JPH03135752A - Method and apparatus for emission spectrochemical analysis of sulfur in steel - Google Patents

Method and apparatus for emission spectrochemical analysis of sulfur in steel

Info

Publication number
JPH03135752A
JPH03135752A JP27456589A JP27456589A JPH03135752A JP H03135752 A JPH03135752 A JP H03135752A JP 27456589 A JP27456589 A JP 27456589A JP 27456589 A JP27456589 A JP 27456589A JP H03135752 A JPH03135752 A JP H03135752A
Authority
JP
Japan
Prior art keywords
sulfur
intensity
emission
steel
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27456589A
Other languages
Japanese (ja)
Inventor
Kazumasa Sugimoto
杉本 和巨
Takanori Akiyoshi
孝則 秋吉
Koji Tsukada
塚田 鋼二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27456589A priority Critical patent/JPH03135752A/en
Publication of JPH03135752A publication Critical patent/JPH03135752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make simultaneous analysis with good accuracy even if steel kinds vary by determining the min. value of the quadratic curve obtd, by subjecting the relation between the emission intensity and emission time of sulfur to secondary regression by a method of least squares as a sulfur intensity characteristic value. CONSTITUTION:The secondary regression is executed by regarding the attenuation curve as a quadratic curve when the emission intensity of the sulfur is designated as IS and the discharge time as T at the time of subjecting an element in steel to stimulated light emission and analyzing the intrinsic spectra. The min. value of the intensity IS of the resulted regression curve coincides with the stable emission intensity existing on the extension of the attenuation curve and exhibits a high correlation with the content of the sulfur in the steel. The emission intensity is merely necessitated to be measured for about ten to some tens seconds after the preliminary discharge for several seconds in the initial period of discharge by dealing with the contamination on the surface of a sample in this case. The relation with the discharge is the same even if the ratio (IS/IFe) between the intensity IS and the emission intensity IFe of the iron as an internal standard is used. The factors acting simultaneously on the iron and sulfur such as the fluctuation in the discharge conditions and a temp. change of the sample or the fluctuation of a measuring system, are eventually corrected in this case and the accuracy of the measurement is additionally improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 鋼中成分の多元素同時迅速分析において、特に分析値が
試料中に共存する元素や試料の熱履歴等の影響を受は易
い成分の一つである硫黄の分析精度及び正確さの向上に
関する。
[Detailed Description of the Invention] [Industrial Application Field] In the simultaneous and rapid analysis of multiple elements in steel, one of the components whose analytical values are particularly susceptible to the effects of the elements coexisting in the sample, the thermal history of the sample, etc. This invention relates to improving the precision and accuracy of sulfur analysis.

[従来の技術] 製鉄所では、製鋼過程で鋼成分を高度にコントロールす
るため数秒を争う迅速分析によって分析値がフィードバ
ックされている。この迅速分析法の一つに発光分光分析
法があり、この方法では、鋼の個体試料に放電などによ
ってエネルギーを投入して鋼中の元素を励起し発光させ
、その固有スペクトルを解析することによって成分分析
を行う、しかも、この分析法では鋼中の数十の元素を同
時に分析することが出来る。しかしながら、硫黄につい
ては、鋼中の共存元素や熱履歴が発光値に影響を与え、
含有率との相関が十分ではない。
[Conventional technology] At steelworks, analysis values are fed back through rapid analysis that takes just a few seconds in order to highly control steel components during the steelmaking process. One of these rapid analysis methods is optical emission spectroscopy, in which energy is applied to a solid sample of steel by means of an electrical discharge to excite the elements in the steel, causing them to emit light, and the unique spectra are analyzed. Component analysis is performed, and this analysis method can simultaneously analyze dozens of elements in steel. However, regarding sulfur, coexisting elements in steel and thermal history affect the luminescence value,
The correlation with the content rate is not sufficient.

このため、上記の発光分光分析法だけでは十分に信頼性
のある分析値は得られず、組織や履歴の影響を受けない
燃焼法によるチエツクを必要とする等地の方法との併用
が避けられなかった。燃焼法では発光分光分析法に比し
分析所要時間が数倍となること、及び多元素同時分析が
不可能でそれだけ工数を要することが欠点で、発光分光
分析法において組織や熱履歴の影響を除いた正確な分析
値を求めることが嘱望されていた。
For this reason, it is not possible to obtain sufficiently reliable analytical values using the above-mentioned emission spectroscopy alone, and it is necessary to avoid using it in combination with other methods that require a check using the combustion method, which is not affected by tissue or history. There wasn't. The disadvantages of the combustion method are that the time required for analysis is several times longer than that of emission spectroscopy, and that simultaneous analysis of multiple elements is impossible and requires a corresponding amount of man-hours. It was hoped to obtain accurate analytical values excluding the

一般に、発光分光分析では繰り返し放電を行い、次々に
得られる発光強度から分析値を求めるが、放電の初期に
得られる発光強度がその後の発光強度と異なることが多
い、これは、硫黄の発光に限らず他の元素の発光にも見
られる傾向であるが、この異なり方が一定の元素もあれ
ば、定まらぬ元素もあり、硫黄は後者の最たるものであ
る。
Generally, in emission spectrometry, repeated discharges are performed and analytical values are determined from the luminescence intensities obtained one after another. However, the luminescence intensity obtained at the beginning of the discharge often differs from the luminescence intensity after that. This is due to the luminescence of sulfur. This tendency is seen not only in the luminescence of other elements, but for some elements this difference is constant, while for others it is not, and sulfur is the most prominent example of the latter.

極く初期の発光強度には試料表層の汚れなどの影響もあ
り、これらを除いた発光強度を測定値とする方法が一般
に行われており、JISにおいても、測定前に2秒乃至
50秒の予備放電を行うことが規定されている。又、測
定についても分析精度を確保するため2秒乃至30秒間
の発光強度採取時間が規定されている(JIS−G−1
253[1983改正])。
The very initial luminescence intensity is affected by dirt on the surface of the sample, so it is common practice to use the luminescence intensity that excludes these as the measured value. JIS also requires that the luminescence intensity be measured for 2 to 50 seconds before measurement. It is stipulated that preliminary discharge be performed. In addition, in order to ensure analytical accuracy for measurement, the emission intensity collection time is specified from 2 seconds to 30 seconds (JIS-G-1
253 [revised 1983]).

従来、硫黄の発光分光分析についても、上記のJISに
基づき、他の多数元素と同時に分析され、5秒前後の予
備放電の後5秒間前後測定することが行われていた。そ
してこの場合、発光強度を測定時間分だけ積分し、或は
、鉄の発光強度を内標準として用い測定元素の発光強度
を鉄の発光強度で除した強度比を測定時間分だけ積分し
、これらを強度特性値とすること(以下、定時間積分法
と称す)が−最的であった。
Conventionally, sulfur has been analyzed simultaneously with many other elements based on the above-mentioned JIS, and the measurement has been carried out for about 5 seconds after a preliminary discharge of about 5 seconds. In this case, the luminescence intensity is integrated over the measurement time, or, using the luminescence intensity of iron as an internal standard, the intensity ratio obtained by dividing the luminescence intensity of the measured element by the luminescence intensity of iron is integrated over the measurement time. It was optimal to use the intensity characteristic value as the intensity characteristic value (hereinafter referred to as the constant time integration method).

これに対して、硫黄の場合、上記の予備放電による発光
を除くだけでは、不十分であり、更に長時間且つ高エネ
ルギーによる予備放電を必要とするとの研究がある。例
えば、分析化学v01゜33、No、10.p、515
〜519.では、高エイ・ルギ予備放電を30秒以上行
うことによって、共存元素や熱履歴により存在状態の異
なるMnS結晶が微細化しこれらの影響が除かれ、発光
強度は硫黄含有率のみに対応する一定値に近ずくことが
報告されている(以下、高エネルギー予備放電法と称す
)。
On the other hand, in the case of sulfur, there is research that it is insufficient to eliminate the light emission caused by the above-mentioned preliminary discharge, and that a longer and higher-energy preliminary discharge is required. For example, Analytical Chemistry v01゜33, No. 10. p.515
~519. In this case, by performing a high energy predischarge for 30 seconds or more, the MnS crystals, which have different states of existence depending on coexisting elements and thermal history, become finer, and these influences are removed, and the emission intensity becomes a constant value that corresponds only to the sulfur content. (hereinafter referred to as the high-energy pre-discharge method).

一方、積分値を発光強度の特性値とするのではなく、−
放電毎の発光強度を捉えて解析し分析精度を高めようと
する方法も紹介されている(例えば、ふんせき、198
5年、6号、p430〜434)。この方法によれば、
発光毎の強度値の度数分布を調べ、その中央値を発光強
度の特性値とすることによって分析精度が向上すること
が報告されている(り下、パルス分布測定法と称す)。
On the other hand, instead of using the integral value as the characteristic value of the emission intensity, −
A method of capturing and analyzing the luminescence intensity of each discharge to improve analysis accuracy has also been introduced (for example, Funseki, 198
5, No. 6, p430-434). According to this method,
It has been reported that analysis accuracy can be improved by examining the frequency distribution of intensity values for each emission and using the median value as the characteristic value of the emission intensity (Rishita, referred to as pulse distribution measurement method).

[発明が解決しようとする課頭] しかしながら、定時間積分法では鋼種が異なった場合な
ど発光強度特性値と硫黄含有率との相関が十分でなく、
分析精度に問題がある。
[Problem to be solved by the invention] However, with the constant time integration method, the correlation between the luminescence intensity characteristic value and the sulfur content is not sufficient when the steel types are different.
There is a problem with analysis accuracy.

高エネルギー予備放電法では、精度は改善されるが、こ
の方法では30秒以上の長時間予備放電を必要とする。
Although accuracy is improved with the high energy pre-discharge method, this method requires a long pre-discharge of 30 seconds or more.

この長時間の予備放電に伴って幾つかの問題が生ずる0
発光分光分析法の最大の特徴は多元素同時分析にあり、
しかも、一般の鋼中分析では他の30種前後の元素は予
備放電時間も含め10秒前後の掻く短い時間で測定出来
る点にある。長時間予備放電の問題の一つは、硫黄分析
のために長時間予備放電が他の多くの元素の分析時間も
長引かせることになり、工程管理分析としては短所とな
り、又、同時分析の利点を放棄して硫黄のみを分析する
ならば、前述した燃焼法と同じ役割に留まってしまう、
他には、長時間の高エネルギー放電により電極の消耗が
激しく、分析回数を増す毎の硫黄の発光強度変化が大き
いので、頻繁に装置校正を行わなければならないという
問題がある。
Several problems arise with this long pre-discharge.
The greatest feature of emission spectrometry is the simultaneous analysis of multiple elements.
Moreover, in general analysis of steel, about 30 other elements can be measured in a very short time of about 10 seconds, including the preliminary discharge time. One of the problems with long pre-discharge is that for sulfur analysis, long-time pre-discharge also prolongs the analysis time for many other elements, which is a disadvantage for process control analysis, and also has the advantage of simultaneous analysis. If we abandon the method and analyze only sulfur, it will remain in the same role as the combustion method mentioned above.
Another problem is that the electrodes are severely worn out due to long-term high-energy discharge, and the intensity of sulfur emission changes greatly each time the number of analyzes is increased, so the device must be calibrated frequently.

パルス分布測定法では、測定時間は特に長くなることは
なく雉時間での多元素同時分析が可能であるが、分析精
度の改善効果が少なく十分ではない。
In the pulse distribution measurement method, the measurement time is not particularly long and simultaneous analysis of multiple elements is possible within a short period of time, but the effect of improving analysis accuracy is small and is not sufficient.

このような問題を解決するためにこの発明はなされたも
ので、他の多数の元素と同じ短い時間で、鋼中硫黄の含
有率について、鋼種が異なる場合でも精度の良い同時分
析を行うことを目的とする。
This invention was made to solve such problems, and it is possible to simultaneously analyze the content of sulfur in steel with high precision even for different steel types in the same short time as that of many other elements. purpose.

[課題を解決するための手段及び作用]この目的を達成
するための手段は、鋼中元素を励起発光させ固有スペク
トルを解析する成分分析法において、硫黄の発光強度と
発光時間の関係を最小二乗法によって二次回帰して得ら
れた二次曲線の最小値を硫黄強度特性値として分析値の
基準とする鋼中硫黄の発光分光分析法であり、前記硫黄
の発光強度が硫黄の発光強度を鉄の発光強度によって除
した発光強度比である前記鋼中硫黄の発光分光分析法で
ある。そして、この発光分光分析法を実行するための分
析装置も目的を達成する段で、この装置は、鋼中元素を
励起発光させ固有スペクトルを解析する成分分析装置に
おいて、発光強度と発光時間の関係を最小二乗法によっ
て二次回帰し更に得られた回帰二次曲線における発光強
度の最小値を算出する回帰処理装置を有する鋼中硫黄の
発光分光分析装置である。
[Means and effects for solving the problem] The means to achieve this objective is to minimize the relationship between the emission intensity and emission time of sulfur in a component analysis method in which elements in steel are excited to emit light and their characteristic spectra are analyzed. This is an emission spectroscopic analysis method for sulfur in steel in which the minimum value of the quadratic curve obtained by quadratic regression using the multiplicative method is used as the sulfur intensity characteristic value and the standard for the analytical value. This is an emission spectroscopic analysis method of sulfur in steel, which is the emission intensity ratio divided by the emission intensity of iron. The analyzer used to carry out this emission spectrometry method also achieves its purpose. This device is a component analyzer that excites elements in steel to emit light and analyzes their characteristic spectra. This is an optical emission spectrometer for sulfur in steel, which has a regression processing device that performs quadratic regression using the least squares method and further calculates the minimum value of the luminescence intensity in the obtained regression quadratic curve.

鋼中の硫黄の分析では、硫黄の固有スペクトル180.
73が測定に利用されるが、この発光強度は放電を始め
た初期に大きく、放電を重ねるにしたがいより小さな値
に落ち着いていく、この放電回数は、一般には定周期放
電を行うので放電時間と対応するが、この放電回数或は
放電時間と発光強度の関係が、共存元素や熱履歴によっ
て少しずつ異なっている。これは、特に硫化物の形状や
大きさには共存するMn、Cの量が関係し、更に硫化物
結晶の大きさには冷却速度等が関係するためである。こ
の様子を、Mn及びCの含有量が大きく異なる鋼種A及
びBについて調べると第6図に示すようになる。図で、
縦軸は硫黄の発光強度、横軸は放電時間である。鋼種B
の硫黄の発光強度は放電開始初期では鋼種Aのそれより
大きいが、放電時間が10秒近く経過したところで、こ
の関係は逆転し、放電時間が30秒近くでは両鋼種とも
硫黄の発光強度は安定してきている。高エネルギー予備
放電法では、この安定した発光強度を測定対称とするも
のである。この安定してがらの発光強度は、確かに、組
織や熱履歴の影響を受けておらず、鋼中の硫黄の含有率
と非常に良い相関を示す、しかし、安定してからの発光
強度のみが硫黄含有率と高い相関関係にあるわけではな
く、安定する以前の高い発光強度から減衰しつつある発
光強度も硫黄含有率と密接に関連している。即ち、長時
間の予備放電を行わなくても前半の発光強度から後期の
安定発光強度を推定すればよい。推定の方法として一次
では精度が不十分であるが、回帰曲線を用いればよく二
次回帰曲線であれば十分な精度が得られること判った。
In the analysis of sulfur in steel, the characteristic spectrum of sulfur is 180.
73 is used for measurement, but this luminous intensity is high at the beginning of the discharge, and settles down to a smaller value as the discharge continues.The number of discharges is generally a constant periodic discharge, so However, the relationship between the number of discharges or the discharge time and the luminescence intensity differs slightly depending on the coexisting elements and thermal history. This is because, in particular, the shape and size of the sulfide are related to the amounts of coexisting Mn and C, and the size of the sulfide crystal is also related to the cooling rate, etc. This situation is investigated for steel types A and B, which have significantly different Mn and C contents, as shown in FIG. 6. In the figure,
The vertical axis is the emission intensity of sulfur, and the horizontal axis is the discharge time. Steel type B
The luminescence intensity of sulfur is higher than that of steel type A at the beginning of the discharge, but this relationship reverses when the discharge time is approximately 10 seconds, and the luminescence intensity of sulfur is stable for both steel types when the discharge time is approximately 30 seconds. I've been doing it. In the high-energy pre-discharge method, this stable emission intensity is the object of measurement. This stable luminescence intensity is certainly not affected by the structure or thermal history, and shows a very good correlation with the sulfur content in the steel, but only after stabilizing the luminescence intensity. does not have a high correlation with the sulfur content, and the luminescence intensity, which is decreasing from the high luminescence intensity before stabilizing, is also closely related to the sulfur content. That is, the stable luminescence intensity in the latter half can be estimated from the luminescence intensity in the first half without performing a long preliminary discharge. As a method of estimation, it has been found that the accuracy is insufficient when using a linear regression curve, but sufficient accuracy can be obtained using a quadratic regression curve.

硫黄の発光強度Is、放電時間をTとしたとき、この減
衰曲線を二次曲線とみなして二次回帰する。得られた回
帰曲線を ■5=αT2+βT+γ とすると、Isの最小値γ−β2/4αは減衰曲線の延
長上にある安定した発光強度に一致し、鋼中の硫黄の含
有率と非常に高い相関を示すにの場合、発光強度の測定
は30秒以上続ける必要はなく、一般の発光分光分析法
で行われているように、試料表面の汚れに対処して放電
初期数秒の予備放電の後、土砂乃至十数秒間の発光強度
を測定すればよい。
When the emission intensity Is of sulfur and the discharge time are T, this attenuation curve is regarded as a quadratic curve and quadratic regression is performed. Assuming that the obtained regression curve is 5=αT2+βT+γ, the minimum value of Is γ−β2/4α corresponds to the stable emission intensity on the extension of the attenuation curve, and has a very high correlation with the sulfur content in the steel. In the case of , it is not necessary to continue measuring the luminescence intensity for more than 30 seconds, and as is done in general emission spectrometry, after a few seconds of preliminary discharge in order to prevent contamination on the sample surface, It is sufficient to measure the emission intensity of dirt or sand for a period of about 10 seconds.

以上は硫黄の発光強度と放電時間との関係で述べたが、
上記の硫黄の発光強度Isに替えて、■、と内標準とし
ての鉄の発光強度I Pa  の比(Is/Ip−)を
用いても、放電時間との関係は同じである。即ち、回帰
曲線を Is/Ipe=αT2+βT+γ とすると、Is/Ipe  の最小値(γ−β2/4α
)は減衰曲線の延長上にある安定した発光強度に一致す
る。しかも発光強度比を用いることによって、放電条件
のバラツキや試料の温度変化或は測定系の変動など硫黄
と鉄に同時に作用する因子については補正されることに
なり、硫黄の発光強度のみを用いた場合よりも測定精度
は向上する。
The above was described in terms of the relationship between the emission intensity of sulfur and the discharge time, but
The relationship with the discharge time is the same even if the ratio (Is/Ip-) between the emission intensity Is of sulfur and iron as an internal standard (Is/Ip-) is used instead of the emission intensity Is of sulfur. That is, if the regression curve is Is/Ipe=αT2+βT+γ, then the minimum value of Is/Ipe (γ−β2/4α
) corresponds to a stable emission intensity on the extension of the decay curve. Moreover, by using the emission intensity ratio, factors that act simultaneously on sulfur and iron, such as variations in discharge conditions, changes in sample temperature, and fluctuations in the measurement system, can be corrected. The measurement accuracy will be better than in the case of

以上のように、回帰曲線から求められた硫黄発光強度或
は強度比の最小値を硫黄発光強度の特性値とし、この特
性値によって作成された検量線を用いて分析値を決定す
れば、試料の組織や熱履歴の影響を受けない精度の良い
分析値が得られる。
As described above, if the minimum value of the sulfur emission intensity or intensity ratio obtained from the regression curve is taken as the characteristic value of the sulfur emission intensity, and the analytical value is determined using the calibration curve created from this characteristic value, the sample Accurate analytical values can be obtained that are not affected by the structure or thermal history of the device.

鉄の発光強度との比を分析値の基準とする方法はよく行
われており、一般の発光分光分析装置ではこの演算回路
を有し演算は速やかに行われる。
A method in which the ratio to the emission intensity of iron is used as a standard for analysis values is often used, and general emission spectrometers have this calculation circuit and can quickly perform calculations.

しかし、回帰曲線の最小値を発光強度の特性値として分
析を行うには、硫黄の発光強度或は硫黄/鉄発光強度比
と放電時間との関係を二次回帰し且つ回帰曲線の発光強
度或は発光強度比の最小値を算出する回帰処理装置が必
要であり、又、この回帰処理装置を有する発光分光分析
装置によって前記分析を行うことが出来る。
However, in order to analyze the minimum value of the regression curve as a characteristic value of the luminescence intensity, the relationship between the luminescence intensity of sulfur or the sulfur/iron luminescence intensity ratio and the discharge time is quadraticly regressed, and the luminescence intensity or luminescence intensity of the regression curve is requires a regression processing device that calculates the minimum value of the emission intensity ratio, and the analysis can be performed by an emission spectrometer equipped with this regression processing device.

[実施例] (実施例1) 一般の発光分光分析装置に、発光強度と放電時間との関
係を二次回帰し回帰曲線の変曲点を求める回帰処理装置
を追加取り付け、硫黄分析を行った。装置の概要を第1
図に示す0図で、1は電源部、2は分光部、3は試料、
4は電極、5は回折格子、6は測光管、7は読出し装置
、8は中央処理装置、9は回帰処理装置、10は表示記
録装置である。電源部1によって400Hzの放電を試
料3と電極4との間に惹起し、発生するスペクトルを回
折格子5によって分光し、測光管6によって強度を測定
した。測定した硫黄及び鉄の発光強度を、読出し装置7
によって読み出し、中央処理装置8に記憶させ、放電回
数100回分を積算した発光強度について硫黄発光強度
と鉄発光強度との比を回帰処理装置9へ送った0回帰処
理装置9では、放電時間と強度比の関係を二次回帰して
回帰曲線を作成し、この回帰曲線について発光強度比の
最小値を求め、これを中央処理装置8へ送り返した。予
備放電時間は5秒、発光強度の測定時間は10秒であっ
た。中央処理装置8では、この最小値について、一般に
行われているスペクトルの重なり補正を行い、検量線を
用いて分析値を演算し、その結果を表示記録装置10へ
送って記録すると同時に表示させた0回帰処理装置9へ
送られたデータを第2図に、又回帰処理装置って求めた
回帰曲線及び最小値を第3図に示す、第2図で、CやM
nの少ない鋼種Aは鋼種Bよりも初期の強度比は小さか
ったが減衰も小さい、第3図では、強度圧の最小値を、
鋼種についてmA、鋼種BについてmBで表示したが、
mAの方がmaよりも大きく、AI種の方が硫黄含有率
は大きいことになる。これらの鋼種の化学分析の結果を
第1表に示す。実施例の結果は化学分析の結果と一致し
最小値を発行強度の特性値とすることの妥当性を示して
いる。
[Example] (Example 1) A regression processing device was added to a general emission spectrometer to perform quadratic regression on the relationship between emission intensity and discharge time to find the inflection point of the regression curve, and sulfur analysis was performed. . First, an overview of the device.
In the figure 0 shown in the figure, 1 is the power supply section, 2 is the spectroscopic section, 3 is the sample,
4 is an electrode, 5 is a diffraction grating, 6 is a photometric tube, 7 is a readout device, 8 is a central processing unit, 9 is a regression processing device, and 10 is a display/recording device. A 400 Hz discharge was caused between the sample 3 and the electrode 4 by the power supply unit 1, the generated spectrum was separated by the diffraction grating 5, and the intensity was measured by the photometer tube 6. The measured luminescence intensities of sulfur and iron are read out by the readout device 7.
The 0 regression processing device 9 reads out the ratio of the sulfur emission intensity and the iron emission intensity for the emission intensity accumulated over 100 discharges, stores it in the central processing unit 8, and sends it to the regression processing device 9. A regression curve was created by performing quadratic regression on the relationship between the ratios, and the minimum value of the emission intensity ratio was determined for this regression curve, and this was sent back to the central processing unit 8. The preliminary discharge time was 5 seconds, and the measurement time of luminescence intensity was 10 seconds. The central processing unit 8 performs the commonly performed spectral overlap correction for this minimum value, calculates the analytical value using the calibration curve, and sends the result to the display/recording device 10 for recording and displaying at the same time. The data sent to the zero regression processing device 9 is shown in FIG. 2, and the regression curve and minimum value obtained by the regression processing device are shown in FIG. 3.
Steel type A with less n had a smaller initial strength ratio than steel type B, but also had smaller damping. In Figure 3, the minimum value of strength pressure is
The steel type was expressed in mA, and the steel type B was expressed in mB.
mA is larger than ma, which means that the sulfur content of the AI type is larger. Table 1 shows the results of chemical analysis of these steel types. The results of the examples agree with the results of chemical analysis and demonstrate the validity of using the minimum value as the characteristic value of the emission strength.

第  1  表 (実施例2) 実施例】の装置を用い、鋼種A及び鋼種Bについて硫黄
大有率が0.015wt%から0035w1.’、;n
範囲で異なった試料10本について分析し、66束技術
の定時間積分法と比較した。試料中のMn含有率はQ、
4wt%乃至1.4wt%であった。これらの結果を第
4図及び第5図に示す、第4図は実施例の結果、第5図
は従来例の結果で、何れの図でも・はA鋼種、OはB鋼
種を示す、第4図の実施例では、A鋼種、B鋼種共に一
本の45°線上に載り、硫黄含有率と硫黄分析値とが一
対一の対応関係にあることが明瞭である。これに対して
、第5図の従来例では、A鋼種のみが45°線上に載り
、鋼種Bはこれからずれており、同じ含有率でも発光強
度の特性値が鋼種によって異なることを物語っている。
Table 1 (Example 2) Using the apparatus shown in Example, the major sulfur content of steel types A and B was varied from 0.015wt% to 0035w1. ',;n
Ten samples with different ranges were analyzed and compared with the constant time integration method of the 66-bundle technique. The Mn content in the sample is Q,
The content ranged from 4wt% to 1.4wt%. These results are shown in Figures 4 and 5. Figure 4 shows the results of the example, and Figure 5 shows the results of the conventional example. In the example shown in FIG. 4, both steel types A and B lie on a single 45° line, and it is clear that the sulfur content and the sulfur analysis value have a one-to-one correspondence. On the other hand, in the conventional example shown in FIG. 5, only steel type A lies on the 45° line, and steel type B deviates from this line, which shows that the characteristic value of luminescence intensity differs depending on the steel type even if the content is the same.

(実施例3) 他の従来例についても実施例2と同様に測定し、その分
析精度を求めた。その結果を第2表に示す。
(Example 3) Other conventional examples were also measured in the same manner as in Example 2, and their analysis accuracy was determined. The results are shown in Table 2.

第  2 表 (% ) 但し、 d=[Σ(分析値−含有率)]/nn = 2
0、 σ、−[(Σd2) / (n −1) ]I/2正確
度、精度共にこの発明の方法と高エネルギ予備放電法と
が優れており、他の従来法では劣る。しかも、この発明
の方法では分析時間が備放電も含んで20秒であり、他
の元素の分析時間と変わらなかった。
Table 2 (%) However, d = [Σ (analytical value - content rate)] / nn = 2
0, σ, -[(Σd2)/(n-1)]I/2 The method of the present invention and the high-energy pre-discharge method are superior in both accuracy and precision, while the other conventional methods are inferior. Moreover, in the method of this invention, the analysis time was 20 seconds including the pre-discharge, which was the same as the analysis time for other elements.

[発明の効果] 以上述べてきたように、この発明によれば、硫黄の発光
強度を二次回帰して得られた回帰曲線の発光強度最小値
を発光強度特性値として、鋼中硫黄の発光分光分析を行
う、このため、試料の共存元素や熱履歴の影響を受けず
に、異なる鋼種間でも正確度及び精度の高い分析値が得
られ、しがち、他の一般元素と同じく短時間で分析でき
るようになった。製鋼の工程管理分析では、分析結果を
フィードバックする時間が一秒でも短縮されることが極
めて重要であり、硫黄も含め短時間の同時多元素分析を
実現したこの発明の効果は大きい。
[Effects of the Invention] As described above, according to the present invention, the luminescence intensity of sulfur in steel is determined by using the minimum luminescence intensity value of the regression curve obtained by quadratic regression of the luminescence intensity of sulfur as the luminescence intensity characteristic value. Spectroscopic analysis is performed, and therefore highly accurate and precise analysis values can be obtained even between different steel types without being affected by the coexisting elements or thermal history of the sample. It is now possible to analyze. In process control analysis of steelmaking, it is extremely important to shorten the time for feeding back analysis results by even one second, and this invention has a great effect by realizing simultaneous multi-element analysis, including sulfur, in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である発光分光分析装置の
概要図、第2図は二次回帰データとなる発光強度と放電
時間の関係を示す図、第3図は回帰二次曲線と発光強度
特性値を示す図、第4図はこの発明の方法で得られた分
析値と含有率の関係を示す図、第5図は従来技術の方法
で得られた分析値と含有率の関係を示す図、第6図は鋼
種による発光強度の変化の相違を示す発光強度グラフ図
である。 1・・・電源部、2・・・分光部、3・・・試料、4・
・・電極、5・・回折格子、6・・・測光管、7・・・
読出し装置、8・・・中央処理装置、9・回帰処理装置
、10・・・表示記録装置。 第2図
Figure 1 is a schematic diagram of an emission spectrometer that is an embodiment of the present invention, Figure 2 is a diagram showing the relationship between luminescence intensity and discharge time, which is quadratic regression data, and Figure 3 is a diagram showing the quadratic regression curve. Figure 4 shows the relationship between the analytical value and content rate obtained by the method of the present invention; Figure 5 shows the relationship between the analytical value and content rate obtained by the method of the prior art. FIG. 6 is a graph of luminescence intensity showing the difference in variation in luminescence intensity depending on the type of steel. 1...Power supply section, 2...Spectroscopy section, 3...Sample, 4.
...electrode, 5...diffraction grating, 6...photometer tube, 7...
Reading device, 8... Central processing unit, 9. Regression processing device, 10... Display recording device. Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)鋼中元素を励起発光させ固有スペクトルを解析す
る元素分析法において、硫黄の発光強度と発光時間の関
係を最小二乗法によって二次回帰して得られた二次曲線
の最小値を硫黄強度特性値とすることを特徴とする鋼中
硫黄の発光分光分析法。
(1) In the elemental analysis method in which the elements in steel are excited to emit light and their characteristic spectra are analyzed, the minimum value of the quadratic curve obtained by performing quadratic regression on the relationship between the emission intensity and emission time of sulfur using the least squares method is An optical emission spectroscopic analysis method for sulfur in steel characterized by its characteristic strength value.
(2)硫黄の発光強度が硫黄の発光強度を鉄の発光強度
によって除した強度比である請求項1記載の鋼中硫黄の
発光分光分析法。
(2) The method for emission spectroscopic analysis of sulfur in steel according to claim 1, wherein the emission intensity of sulfur is an intensity ratio obtained by dividing the emission intensity of sulfur by the emission intensity of iron.
(3)鋼中元素を励起発光させ固有スペクトルを解析す
る成分分析装置において、発光強度と発光時間の関係を
最小二乗法によって二次回帰し更に回帰二次曲線におけ
る発光強度の最小値を算出する回帰処理装置を有するこ
とを特徴とする鋼中硫黄の発光分光分析装置。
(3) In a component analyzer that excites elements in steel to emit light and analyzes their characteristic spectra, quadratic regression is applied to the relationship between luminescence intensity and luminescence time using the least squares method, and the minimum value of luminescence intensity in the regression quadratic curve is calculated. An optical emission spectrometer for sulfur in steel, characterized by having a regression processing device.
JP27456589A 1989-10-20 1989-10-20 Method and apparatus for emission spectrochemical analysis of sulfur in steel Pending JPH03135752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27456589A JPH03135752A (en) 1989-10-20 1989-10-20 Method and apparatus for emission spectrochemical analysis of sulfur in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27456589A JPH03135752A (en) 1989-10-20 1989-10-20 Method and apparatus for emission spectrochemical analysis of sulfur in steel

Publications (1)

Publication Number Publication Date
JPH03135752A true JPH03135752A (en) 1991-06-10

Family

ID=17543504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27456589A Pending JPH03135752A (en) 1989-10-20 1989-10-20 Method and apparatus for emission spectrochemical analysis of sulfur in steel

Country Status (1)

Country Link
JP (1) JPH03135752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153735A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Spark discharge-emission spectrochemical analysis method for element s in stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153735A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Spark discharge-emission spectrochemical analysis method for element s in stainless steel
JP4631413B2 (en) * 2004-11-30 2011-02-16 Jfeスチール株式会社 Spark discharge emission spectroscopic analysis method of S element in stainless steel

Similar Documents

Publication Publication Date Title
Detalle et al. An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy
AU2015275734B2 (en) Method for laser-induced breakdown spectroscopy and calibration
US8462337B2 (en) Spectrometer, spectrometry, and spectrometry program
Harville et al. Line selection and evaluation of radio frequency glow discharge atomic emission spectrometry for the analysis of copper and aluminum alloys
US8082111B2 (en) Optical emission spectroscopy qualitative and quantitative analysis method
JPH03135752A (en) Method and apparatus for emission spectrochemical analysis of sulfur in steel
JPS6212842A (en) Fluorescent analysis instrument
JP3572734B2 (en) Emission spectroscopy method
JP3323768B2 (en) Analysis of trace amounts of lead in stainless steel by emission spectroscopy
WO2010034017A2 (en) Systems and methods for signal normalization using raman scattering
JP3733966B2 (en) Emission spectroscopic method
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP3324186B2 (en) Emission spectrometer
JP4496888B2 (en) Machine side analysis method by laser emission spectroscopy
JPH08184564A (en) Emission spectrochemical analytical method
Wurster et al. Nitric oxide radiation in the near IR spectrum of shock-heated air
JPH10267848A (en) Method for emission spectroscopic analysis
Kuzuya et al. Studies on the Analysis Precision of Laser Microprobe Analyser II. Improvement of Analysis Precision by Correcting Self-Absorption
JPH0862139A (en) Emission spectral analysis
JPH10318926A (en) Emission spectrochemical analysis method of si in silicon steel
TW202400989A (en) Method for emission spectrochemical analysis of antimony in metal material, method for measuring concentration of antimony in molten steel during refining and production method of steel raw material
JPH075128A (en) X-ray fluorescence analytic equipment
JPS6042413B2 (en) Emission spectroscopy method
JPH03220433A (en) Evaluating method of stress in silicon crystal
RU2237885C2 (en) Method for stabilizing energy dispersion x-ray fluorescence analyzer parameters