JPH03137084A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH03137084A
JPH03137084A JP27351289A JP27351289A JPH03137084A JP H03137084 A JPH03137084 A JP H03137084A JP 27351289 A JP27351289 A JP 27351289A JP 27351289 A JP27351289 A JP 27351289A JP H03137084 A JPH03137084 A JP H03137084A
Authority
JP
Japan
Prior art keywords
boat
heat
single crystal
solid
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27351289A
Other languages
Japanese (ja)
Inventor
Hideki Sakai
英樹 堺
Akio Takagi
章雄 高木
Nobutoshi Maruyama
信俊 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27351289A priority Critical patent/JPH03137084A/en
Publication of JPH03137084A publication Critical patent/JPH03137084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To solidify the solid-liq. interface in a shape protruding to the melt side and to prevent polycrystallization and dislocation at the time of growing a compd. semiconductor single crystal by the horizontal boat method by placing a heat reflecting plate formed to radiate only the radiant heat at the center of a boat on the boat in its longitudinal direction. CONSTITUTION:The horizontal boat 2 contg. the raw material is placed in a reaction tube 5 and arranged in a furnace core tube 1. The boat is heated by a heater arranged outside the furnace core tube 1 to form a temp. distribution in the longitudinal direction of the boat 2 to transiently melt the raw material in the boat 2, the heater and boat 2 are relatively moved to gradually move the solid-liq. interface of the raw material in the boat 2 from one end to the other end, and a compd. semiconductor single crystal is grown. In this case, the heat reflecting plate 9 formed to radiate only the radiant heat at the center of the boat 2 is placed on the boat 2 in its longitudinal direction. Consequently, since more heat is radiated at the center of the boat 2 than at its periphery, the solid-liq. interface is solidified in the shape protruding to the melt side.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は単結晶製造技術さらには横型ボート法による結
晶成長技術に関し、例えばCdTeのように熱伝導率の
低い化合物半導体単結晶の成長に利用して効果的な技術
に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to single crystal manufacturing technology and crystal growth technology using a horizontal boat method, and is used for growing compound semiconductor single crystals with low thermal conductivity such as CdTe, for example. Regarding effective techniques.

[従来の技術] 従来、横型ボートを用いた単結晶製造方法として、水平
ブリッジマン法(HB法)や水平温度勾配法(HGF法
)が知られている。いずれの方法においても、単結晶化
率の向上や単結晶の高品質化を図るには、単結晶の成長
が融液の融液自由表面の中心部からボート壁面や底部に
向かうように、すなわち第4図(A)に示すごとく固液
界面が融液側に凸形をなすように進行するのが望ましい
[Prior Art] Conventionally, the horizontal Bridgman method (HB method) and the horizontal temperature gradient method (HGF method) are known as single crystal manufacturing methods using a horizontal boat. In either method, in order to improve the single crystallization rate and the quality of the single crystal, it is necessary to direct the growth of the single crystal from the center of the free surface of the melt toward the wall and bottom of the boat. It is desirable that the solid-liquid interface progresses in a convex shape toward the melt as shown in FIG. 4(A).

[発明が解決しようとする課題] ところで、上記のような横型ボート法による結晶成長装
置において、例えばCdTeのような■−■族化合物半
導体単結晶を製造する場合、CdTeは一般的なボート
材質であるグラファイトやpBNに比べて熱伝導率が1
桁以上小さい。
[Problems to be Solved by the Invention] By the way, when manufacturing a ■-■ group compound semiconductor single crystal such as CdTe in a crystal growth apparatus using the horizontal boat method as described above, CdTe is a common boat material. Thermal conductivity is 1 compared to certain graphite and pBN.
More than an order of magnitude smaller.

このように特に熱伝導率の小さい化合物半導体単結晶を
ボート内で成長させる場合、凝固潜熱が結晶内を伝わっ
て逃げにくくなるために、ボートを伝わって逃げる熱の
割合が多くなってしまう。
In this way, when a compound semiconductor single crystal with particularly low thermal conductivity is grown in a boat, it becomes difficult for the latent heat of solidification to travel through the crystal and escape, resulting in a large proportion of the heat escaping through the boat.

その結果、固液界面形状が第4図(B)に示すごとく融
液側に凹形となるため、ボートに接した部分に核ができ
て、多結晶化したり、リニエージやセル構造等の転位の
発生を助長するという欠点があった。
As a result, the solid-liquid interface shape becomes concave toward the melt side, as shown in Figure 4 (B), so that nuclei are formed in the area in contact with the boat, resulting in polycrystalization and dislocations such as lineage and cell structures. The disadvantage was that it encouraged the occurrence of

そこで、第4図(A)のごとく融液側に凸形となるよう
な固液界面形状を得るための手段として、従来から下記
に示す方法が提案されている。第1は、特公昭59−4
1958号に示されている方法で、固液界面近傍のヒー
ターを上下左右4分割とし、径方向の温度分布の最適化
を図っている。
Therefore, as a means for obtaining a solid-liquid interface shape that is convex toward the melt side as shown in FIG. 4(A), the following method has been proposed. The first is the special public service in 1983-4.
In the method shown in No. 1958, the heater near the solid-liquid interface is divided into four parts: top, bottom, left and right, and the temperature distribution in the radial direction is optimized.

第2は炉体上部に設けた放熱孔を利用する方法で、放熱
孔が可変であり、成長に併せて固液界面をともに移動さ
せるもの(特開昭62−270486号)、複数に分割
させた放熱孔を設けたもの(特開昭61−227984
号)、放熱孔を左右に移動させ左右方向の放熱量を制御
するもの(特開昭63−45196号)がある。第3に
炉体上部に放熱孔の代わりに冷却ガス供給装置を設ける
方法(特開昭64−33090号)や、冷却ガス供給管
を融液表面直上に設ける方法(特開昭64−72983
)もある。しかしながら以上の方法はいずれも炉体の構
造が複雑化し、設備費の高騰を招くという欠点があった
The second method is to use heat radiation holes provided in the upper part of the furnace body.The heat radiation holes are variable and the solid-liquid interface moves together with the growth (Japanese Patent Application Laid-open No. 62-270486). (Japanese Patent Application Laid-Open No. 61-227984)
No. 1), and one in which the amount of heat radiation in the left and right directions is controlled by moving the heat radiation holes left and right (Japanese Patent Laid-Open No. 63-45196). Thirdly, there is a method in which a cooling gas supply device is provided in place of the heat radiation hole in the upper part of the furnace body (Japanese Patent Application Laid-Open No. 64-33090), and a method in which a cooling gas supply pipe is provided directly above the melt surface (Japanese Patent Application Laid-Open No. 64-72983).
) is also available. However, all of the above methods have the drawback of complicating the structure of the furnace body and causing a rise in equipment costs.

本発明は、上記のような問題点に着目してなされたもの
で、その目的とするところは、横型ボート法によりCd
Teのような熱伝導率の低い化合物半導体単結晶を育成
する場合に、構造簡単かつ安価な設備により単結晶化率
を向上させ、かつ転位の発生を低減させることにある。
The present invention was made in view of the above-mentioned problems, and its purpose is to reduce Cd by the horizontal boat method.
When growing a compound semiconductor single crystal with low thermal conductivity such as Te, the purpose is to improve the single crystallization rate and reduce the occurrence of dislocations using simple and inexpensive equipment.

[課題を解決するための手段] 上記目的を達成するためこの発明は、炉芯管内に原料の
入った横型ボートを収容した反応管を設置し、かつ炉芯
管の外側にはヒータを配置して、ボートの長手方向に沿
って所望の温度分布を形成し、上記ボート内の原料を一
旦溶融させてからヒータとボートを相対移動させ、ボー
ト内の原料の固液界面を一端から他端へ向かって徐々に
移動させて化合物半導体単結晶を育成するにあたり、上
記ボートの上にその長手方向に沿ってボート中心部の輻
射熱のみ放出可能に形成された熱反射板を載置するよう
にした。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a reaction tube that houses a horizontal boat containing raw materials in a furnace core tube, and a heater arranged outside the furnace core tube. to form a desired temperature distribution along the length of the boat, melt the raw material in the boat, and then move the heater and boat relative to each other to move the solid-liquid interface of the raw material in the boat from one end to the other. In growing a compound semiconductor single crystal by gradually moving the boat toward the boat, a heat reflecting plate was placed on top of the boat along its longitudinal direction so that only the radiant heat from the center of the boat could be emitted.

[作用] 上記手段によればボートの壁面に近い融液からの輻射に
よる熱放出が抑えられ、ボート中心部の方が周辺部に比
べて相対的に放熱量が多くなり。
[Function] According to the above means, heat radiation due to radiation from the melt near the wall of the boat is suppressed, and the amount of heat radiation is relatively larger in the center of the boat than in the periphery.

固液界面が融液側に凸形となって固化が進行するため、
多結晶化を抑制し、転位の発生を低減させることができ
る。
As the solid-liquid interface becomes convex toward the melt side and solidification progresses,
It is possible to suppress polycrystalization and reduce the occurrence of dislocations.

[実施例] 第1図〜第3図には、本発明を横型ボート法の一つであ
る二温度帯水平ブリッジマン法を実施する結晶成長装置
に適用した場合の装置の概略構成を示す。
[Example] FIGS. 1 to 3 schematically show the structure of a crystal growth apparatus in which the present invention is applied to a two-temperature horizontal Bridgman method, which is one of the horizontal boat methods.

この実施例では、炉芯管1内には原料を充填したボート
2と蒸気圧制御用の元素3および対流防止板4が真空封
入された石英反応管5が挿入され、炉芯管1の外側には
分割ヒータ6が配置され、このヒータ6によって炉芯管
1内に軸方向に沿って2つの均熱帯T、、T、が形成さ
れるように構成されている。石英反応管5は当初原料を
装填したボート2が高温度均熱帯T8に位置し、蒸気圧
制御用の元素3が低温度均熱帯T、に位置するように配
置される。上記高温度均熱帯T1は、ボート2内の原料
の融点よりも少し高い温度に、また低温度均熱帯T、は
反応管5内が元素3の蒸気圧によって所望の圧力となる
ように温度が制御される。
In this embodiment, a boat 2 filled with raw materials, a quartz reaction tube 5 in which a vapor pressure control element 3 and a convection prevention plate 4 are vacuum-sealed are inserted into the furnace core tube 1, and the outside of the furnace core tube 1 is A divided heater 6 is disposed at , and the heater 6 is configured to form two soaking zones T, , T, along the axial direction within the furnace core tube 1 . The quartz reaction tube 5 is initially arranged so that the boat 2 loaded with raw materials is located in the high-temperature soaking zone T8, and the element 3 for vapor pressure control is located in the low-temperature soaking zone T. The high-temperature soaking zone T1 has a temperature slightly higher than the melting point of the raw materials in the boat 2, and the low-temperature soaking zone T has a temperature so that the inside of the reaction tube 5 has a desired pressure due to the vapor pressure of the element 3. controlled.

そして、この実施例の単結晶成長装置では、ボート2の
上に中央部のみ輻射熱放出可能に形成された熱反射板9
が載置されている。これとともに、特に限定されるもの
ではないが石英反応管5が敷板8およびボート2の底面
を覆うように被覆された断熱材7を介して炉芯管1内に
設置されている。
In the single crystal growth apparatus of this embodiment, a heat reflecting plate 9 is formed on the boat 2 so that only the central part can emit radiant heat.
is placed. Along with this, although not particularly limited, a quartz reaction tube 5 is installed in the furnace core tube 1 via a heat insulating material 7 covering the bottom plate 8 and the bottom surface of the boat 2.

第5図(A)に上記熱反射板9の一構成例を示す。この
熱反射板9は、石英製で全体が横長のコの字状に形成さ
れ、表面をサンドブラスト処理することにより、放射光
を散乱させボート壁近傍のメルト表面からの輻射放熱を
防ぎ、中央に形成されたスリット9aのみ輻射放熱でき
る。こ分サンドブラスト処理された熱反射板9を、第1
図の装置のカーボンコートした石英ボート2の上に第5
図(B)のようにのせ、CdTe結晶の成長を水平ブリ
ッジマン法を用いて行なった。その結果第4図(A)に
示したような融液側に凸形をなす固液界面が得られ、セ
ル構造やりニエージはなくなり、EPDも低く (〜1
0’cm−’)なった。また、ボート壁面から発生して
いた粒界や双晶も減り、単結晶化率が向上した。固液界
面の形状は直接観察できないので、Znを3at%程ド
ーピングし、結晶内での偏析の分布を調べることにより
、固液界面形状を確認した。
FIG. 5(A) shows an example of the structure of the heat reflecting plate 9. The heat reflecting plate 9 is made of quartz and has a horizontally long U-shape, and its surface is sandblasted to scatter the radiant light and prevent radiant heat radiation from the melt surface near the boat wall. Only the formed slit 9a can radiate heat. The heat reflecting plate 9 that has been sandblasted is placed in the first
No. 5 on top of the carbon-coated quartz boat 2 of the device shown in the figure.
A CdTe crystal was placed as shown in Figure (B) and grown using the horizontal Bridgman method. As a result, a solid-liquid interface with a convex shape on the melt side as shown in FIG.
0'cm-'). In addition, the number of grain boundaries and twins that were generated from the boat wall surface was reduced, and the single crystallization rate was improved. Since the shape of the solid-liquid interface cannot be directly observed, the shape of the solid-liquid interface was confirmed by doping Zn to about 3 at% and examining the segregation distribution within the crystal.

第6図に結晶内Zn等濃度曲線の分布を示す。FIG. 6 shows the distribution of intracrystalline Zn isoconcentration curves.

Zn濃度が等しいところは、同時期に固化した場所と考
えられるので、Zn等濃度曲線は、固液界面の形状を表
わしている。また、比較のため熱反射板をせずに第1図
の装置でCdTe結晶の育成も行なった。その結晶のZ
n等濃度曲線を第7図に示す。この場合は第5図のよう
に凹形の固液界面形状になっていた。
Places where the Zn concentration is equal are considered to be places where solidification occurred at the same time, so the Zn isoconcentration curve represents the shape of the solid-liquid interface. For comparison, a CdTe crystal was also grown using the apparatus shown in FIG. 1 without using a heat reflecting plate. That crystal Z
The n isoconcentration curve is shown in FIG. In this case, the solid-liquid interface had a concave shape as shown in FIG.

本実施例ではCdTeの成長を試みたが、本発明はCd
Teに限るものではなく、他の■−■族化合物半導体や
■−V族化合物半導体結晶の育成にも適用でき、同様の
効果を期待できる。また、結晶成長方法も水平ブリッジ
マン法に限らず、水平温度勾配法による結晶成長にも適
用できる。
In this example, growth of CdTe was attempted, but the present invention
The present invention is not limited to Te, and can be applied to the growth of other ■-■ group compound semiconductors and ■-V group compound semiconductor crystals, and similar effects can be expected. Furthermore, the crystal growth method is not limited to the horizontal Bridgman method, but can also be applied to crystal growth using the horizontal temperature gradient method.

なお、上記実施例では熱反射板として、全体がサンドブ
ラスト処理されたコの字状のものを使用したが、中央に
切欠き9aを形成する代わりに、第3図の切欠き部9a
に対応する部分のみ透明とされ、その周囲がサンドブラ
スト処理された矩形状の石英製熱反射板であってもよい
。また、熱反射板9の材質も石英製に限定されず、耐熱
性を有し、輻射熱を透過せずかつ高温でも不純物の発生
源とならないものであればいかなる材質のものであって
もよい。
In the above embodiment, a U-shaped heat reflecting plate whose entire surface was sandblasted was used, but instead of forming the notch 9a in the center, the notch 9a in Fig. 3 was used.
It may be a rectangular quartz heat reflecting plate in which only the portion corresponding to the area is transparent and the periphery thereof is sandblasted. Further, the material of the heat reflecting plate 9 is not limited to quartz, but may be made of any material as long as it has heat resistance, does not transmit radiant heat, and does not become a source of impurities even at high temperatures.

さらに、上記実施例では、ボート2と石英反応管5との
間に断熱材7を介在させているため、ボート底面からの
伝導による放熱も抑えることができ、融液底部よりも融
液表面中心部の方がより冷却を速くすることができるの
で好ましい。
Furthermore, in the above embodiment, since the heat insulating material 7 is interposed between the boat 2 and the quartz reaction tube 5, heat radiation due to conduction from the bottom of the boat can also be suppressed, and the center of the melt surface is lower than the bottom of the melt. is preferable because it allows faster cooling.

[発明の効果] 以上説明したようにこの発明は、炉芯管内に原料の入っ
た横型ボートを収容した反応管を設置し、かつ炉芯管の
外側にはヒータを配置して、ボートの長手方向に沿って
所望の温度分布を形成し、上記ボート内の原料を一旦溶
融させてからヒータとボートを相対移動させ、ボート内
の原料の固液界面を一端から他端へ向かって徐々に移動
させて化合物半導体単結晶を育成するにあたり、上記ボ
ートの上にその長手方向に沿ってボート中心部の輻射熱
のみ放出可能に形成された熱反射板を載置して結晶を成
長させるようにしたので、ボートの壁面に近い融液から
の輻射による熱放出が抑えられ、ボート中心部の方が周
辺部に比べて相対的に放熱量が多くなり、固液界面が融
液側に凸形となって固化が進行するため、多結晶化を抑
制し、転位の発生を低減させることができるという効果
が得られる。
[Effects of the Invention] As explained above, the present invention has a reaction tube that houses a horizontal boat containing raw materials in the furnace core tube, and a heater is arranged outside the furnace core tube, so that the longitudinal direction of the boat can be adjusted. After forming the desired temperature distribution along the direction and melting the raw material in the boat, the heater and the boat are moved relative to each other, and the solid-liquid interface of the raw material in the boat is gradually moved from one end to the other. When growing compound semiconductor single crystals, a heat reflecting plate was placed on top of the boat along its longitudinal direction so that only the radiant heat from the center of the boat could be emitted, and the crystal was grown. , heat release due to radiation from the melt close to the wall of the boat is suppressed, and the amount of heat dissipated in the center of the boat is relatively larger than in the periphery, and the solid-liquid interface becomes convex toward the melt. Since solidification progresses, polycrystallization can be suppressed and the occurrence of dislocations can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用する化合物半導体単結晶製造
装置の一実施例の要部を示す断面正面図、第2図は第1
図の装置の断面側面図、 第3図は横型ボート法による結晶成長装置の全体を示す
断面正面図、 第4図(A)、(B)は結晶育成中の固液界面の望まし
い形状と望ましくない形状を示す平面説明図、 第5図(A)、(B)は熱反射板の一例とその使用状態
を示す平面図、 第6図(A)、(B)は本発明方法により得られたCd
Te結晶のZn等濃度曲線を示す平面説明図およびと正
面説明図、 第7図(A)、(B)は従来法により育成されたCdT
e結晶のZn等濃度曲線を示す平面説明図および正面説
明図である。 l・・・・炉芯管、2・・・・ボート、5・・・・反応
管、6・・・・ヒニタ、7・・・・断熱材、9・・・・
熱反射板。 第 1 図 第 図 第 図 (A) (B) 第5図 (A) (8)
FIG. 1 is a cross-sectional front view showing the main parts of an embodiment of a compound semiconductor single crystal manufacturing apparatus to which the method of the present invention is applied, and FIG.
Figure 3 is a cross-sectional front view showing the entire crystal growth apparatus using the horizontal boat method; Figures 4 (A) and (B) show the desirable shape of the solid-liquid interface during crystal growth. FIGS. 5(A) and 5(B) are plan views showing an example of a heat reflecting plate and its usage state. FIGS. 6(A) and (B) are plan views showing an example of a heat reflecting plate obtained by the method of the present invention. Cd
A plan view and a front view showing Zn isoconcentration curves of Te crystals.
FIG. 2 is an explanatory plan view and an explanatory front view showing a Zn isoconcentration curve of an e-crystal. l...Furnace tube, 2...Boat, 5...Reaction tube, 6...Hinita, 7...Insulation material, 9...
heat reflector. Figure 1 (A) (B) Figure 5 (A) (8)

Claims (1)

【特許請求の範囲】[Claims] (1)炉芯管内に原料の入った横型ボートを収容した反
応管を設置し、かつ炉芯管の外側にはヒータを配置して
、ボートの長手方向に沿って所望の温度分布を形成し、
上記ボート内の原料を一旦溶融させてからヒータとボー
トを相対移動させ、ボート内の原料の固液界面を一端か
ら他端へ向かって徐々に移動させて化合物半導体単結晶
を育成するにあたり、上記ボートの上にその長手方向に
沿ってボート中心部の輻射熱のみ放出可能に形成された
熱反射板を載置したことを特徴とする化合物半導体単結
晶の製造方法。
(1) A reaction tube containing a horizontal boat containing raw materials is installed inside the furnace core tube, and a heater is placed outside the furnace core tube to form the desired temperature distribution along the longitudinal direction of the boat. ,
In growing the compound semiconductor single crystal by once melting the raw material in the boat and moving the heater and the boat relative to each other, the solid-liquid interface of the raw material in the boat is gradually moved from one end to the other. 1. A method for manufacturing a compound semiconductor single crystal, comprising placing a heat reflecting plate formed so as to radiate only radiant heat from the center of the boat along its longitudinal direction on top of the boat.
JP27351289A 1989-10-20 1989-10-20 Production of compound semiconductor single crystal Pending JPH03137084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27351289A JPH03137084A (en) 1989-10-20 1989-10-20 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27351289A JPH03137084A (en) 1989-10-20 1989-10-20 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH03137084A true JPH03137084A (en) 1991-06-11

Family

ID=17528904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27351289A Pending JPH03137084A (en) 1989-10-20 1989-10-20 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH03137084A (en)

Similar Documents

Publication Publication Date Title
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
US3796548A (en) Boat structure in an apparatus for making semiconductor compound single crystals
JPS58140392A (en) Method and device for pulling-up of single crystal of silicon
JP4265269B2 (en) SiC single crystal manufacturing furnace
JPH03137084A (en) Production of compound semiconductor single crystal
JPH03131589A (en) Production of compound semiconductor single crystal
JPH02145499A (en) Growing method for gallium arsenide single crystals
JPH054895A (en) Production of single crystal and apparatus therefor
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JPH0234592A (en) Growing method for compound semiconductor single crystal
JPH04198084A (en) Jig for preventing bottom adhesion in pull-up of semiconductor single crystal
JPH0365585A (en) Production of compound semiconductor single crystal
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
KR101303130B1 (en) Apparatus of manufacturing GaAs ingot
JP2697327B2 (en) Compound semiconductor single crystal manufacturing equipment
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JPS62187193A (en) Method and device for growing single crystal
JPS62265193A (en) Production of single crystal for compound semiconductor and its device
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
CN116163021A (en) Growth device and growth method of tellurium-zinc-cadmium crystal
JPH0782084A (en) Single crystal growing method and single crystal growing apparatus
JPH05319973A (en) Single crystal production unit
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment