1全く出ないものを01中間
をΔとして評価した。
Fibrillation according to the present invention means passing the yarn through three titanium guides under a tension of 100 m/ml.
The amount of fibrils adhering to the guide when the fibrils were shortened for 1 hour at n was evaluated as 1 for a large number of fibrils, 0 for no fibrils at all, and Δ for an intermediate.

本発明に言う耐疲労性強力保持率とは、1500dr 
(500drx3本)のヤーンを、下撚280 T/m
The fatigue resistance strength retention rate referred to in the present invention is 1500 dr.
(500 drx 3 yarns), first twist 280 T/m
.

上撚280T/mの双糸とし、コードをつくり、ゴム中
に包埋して行うベルト屈曲テスト法で25万回処理した
後の強力保持率で評価した。
A double yarn with a ply twist of 280 T/m was made into a cord, and the cord was embedded in rubber and evaluated by the strength retention rate after being processed 250,000 times using a belt bending test method.

本発明に言う摩耗性とは、試料ヤーンを10本引揃え、
反転回転体と他端の滑車とに1.5回ヨリ合せ、80字
状にセットし滑車に3輪の荷重をかけ、反転回転体でヤ
ーンを往復ヨリ合せ摩耗させ切断までの回数を求める繊
維間摩耗と、1/10t/dの荷重をかけ、直径10o
++の丸砥石(回転数:13− 100し分、接触角:100度)で接断までの回数で示
すグラインダー摩耗テストの両者で評価した。
The abrasiveness referred to in the present invention refers to 10 sample yarns lined up,
Twist the yarn 1.5 times between the reversing rotating body and the pulley at the other end, set it in a figure 80 shape, apply a load of 3 wheels to the pulley, wear the yarn back and forth on the reversing rotating body, and calculate the number of times it takes to break. A diameter of 10o with inter-wear and a load of 1/10t/d applied.
A grinder abrasion test was conducted using a ++ round whetstone (rotation speed: 13-100 minutes, contact angle: 100 degrees), which was determined by the number of times until the material broke.

以下、実施例により本発明をより具体的に説明するが、
本発明は、これにより限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited thereby.

実施例I A成分として前記構成単位(n)と(III)が73/
27モル優比である全芳香族ポリエステルポリマーを用
いた。このポリマーの物性は、 対数粘度(η1nh)は次のようにして求めた。
Example I As component A, the structural units (n) and (III) are 73/
A wholly aromatic polyester polymer having a predominant molar ratio of 27 was used. As for the physical properties of this polymer, the logarithmic viscosity (η1nh) was determined as follows.

試料をペンタフルオロフェノールにo、1xts溶解し
く60〜80℃)、60℃の恒温槽中でウベローデ型毛
管粘度計(例えば高分子学会編6高分子科学実験法1東
京化学同人P179(I986)東京)で測定する。溶
媒の流下時間は107秒である。
Dissolve the sample in pentafluorophenol (60 to 80°C) in a constant temperature bath at 60°C using an Ubbelohde capillary viscometer (for example, the Polymer Society of Japan, ed. 6 Polymer Scientific Experimental Methods 1, Tokyo Kagaku Doujin P179 (I986), Tokyo). ). The solvent flow time is 107 seconds.

またAポリマーの融点(Mp)は、メトラー製TA−3
000DSCで求めた吸熱ピーク温度である。
The melting point (Mp) of Polymer A is TA-3 manufactured by Mettler.
This is the endothermic peak temperature determined by 000DSC.

B成分としては、前記した(I)の構造単位のうち、凡
〜ルが−Hの構造からなる280℃、テ=1000 s
ec ”時の粘度が400ボイズのポリマーを使用した
Component B consists of a structure in which all of the structural units of (I) are -H at 280°C and at 1000 s.
A polymer having a viscosity of 400 voids at ec'' was used.

A成分とB成分の複合比率(重量比)は、7/3で第1
図に示す100ホールの口金より紡糸温度320℃で吐
出した。巻取速度は500m/minで500dr/1
00fのフィラメントを得た。
The composite ratio (weight ratio) of component A and component B is 7/3, which is the first
The material was discharged from the 100-hole nozzle shown in the figure at a spinning temperature of 320°C. Winding speed is 500m/min and 500dr/1
A filament of 00f was obtained.

この紡糸原糸を穴あきアルミボビンに巻き密度0、62
 ?/ccで巻き、240℃で3時間、260℃から2
80℃壕で4時間、280℃から285℃まで10時間
熱処理をした。
This spinning yarn is wound around a perforated aluminum bobbin at a density of 0.62
? /cc, 3 hours at 240℃, 2 hours from 260℃
Heat treatment was performed in a trench at 80°C for 4 hours and from 280°C to 285°C for 10 hours.

得られた繊維の物性を第1表に示した。The physical properties of the obtained fibers are shown in Table 1.

実施例2〜5 実施例1のA、Bポリマーの複合割合を種々変更したこ
と、およびヤーンデニールを変更したこと以外、本質的
に実施例1と同様の方法で各種の熱処理系を得た。結果
を第1表に1とめる。
Examples 2 to 5 Various heat treatment systems were obtained in essentially the same manner as in Example 1, except that the composite ratio of polymers A and B in Example 1 was varied and the yarn denier was changed. The results are listed in Table 1.

比較例1 実施例10A成分を単独(B成分Oチ)に用い同一紡糸
条件で紡糸し、熱処理したものである。
Comparative Example 1 The A component of Example 10 was used alone (B component O) and was spun under the same spinning conditions and heat treated.

本発明の例は何れもフィブリル化が全く生じず、繊維表
面の改良が著しいことを示す。
None of the examples of the invention caused any fibrillation, indicating a significant improvement in the fiber surface.

本発明の効果が最も顕著に現われているのは耐疲労性で
ある。これは、鞘成分の存在が芯成分の圧縮疲労を抑え
ていると推定される。
The effect of the present invention is most evident in fatigue resistance. This is presumably because the presence of the sheath component suppresses the compression fatigue of the core component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合繊維を得るための紡糸口金の一例
を示す要部断面図、第2図は本発明の複合繊維の断面形
状を示す例である。
FIG. 1 is a cross-sectional view of essential parts of an example of a spinneret for obtaining the conjugate fiber of the present invention, and FIG. 2 is an example showing the cross-sectional shape of the conjugate fiber of the present invention.

Claims (1)

【特許請求の範囲】 芯成分Aが異方性溶融相を形成し得る芳香族ポリエステ
ル、鞘成分Bがその80重量%以上が下記構造( I )
のくり返し単位よりなるポリマーからなる複合繊維であ
つて、該繊維の横断面に占めるB成分の面積比B/(A
+B)が0.05〜0.4であることを特徴とする複合
繊維。 ▲数式、化学式、表等があります▼…( I ) 式中、R_1、R_2、R_3、R_4は水素、アルキ
ル基又はハロゲン原子である。
[Claims] The core component A is an aromatic polyester capable of forming an anisotropic melt phase, and the sheath component B is 80% by weight or more of the following structure (I)
is a conjugate fiber made of a polymer consisting of repeating units, and the area ratio of component B to the cross section of the fiber is B/(A
A composite fiber characterized in that +B) is 0.05 to 0.4. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) In the formula, R_1, R_2, R_3, and R_4 are hydrogen, an alkyl group, or a halogen atom.
JP27314889A 1989-10-19 1989-10-19 High strength and high modulus fiber with excellent fatigue resistance Expired - Fee Related JP2744303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27314889A JP2744303B2 (en) 1989-10-19 1989-10-19 High strength and high modulus fiber with excellent fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27314889A JP2744303B2 (en) 1989-10-19 1989-10-19 High strength and high modulus fiber with excellent fatigue resistance

Publications (2)

Publication Number Publication Date
JPH03137226A true JPH03137226A (en) 1991-06-11
JP2744303B2 JP2744303B2 (en) 1998-04-28

Family

ID=17523785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27314889A Expired - Fee Related JP2744303B2 (en) 1989-10-19 1989-10-19 High strength and high modulus fiber with excellent fatigue resistance

Country Status (1)

Country Link
JP (1) JP2744303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342802A (en) * 2013-07-25 2015-02-11 东丽纤维研究所(中国)有限公司 Double-component composite elastic fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342802A (en) * 2013-07-25 2015-02-11 东丽纤维研究所(中国)有限公司 Double-component composite elastic fiber
CN104342802B (en) * 2013-07-25 2017-10-31 东丽纤维研究所(中国)有限公司 A kind of two-component composite elastic fiber

Also Published As

Publication number Publication date
JP2744303B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5045257A (en) Process for producing aromatic polyester fiber
JP3016494B2 (en) Method for producing high-strength high-modulus fiber
JPS6141320A (en) Polyester fiber
JPH04272226A (en) High-tenacity high-modulus conjugate fiber
JP2593908B2 (en) High strength high modulus fiber with improved fatigue resistance
JPH03137226A (en) High strength, high modulus fiber with excellent fatigue resistance
JPH02200813A (en) Production of aromatic polyester fiber
JPH03137225A (en) Pigmented fiber with high strength and high modulus
JPH02127568A (en) High-strength and high-modulus fiber having improved abrasion resistance
JP2858981B2 (en) High strength and high modulus fiber with excellent fatigue resistance
JPH01229816A (en) High-tenacity and high-elastic modulus fiber improved in abrasion resistance
JP2003027333A (en) Polyketone fiber
JP4024697B2 (en) High elastic modulus cord and manufacturing method thereof
JP2905553B2 (en) Division method
JP2021014645A (en) Method of producing liquid crystal polyester fiber
JPH06123013A (en) High strength high elastic modulus fiber improved in fatigue resistance
JP3539577B2 (en) Fiber reinforced composite material
Beers et al. Other high modulus-high tenacity (HM-HT) fibres from linear polymers
JPS62162016A (en) Production of polyester fiber
KR101130061B1 (en) Fully aromatic polyamide fiber with excellent processability and adhesiveness
JP4104260B2 (en) Optical fiber tension member
JPH03161547A (en) Production of base material for composite material composed of fibrilized polybenzoxazole-based fiber
JP2001279533A (en) Fiber for rubber reinforcement
JPS6134216A (en) Nylon 66 fiber having high strength and high fatigue resistance, and its manufacture
JPH0657534A (en) Production of high-strength and high-elastic modulus fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees