JPH03137091A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPH03137091A
JPH03137091A JP27254389A JP27254389A JPH03137091A JP H03137091 A JPH03137091 A JP H03137091A JP 27254389 A JP27254389 A JP 27254389A JP 27254389 A JP27254389 A JP 27254389A JP H03137091 A JPH03137091 A JP H03137091A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
weight
measured
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27254389A
Other languages
Japanese (ja)
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27254389A priority Critical patent/JPH03137091A/en
Publication of JPH03137091A publication Critical patent/JPH03137091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain single crystal having uniform characteristics at a high yield by calculating the difference of both the measured weight of single crystal being grown and the arithmetic weight calculated from a measured diameter and judging the shape of the interface of solid and liquid from this difference and controlling the conditions of crystal growth on the basis of this judged result in the production of semiconductor single crystal by a pulling-up method. CONSTITUTION:In the production of semiconductor single crystal wherein single crystal 2 is grown by bringing seed crystal 5 into contact with the melt 4 of a raw material for crystal in a crucible 1 and pulling up the seed crystal, the constitution described hereunder is adopted. In other words, the weight of single crystal 2 which is grown while being pulled up is measured by a weight measuring means (a weight sensor 11, a buoyancy correction circuit 14, an arithmetic circuit 18). Further the diameter of single crystal 2 is measured by a diameter measuring means (a camera 12, a detecting circuit 15 for diameter of crystal, an arithmetic circuit 18). The difference of both the measured weight of single crystal 2 which is measured by the weight measuring means and the arithmetic weight of single crystal which is calculated on the basis of the diameter measured by the diameter measuring means is obtained. The shape of the solid-liquid interface of single crystal 2 and the melt 4 of the raw material for crystal is judged from this difference. The conditions of crystal growth are controlled on the basis of this judged result so that the shape of the solid-liquid interface is made to an optimum shape.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体封止引上げ法(LEC法)あるいは引上げ
法(CZ法)による半導体単結晶の製造方法に係り、特
に最適な固液界面形状での半導体単結晶成長に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor single crystal by a liquid confinement pulling method (LEC method) or a pulling method (CZ method), and particularly relates to a method for manufacturing a semiconductor single crystal using an optimal solid-liquid interface shape. This study concerns semiconductor single crystal growth.

〔従来の技術] Si、Ge等の結晶製造法としてCZ法が、またGaA
s等の■−■族半導体単結晶の製造法としてCZ法を改
善したLEC法が知られている。
[Prior art] CZ method is a method for producing crystals of Si, Ge, etc., and GaA
The LEC method, which is an improved version of the CZ method, is known as a method for producing single crystals of ■-■ group semiconductors such as s.

これら製造方法により製造される半導体のウェハには、
ウェハ面内でその特性にバラツキがないことが要求され
る。そのためには、ウェハ面内のどの点においても不純
物濃度が等しくなければならない。
Semiconductor wafers manufactured by these manufacturing methods include:
It is required that there be no variation in the characteristics within the wafer surface. For this purpose, the impurity concentration must be equal at every point within the wafer surface.

結晶中に不純物が取り込まれるとき、不純物は偏析する
性質を有するので、ウェハ面内で不純物濃度の均一な結
晶を成長させようとすると、ウェハ面内のどの点におい
ても同一時刻に固化していることが必要である。換言す
れば、固液界面形状が常に平坦であることが望まれる。
When impurities are incorporated into a crystal, they have the property of segregation, so if you try to grow a crystal with a uniform impurity concentration on the wafer surface, it will solidify at the same time at every point on the wafer surface. It is necessary. In other words, it is desired that the solid-liquid interface shape is always flat.

結晶の固液界面形状は、結晶原料融液内の温度分布によ
り決まるか、これを変化させるパラメータは多数ある。
The solid-liquid interface shape of the crystal is determined by the temperature distribution within the crystal raw material melt, and there are many parameters that can change this.

これらの中で、ヒータに対する結晶原料融液の液面位置
は、固液界面形状を決定づける重要なパラメータとなっ
ている。即ち、ヒータに対してるつぼ1内の結晶原料融
液4の液面位置か高い場合には、第7図に示すように、
単結晶2の固液界面形状は融液4側に凹型となる。なお
、3は液体封止剤のB、03である。逆に低い場合は、
第8図に示すように、固液界面形状は融液4側に凸型と
なる傾向がある。従って、ヒータに対する融液面の位置
などの結晶成長条件を最適に選定すれば、固液界面形状
を平坦にすることができる。
Among these, the liquid level position of the crystal raw material melt relative to the heater is an important parameter that determines the solid-liquid interface shape. That is, when the liquid level of the crystal raw material melt 4 in the crucible 1 is higher than the heater, as shown in FIG.
The solid-liquid interface shape of the single crystal 2 is concave toward the melt 4 side. Note that 3 is B, 03 of the liquid sealant. Conversely, if it is low,
As shown in FIG. 8, the solid-liquid interface shape tends to be convex toward the melt 4 side. Therefore, by optimally selecting crystal growth conditions such as the position of the melt surface relative to the heater, the solid-liquid interface shape can be made flat.

ところが、通常のLEC法、CZ法による結晶成長では
、固液界面形状は結晶成長に伴って変化する。このため
、結晶内部の不純物原子の分布も固液界面形状を反映し
たものとなって、ウエノ・面内で均一な分布とならない
。そこで、従来にあっては、成長した結晶を縦に切断し
、エツチングを施したり、あるいはX線トポグラフ像を
撮ったりして結晶の固液界面形状を求め、固液界面形状
が平坦となるような最適な結晶成長条件を詰めていくと
いう方法が採られていた。
However, in crystal growth by the usual LEC method or CZ method, the solid-liquid interface shape changes with crystal growth. For this reason, the distribution of impurity atoms inside the crystal also reflects the shape of the solid-liquid interface, and the distribution is not uniform within the surface of the crystal. Therefore, in the past, the shape of the solid-liquid interface of the crystal was determined by cutting the grown crystal vertically and performing etching, or by taking an X-ray topographic image, and the shape of the solid-liquid interface was determined to be flat. The method used was to find the optimal crystal growth conditions.

[発明が解決しようとする課題] しかしながら、上述した従来方法は、結晶成長中に結晶
の固液界面形状を検知するのではなく、成長後に得られ
た結晶を切断してみてはじめて固液界面形状を知るもの
である。このため、固液界面形状を平坦にするための結
晶成長条件を決定するには、「まず、ある結晶成長条件
で結晶成長を行い、次いで得られた結晶を切断して固液
界面形状を測って、その平坦度を評価し、この評価に基
づき更に平坦度を向上すべ(結晶成長条件を変化させる
Jという作業を試行錯誤で何度も繰り返さなければなら
ない。このため、最適な結晶成長条件を求めるために、
多くの開発時間および開発費を要していた。また、結晶
成長中に外乱があると、固液界面形状を一定に保つこと
ができなかった。
[Problems to be Solved by the Invention] However, the conventional method described above does not detect the solid-liquid interface shape of the crystal during crystal growth, but detects the solid-liquid interface shape only after cutting the crystal obtained after growth. It is something to know. Therefore, in order to determine the crystal growth conditions to flatten the solid-liquid interface shape, it is necessary to first grow the crystal under certain crystal growth conditions, then cut the resulting crystal and measure the solid-liquid interface shape. Then, the flatness must be evaluated, and based on this evaluation, the flatness must be further improved (the process of changing the crystal growth conditions must be repeated many times through trial and error. In order to seek
It required a lot of development time and development cost. Furthermore, if there is a disturbance during crystal growth, the shape of the solid-liquid interface cannot be kept constant.

本発明の目的は、前記した従来技術の問題点を解消し、
最適な固液界面形状を保持でき、特性の均一な半導体単
結晶を歩留りよく、かつ、簡易に製造することができる
新規な半導体単結晶の製造方法を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a novel method for manufacturing a semiconductor single crystal, which can maintain an optimal solid-liquid interface shape and easily manufacture a semiconductor single crystal with uniform characteristics at a high yield.

[課題を解決するための手段] 本発明は上記目的を達成するために、るつぼ中の結晶原
料融液に種結晶を接触させて引き上げることにより単結
晶を成長させる半導体単結晶の製造方法において、引き
上げられる成長中の単結晶の重量を重量測定手段により
測定すると共に、単結晶の直径を直径測定手段により測
定する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor single crystal in which a single crystal is grown by bringing a seed crystal into contact with a crystal raw material melt in a crucible and pulling it up. The weight of the growing single crystal to be pulled is measured by a weight measuring means, and the diameter of the single crystal is measured by a diameter measuring means.

次に、重量測定手段により測定された単結晶の測定重量
と直径測定手段により測定された単結晶の直径に基づき
演算される単結晶の演算重量との差を求め、この求めら
れた重量差から単結晶と結晶原料融液との固液界面形状
を判定する。
Next, calculate the difference between the measured weight of the single crystal measured by the weight measuring means and the calculated weight of the single crystal calculated based on the diameter of the single crystal measured by the diameter measuring means, and from this calculated weight difference. Determine the shape of the solid-liquid interface between the single crystal and the crystal raw material melt.

そして、この判定結果に基づき固液界面形状が最適形状
となるように単結晶の結晶成長条件を制御するようにし
たものである。
Based on this determination result, the crystal growth conditions of the single crystal are controlled so that the shape of the solid-liquid interface becomes optimal.

本発明は、上記の結晶原料融液上を液体封止剤で覆うL
EC法にも、液体封止剤で覆わないCZ法にも適用でき
る。、従って、適用できる材料は■−■族化合物半導体
だけでなく、SiやGeも含まれる。
The present invention provides an L material for covering the above crystal raw material melt with a liquid sealant.
It can be applied to both the EC method and the CZ method which is not covered with a liquid sealant. Therefore, applicable materials include not only the ■-■ group compound semiconductors but also Si and Ge.

上記の重量測定手段による測定は、単結晶の引上げ軸に
ロードセル等を設けて直接的に検知するだけでなく、る
つぼの重量を測定して間接的に単結晶の重量を検知する
方法でもよい。
The above-mentioned measurement by the weight measuring means may be performed not only by providing a load cell or the like on the pulling shaft of the single crystal for direct detection, but also by measuring the weight of the crucible and indirectly detecting the weight of the single crystal.

上記の固液界面の最適形状は、結晶の電気特性の均一化
のために、平坦であることが好ましい。
The optimal shape of the solid-liquid interface is preferably flat in order to make the electrical properties of the crystal uniform.

しかし、材料によっては単結晶化率を高めるために、固
液界面形状をわずかに凸か凹に保つことが好ましい場合
もある。この場合には、最適形状は、平坦ではなく、わ
ずかに凸または凹の形状となり、この形状を保つ制御が
行われる。
However, depending on the material, it may be preferable to keep the solid-liquid interface shape slightly convex or concave in order to increase the single crystallization rate. In this case, the optimal shape is not flat but slightly convex or concave, and control is performed to maintain this shape.

また、上記の単結晶の結晶成長条件ないし固液界面形状
の制御パラメータとしては、ヒータに対する結晶原料融
液面の位置の他、るつぼ回転、結晶の引上げ速度、結晶
回転などがある。
In addition, the control parameters for the crystal growth conditions of the single crystal or the shape of the solid-liquid interface include the position of the crystal raw material melt surface with respect to the heater, crucible rotation, crystal pulling speed, crystal rotation, etc.

[作用] 重量測定手段により測定された単結晶の実際の測定重量
には、単結晶の固液界面部分が、結晶原料融液から受け
る浮力が含まれている。なお、LEC法の場合には、B
、03等の液体封止剤から受ける浮力もある。
[Function] The actual measured weight of the single crystal measured by the weight measuring means includes the buoyancy force that the solid-liquid interface portion of the single crystal receives from the crystal raw material melt. In addition, in the case of the LEC method, B
There is also the buoyancy force received from liquid sealants such as , 03, etc.

一方、直径測定手段により所定の引上げ長さごとに測定
した単結晶の直径を積算して体積を求めるなどして算出
される単結晶の演算重量は、単結晶の固液界面形状が平
坦であると推定して求められるものである。
On the other hand, the calculated weight of a single crystal, which is calculated by calculating the volume by integrating the diameters of the single crystal measured at each predetermined pulling length using a diameter measuring means, indicates that the shape of the solid-liquid interface of the single crystal is flat. It is obtained by estimating that.

従って、測定重量と演算重量との差は、単結晶の固液界
面部分か受ける浮力となる。この浮力は単結晶の固液界
面形状を反映したものであり、浮力の値から単結晶の固
液界面形状を判定できる。
Therefore, the difference between the measured weight and the calculated weight is the buoyancy force exerted on the solid-liquid interface of the single crystal. This buoyancy reflects the solid-liquid interface shape of the single crystal, and the solid-liquid interface shape of the single crystal can be determined from the buoyancy value.

これによって、結晶成長中にリアルタイムで固液界面形
状を判定でき、この結果を直ちに結晶成長条件にフィー
ドバックすることにより、常に単結晶の固液界面を最適
形状に保てる。
This allows the shape of the solid-liquid interface to be determined in real time during crystal growth, and by immediately feeding back this result to the crystal growth conditions, the solid-liquid interface of the single crystal can always be maintained in the optimal shape.

[実施例] 以下に、本発明の一実施例を添付図面に従って説明する
[Example] An example of the present invention will be described below with reference to the accompanying drawings.

第1図には、本発明をLEC法に適用した場合の結晶引
上装置の一例を示す。同図において、1はるつぼであり
、るつぼl内には、■−■族化合物半導体の単結晶2を
成長させるための結晶原料融液4が入っている。結晶原
料融液4の上面は液体、封止剤としてのB、0,3で覆
われている。るっぽ1の外周には、ヒータ6が配置され
ており、ヒータ6に対するるつぼ1の位置を上下するこ
とができるように、るっぽ1の下方には下軸9を介して
下軸駆動機構13が設けられている。下軸駆動機構13
には、その駆動速度等を制御するための下軸駆動制御回
路17が接続されている。また、ヒータ6には、その温
度制御のためのヒータ電源制御回路16が接続されてい
る。
FIG. 1 shows an example of a crystal pulling apparatus in which the present invention is applied to the LEC method. In the figure, 1 is a crucible, and the crucible 1 contains a crystal raw material melt 4 for growing a single crystal 2 of a ■-■ group compound semiconductor. The upper surface of the crystal raw material melt 4 is covered with a liquid and B, 0, 3 as a sealant. A heater 6 is arranged around the outer periphery of the Ruppo 1, and a lower shaft is driven via a lower shaft 9 below the Ruppo 1 so that the position of the crucible 1 relative to the heater 6 can be moved up and down. A mechanism 13 is provided. Lower shaft drive mechanism 13
A lower shaft drive control circuit 17 is connected to the lower shaft drive control circuit 17 for controlling the drive speed and the like. Further, the heater 6 is connected to a heater power supply control circuit 16 for temperature control thereof.

一方、るっぽ1の上方には、種結晶5を支持する上軸8
が設けられており、上軸8の上部には種結晶5より成長
する単結晶2の重量を測定するた5の重量センサ11が
設けられている。重量センサ11が検知した検知信号は
浮力補正回路14で補正された後、演算回路18に入力
されるようになっている。るっぽ1.ヒータ6等は融液
4からの構成元素の解離を防止すべく高圧容器7に収納
されているが、この高圧容器7を貫通させて、るつぼ1
内の単結晶2の成長を観測できるように、石英ロッド1
0が設けられている。石英ロンド10の一端には成長中
の単結晶2を撮影するためのカメラ12が設置されてい
る。カメラ12の映像は結晶直径検出回路15に人力さ
れ、検知された単結晶2の直径に関する信号が演算回路
18に人力されるようになっている。
On the other hand, above the Lupo 1, there is an upper shaft 8 that supports the seed crystal 5.
A weight sensor 11 is provided above the upper shaft 8 to measure the weight of the single crystal 2 grown from the seed crystal 5. The detection signal detected by the weight sensor 11 is corrected by a buoyancy correction circuit 14 and then input to an arithmetic circuit 18. Ruppo 1. The heater 6 and the like are housed in a high-pressure container 7 in order to prevent dissociation of the constituent elements from the melt 4.
Quartz rod 1 was placed so that the growth of single crystal 2 within it could be observed.
0 is set. A camera 12 for photographing the growing single crystal 2 is installed at one end of the quartz iron 10. The image of the camera 12 is input to a crystal diameter detection circuit 15, and a signal regarding the detected diameter of the single crystal 2 is input to an arithmetic circuit 18.

次に、本実施例の作用を述べる。Next, the operation of this embodiment will be described.

重量センサ11が検知した成長中の単結晶2の測定重量
には、第2図に示すように、B*C)s3を排除した体
積に相当した分の浮力が含まれている。
As shown in FIG. 2, the measured weight of the growing single crystal 2 detected by the weight sensor 11 includes a buoyant force corresponding to the volume excluding B*C)s3.

そこで、この浮力を補正すべく、浮力補正回路14では
、重量センサ11からの測定重量にB、033による浮
力を加算して補正した測定重量Wmesが演算回路18
に人力される。また、カメラ12から結晶直径検出回路
15に入力された映像に基づいて結晶直径検出回路15
では、第2図に示すように、単結晶2の単位時間当たり
の引上長さΔhごとの直径が検知され、これら検知され
た直径値が演算回路18に入力される。演算回路18で
は、これら単結晶2の直径値D I+  D !+ ・
・・D、から融液4上の単結晶2の演算重量WcaQを
次式により算出する。
Therefore, in order to correct this buoyancy, the buoyancy correction circuit 14 adds the buoyancy due to B, 033 to the measured weight from the weight sensor 11, and calculates the corrected measured weight Wmes from the arithmetic circuit 18.
is man-powered. Further, the crystal diameter detection circuit 15 uses the image input from the camera 12 to the crystal diameter detection circuit 15.
Then, as shown in FIG. 2, the diameter of the single crystal 2 for each pulling length Δh per unit time is detected, and these detected diameter values are input to the arithmetic circuit 18. The arithmetic circuit 18 calculates the diameter value D I+ D ! of these single crystals 2. +・
...D, the calculated weight WcaQ of the single crystal 2 on the melt 4 is calculated by the following formula.

WcaQ−Σ(πD ”(n )/ 4 )・Δh−ρ
WcaQ-Σ(πD''(n)/4)・Δh-ρ
.

n=1 ここで、ρ、は単結晶2の密度である。演算重量Wca
i7は固液界面が平坦であるとの仮定のもとでの重量で
あるため、単結晶2の固液界面が平坦でなく融液4側に
凸(第2図)または凹である場合には、測定重量w m
esと演算重量Wca(とは一致せず、固液界面の凸(
又は凹)部が融液2がら受ける浮力(ρ、−ρ、)・V
だけ差が現れる。なお、■は固液界面の凸(又は凹)部
の体積、ρ、は融液4の密度である。
n=1 Here, ρ is the density of the single crystal 2. Calculated weight Wca
i7 is the weight based on the assumption that the solid-liquid interface is flat, so if the solid-liquid interface of single crystal 2 is not flat and is convex (Fig. 2) or concave toward the melt 4 side, is the measured weight w m
es and the calculated weight Wca (do not match, and the convexity of the solid-liquid interface (
The buoyant force (ρ, -ρ, )・V that the concave) part receives from the melt 2
Only the difference appears. Note that ■ is the volume of the convex (or concave) portion of the solid-liquid interface, and ρ is the density of the melt 4.

従って、演算重量WcaQと測定重量Wmesとの差は Wca12− Wmes= (9m −1) m) 1
Vであり、固;皮界面部分の体積■は V = (WcaQ−Wmes)/ (、Om −9m
)となる。
Therefore, the difference between the calculated weight WcaQ and the measured weight Wmes is Wca12-Wmes= (9m-1) m) 1
V, and the volume of the solid skin interface part is V = (WcaQ-Wmes)/(, Om -9m
).

このようにして、演算回路I8で求められた体積Vの値
がV>Qであれば、単結晶2の固液界面は融液4側に凸
であると判定でき、■の値が大きいほど凸の度合が強い
といえる。また、V<Qであれば、固液界面形状は融液
4側に凹となっていると判定できる。なお、この場合に
は、上述の測定型i1Wg+esの補正において四部の
部分の融液4の重量だけ余分に浮力補正しており、V=
(WcaQ−WcaQ)/ρ、によりVの値が求まる。
In this way, if the value of the volume V determined by the calculation circuit I8 is V>Q, it can be determined that the solid-liquid interface of the single crystal 2 is convex toward the melt 4 side, and the larger the value of It can be said that the degree of convexity is strong. Further, if V<Q, it can be determined that the solid-liquid interface shape is concave toward the melt 4 side. In this case, in the correction of the measurement type i1Wg+es mentioned above, the buoyancy is corrected by the weight of the melt 4 in the four parts, and V=
The value of V is determined by (WcaQ-WcaQ)/ρ.

次いで、■の値による固液界面形状の判定結果に基づき
結晶成長条件を最適化する。本実施例では、ヒータ電源
制御回路I6によりヒータ6の温度制御を行うと共に、
下軸駆動制御回路17により下軸駆動機構13を駆動制
御してるつぼ1の位置制御を行う。そして、これらによ
りV=Qとなるように制御することによって、結晶成長
中に常に単結晶2の固液界面形状を平坦に保つことがで
きる。
Next, crystal growth conditions are optimized based on the result of determining the shape of the solid-liquid interface based on the value of ■. In this embodiment, the temperature of the heater 6 is controlled by the heater power control circuit I6, and
The lower shaft drive control circuit 17 drives and controls the lower shaft drive mechanism 13 to control the position of the crucible 1. By controlling these so that V=Q, the shape of the solid-liquid interface of the single crystal 2 can always be kept flat during crystal growth.

次に、従来法と上記した本実施例の引上装置で直径2イ
ンチのGaAs結晶を作成した具体例を比較して述べる
。この実施例では、単結晶2の固液界面の凸部の体積V
が結晶成長中に常にO≦V<7.5cm”の範囲になる
ように、るつぼIの位置及びヒータ6の温度を制御した
Next, a specific example in which a GaAs crystal with a diameter of 2 inches was produced using the conventional method and the pulling apparatus of this embodiment described above will be compared and described. In this example, the volume V of the convex portion of the solid-liquid interface of the single crystal 2
The position of crucible I and the temperature of heater 6 were controlled so that O≦V<7.5 cm” during crystal growth.

従来法で作成した結晶を縦に切断し、ABエツチングに
よりストリエーションを観察した結果、固液界面形状は
結晶全域に亙って融液側に凸の形状をしており、凸部の
高さは最大で30mmであった。これに対し、本発明の
実施例では、固液界面形状はほぼ平坦であり、融液側に
突出した部分は最大で4mm程度であった。
As a result of vertically cutting a crystal prepared by the conventional method and observing striations by AB etching, the solid-liquid interface shape was convex toward the melt side over the entire crystal, and the height of the convex part was was 30 mm at maximum. On the other hand, in the example of the present invention, the solid-liquid interface shape was almost flat, and the portion that protruded toward the melt side was about 4 mm at maximum.

また、従来法で作成した結晶を9000Cで10時間熱
処理し、ウェハ面内での電気特性を測定した。第3図に
測定した比抵抗分布を、また第5図にFETを作成した
ときのしきい値電圧分布を示す。しきい値電圧のバラツ
キは5QmVと大きかった。一方、本実施例で作製した
結晶にも同様の熱処理を施し、ウェハ面内の比抵抗分布
及びFETのしきい値電圧分布をヨ11定した。第4図
に比抵抗分布を、第6図にしきい値電圧分布を示す。
In addition, a crystal produced by the conventional method was heat-treated at 9000C for 10 hours, and the electrical characteristics within the wafer plane were measured. FIG. 3 shows the measured resistivity distribution, and FIG. 5 shows the threshold voltage distribution when the FET was fabricated. The variation in threshold voltage was as large as 5QmV. On the other hand, the crystal produced in this example was also subjected to similar heat treatment, and the resistivity distribution within the wafer plane and the FET threshold voltage distribution were determined. FIG. 4 shows the resistivity distribution, and FIG. 6 shows the threshold voltage distribution.

図示するように、本実施例では、従来方法に比較してウ
ェハの電気特性の均一性が大幅に同上していることがわ
かる。本実施例では、しきい値電圧のバラツキは10m
V以下に抑えることができた。
As shown in the figure, it can be seen that in this example, the uniformity of the electrical characteristics of the wafer is significantly higher than in the conventional method. In this example, the variation in threshold voltage is 10 m.
We were able to keep it below V.

次に、本発明の池の実施例を第9図の結晶引上装置によ
り説明する。この実施例では、単結晶2の直径を検出す
る手段としてX線を用いていることを特徴としており、
その他の点は上記実施例と同様である。即ち、この実施
例では、高圧容器7の外側に、るつぼ1を挟むようにX
線発生装置19とX線受像装置20とを対問させて設け
ている。
Next, an embodiment of the pond of the present invention will be explained using a crystal pulling apparatus shown in FIG. This embodiment is characterized in that X-rays are used as a means to detect the diameter of the single crystal 2.
Other points are the same as in the above embodiment. That is, in this embodiment, an X
A ray generating device 19 and an X-ray image receiving device 20 are provided in opposition.

そして、X線発生装置19で発生したX線を単結晶2及
びその周辺に照射し、透過してきたX線をX線受像装置
20で受け、得られた単結晶2外形の像の電気信号を結
晶直径検出回路15に入力する構成となっている。
Then, X-rays generated by the X-ray generator 19 are irradiated onto the single crystal 2 and its surroundings, and the transmitted X-rays are received by the X-ray receiver 20, and an electrical signal of the obtained external image of the single crystal 2 is generated. The configuration is such that the data is input to a crystal diameter detection circuit 15.

この装置を用いて結晶の界面制御をしながら直径2イン
チのGaAs単結晶の作製をしたところ、前述の実施例
と同様に均一性の優れた単結晶が得られた。
When a GaAs single crystal with a diameter of 2 inches was produced using this apparatus while controlling the crystal interface, a single crystal with excellent uniformity was obtained as in the previous example.

[発明の効果] 本発明によれば次の効果がある。[Effect of the invention] According to the present invention, there are the following effects.

(り単結晶の実際の測定重量と直径より演算される演算
重量との差である単結晶の固液界面部分の浮力から、固
液界面形状を判定するようにしているため、結晶成長中
にリアルタイムで固液界面形状を検知でき、これを結晶
成長条件にフィードバックすることにより、従来は不可
能であった結晶成長中の固液界面形状制御が可能となっ
た。このため、特性の均一な優れた半導体単結晶を再現
性よく製造することができる。また、結晶成長状態を妨
げる外乱に対しても有効に対応することができる。
(The shape of the solid-liquid interface is determined from the buoyancy of the solid-liquid interface of the single crystal, which is the difference between the actual measured weight of the single crystal and the calculated weight calculated from the diameter.) By being able to detect the shape of the solid-liquid interface in real time and feeding it back to the crystal growth conditions, it has become possible to control the shape of the solid-liquid interface during crystal growth, which was previously impossible. Excellent semiconductor single crystals can be manufactured with good reproducibility. Furthermore, it is possible to effectively cope with disturbances that disturb the crystal growth state.

(2)従来は最適な結晶成長条件を捜すために、何本も
結晶を作製し、その結晶を切断して評価しなければなら
なかったが、本発明では、このような結晶成長条件の条
件出しを行う必要がなくなり、開発時間及び開発費を大
幅に削減することができる。
(2) In the past, in order to find the optimal crystal growth conditions, it was necessary to prepare a number of crystals and cut the crystals for evaluation, but in the present invention, such crystal growth conditions This eliminates the need for development time and development costs.

(3)固液界面形状をほぼ平坦に保つことができるので
、固液界面形状が凸になりすぎて、結晶が成長中にるつ
ぼ底と接触してしまうという事態を回避する方法として
も有効である。
(3) Since the shape of the solid-liquid interface can be kept almost flat, it is also an effective way to avoid situations where the solid-liquid interface shape becomes too convex and the crystal comes into contact with the bottom of the crucible during growth. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる結晶引上装置を示す
構成図、第2図は同装置のるつぼ内の単結晶成長状況を
拡大して示す縦断面図、第3図は従来法で作製した結晶
のウェハの市内における比抵抗分布図、第4図は本発明
により作製した結晶のウェハの面内における比抵抗分布
図、第5図は従来法で作製した結晶のウェハを用いて作
ったFETのしきい値電圧分布図、第6図は本発明で作
製した結晶のウェハを用いて作ったFETのしきい値電
圧分布図、第7図、第8図は結晶成長条件に応じた固液
界面形状をそれぞれ示す縦断面図、第9図は本発明の他
の実施例に用いる結晶引上装置の構成図である。 1はるつぼ、2は単結晶、3はB、03.4は結晶原料
融液、5は種結晶、6はヒータ、7は高圧容器、8は上
軸、9は下軸、10は石英ロッド、11は重量センサ、
12はカメラ、13は下軸駆動機構、14は浮力補正回
路、15は結晶直径検出回路、16はヒータ電源制御回
路、17は下軸制御回路、18は演算回路、19はX線
発生装置、20はX線受像装置である。 第2図 結晶引上装置の構成 第1図 第3図 第4図 従来のFETのしきい値電圧分布 第5図 本実施例のPETのしきい値電圧分布 第6図 第7図 第8図 結晶引上装置の構成 第9図
Fig. 1 is a configuration diagram showing a crystal pulling device used in an embodiment of the present invention, Fig. 2 is an enlarged vertical cross-sectional view showing the single crystal growth situation in the crucible of the same device, and Fig. 3 is a conventional method. Figure 4 is a diagram of the in-plane resistivity distribution of a crystal wafer produced by the present invention, and Figure 5 is a diagram of the resistivity distribution in the plane of a crystal wafer produced by the conventional method. Figure 6 is a threshold voltage distribution diagram of an FET manufactured using a crystal wafer manufactured according to the present invention, and Figures 7 and 8 are diagrams of threshold voltage distribution diagrams of an FET manufactured using a crystal wafer manufactured according to the present invention. FIG. 9 is a longitudinal cross-sectional view showing the corresponding solid-liquid interface shape, and FIG. 9 is a configuration diagram of a crystal pulling apparatus used in another embodiment of the present invention. 1 is a crucible, 2 is a single crystal, 3 is B, 03.4 is a crystal raw material melt, 5 is a seed crystal, 6 is a heater, 7 is a high pressure container, 8 is an upper shaft, 9 is a lower shaft, 10 is a quartz rod , 11 is a weight sensor,
12 is a camera, 13 is a lower shaft drive mechanism, 14 is a buoyancy correction circuit, 15 is a crystal diameter detection circuit, 16 is a heater power supply control circuit, 17 is a lower shaft control circuit, 18 is a calculation circuit, 19 is an X-ray generator, 20 is an X-ray image receiving device. Fig. 2 Structure of crystal pulling device Fig. 1 Fig. 3 Fig. 4 Threshold voltage distribution of conventional FET Fig. 5 Threshold voltage distribution of PET of this embodiment Fig. 6 Fig. 7 Fig. 8 Figure 9: Structure of crystal pulling device

Claims (1)

【特許請求の範囲】  るつぼ中の結晶原料融液に種結晶を接触させて引き上
げることにより単結晶を成長させる半導体単結晶の製造
方法において、 引き上げられる成長中の単結晶の重量を重量測定手段に
より測定すると共に、単結晶の直径を直径測定手段によ
り測定し、 重量測定手段により測定された単結晶の測定重量と直径
測定手段により測定された直径に基づき演算される単結
晶の演算重量との差を求めて、この差から単結晶と結晶
原料融液との固液界面の形状を判定し、 この判定結果に基づき固液界面形状が最適形状となるよ
うに単結晶の結晶成長条件を制御することを特徴とする
半導体単結晶の製造方法。
[Claims] In a method for producing a semiconductor single crystal in which a single crystal is grown by bringing a seed crystal into contact with a crystal raw material melt in a crucible and pulling it, the weight of the growing single crystal to be pulled is measured by a weight measuring means. At the same time, the diameter of the single crystal is measured by a diameter measuring means, and the difference between the measured weight of the single crystal measured by the weight measuring means and the calculated weight of the single crystal calculated based on the diameter measured by the diameter measuring means. The shape of the solid-liquid interface between the single crystal and the crystal raw material melt is determined from this difference, and the crystal growth conditions of the single crystal are controlled based on this determination result so that the solid-liquid interface shape is optimal. A method for manufacturing a semiconductor single crystal, characterized in that:
JP27254389A 1989-10-19 1989-10-19 Production of semiconductor single crystal Pending JPH03137091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27254389A JPH03137091A (en) 1989-10-19 1989-10-19 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27254389A JPH03137091A (en) 1989-10-19 1989-10-19 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH03137091A true JPH03137091A (en) 1991-06-11

Family

ID=17515366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27254389A Pending JPH03137091A (en) 1989-10-19 1989-10-19 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH03137091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124578A (en) * 2009-12-09 2011-06-23 Siltronic Ag Method of producing semiconductor wafer
US8357548B2 (en) 2007-10-04 2013-01-22 Metryx Limited Semiconductor wafer metrology apparatus and method
JP2014509584A (en) * 2011-03-28 2014-04-21 エルジー シルトロン インコーポレイテッド Method for producing single crystal ingot and single crystal ingot and wafer produced thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617577A (en) * 1984-06-20 1986-01-14 Hitachi Ltd Positive electrode structure of battery
JPS6144789A (en) * 1984-08-06 1986-03-04 Hitachi Cable Ltd Detection of outer diameter of crystal produced by liquid-encapsulated pulling up method, by x-ray
JPS6165397A (en) * 1984-09-05 1986-04-03 三菱電機株式会社 Invasion monitor
JPS63195190A (en) * 1987-02-05 1988-08-12 Sumitomo Electric Ind Ltd Growth of single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617577A (en) * 1984-06-20 1986-01-14 Hitachi Ltd Positive electrode structure of battery
JPS6144789A (en) * 1984-08-06 1986-03-04 Hitachi Cable Ltd Detection of outer diameter of crystal produced by liquid-encapsulated pulling up method, by x-ray
JPS6165397A (en) * 1984-09-05 1986-04-03 三菱電機株式会社 Invasion monitor
JPS63195190A (en) * 1987-02-05 1988-08-12 Sumitomo Electric Ind Ltd Growth of single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357548B2 (en) 2007-10-04 2013-01-22 Metryx Limited Semiconductor wafer metrology apparatus and method
JP2011124578A (en) * 2009-12-09 2011-06-23 Siltronic Ag Method of producing semiconductor wafer
JP2014509584A (en) * 2011-03-28 2014-04-21 エルジー シルトロン インコーポレイテッド Method for producing single crystal ingot and single crystal ingot and wafer produced thereby

Similar Documents

Publication Publication Date Title
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
US8221545B2 (en) Procedure for in-situ determination of thermal gradients at the crystal growth front
KR101483435B1 (en) Single crystal diameter detecting method and single crystal pull―up apparatus
US5961716A (en) Diameter and melt measurement method used in automatically controlled crystal growth
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JPH03137091A (en) Production of semiconductor single crystal
JP2015519285A (en) Single crystal silicon ingot and wafer, ingot growth apparatus and method thereof
JP2003176199A (en) Apparatus and method for pulling single crystal
US20090293801A1 (en) Production method of silicon single crystal
KR101781463B1 (en) Apparatus and method for growing silicon single crystal ingot
JPH01212291A (en) Method and apparatus for growing crystal
JPS6054994A (en) Production of compound semiconductor crystal
KR101379798B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JPH0639355B2 (en) Method for producing compound semiconductor single crystal
WO1989000211A1 (en) Growth of semiconductor single crystals
JP3134415B2 (en) Single crystal growth method
KR101366154B1 (en) High quality silicon monocrystalline ingot and wafer for semiconductor
WO2022185789A1 (en) Method for detecting state of surface of raw material melt, method for producing monocrystal, and cz monocrystal production device
CN112080791B (en) Method for preparing silicon wafer
KR102147462B1 (en) Apparatus for growing monocrystalline ingot
JPS63195190A (en) Growth of single crystal
KR101379799B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP3569954B2 (en) Semiconductor crystal growth method
JP2985360B2 (en) Single crystal manufacturing equipment