JPH08184564A - Emission spectrochemical analytical method - Google Patents

Emission spectrochemical analytical method

Info

Publication number
JPH08184564A
JPH08184564A JP32668294A JP32668294A JPH08184564A JP H08184564 A JPH08184564 A JP H08184564A JP 32668294 A JP32668294 A JP 32668294A JP 32668294 A JP32668294 A JP 32668294A JP H08184564 A JPH08184564 A JP H08184564A
Authority
JP
Japan
Prior art keywords
discharge
intensity
spectral line
value
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32668294A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32668294A priority Critical patent/JPH08184564A/en
Publication of JPH08184564A publication Critical patent/JPH08184564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an emission spectrochemical analytical method of which analyzable range can be expanded and whose analytical accuracy can be enhanced easily and at a low cost by accumulating the intensity value of an intrinsic spectral line for every element only when a discharge current value in every discharge is in a predetermined constant region. CONSTITUTION: A discharge current value in every discharge is measured by an ampere meter 10, it is A/D-converted (14), it is integrated (15), it is sent to a central processing unit 17, and it is stored in a storage circuit 19 as a normal discharge-current region (a window width, i.e., the upper limit value and the lower limit value of a current value). Then, the intensity, of a spectral line from a detector 21, which is obtained in every discharge is A/D-converted (22), it is integrated by a pulse converter 23, it is sent to the unit 17 via a multiplexer 16, and it is adopted and stored as the intensity of a normal spectral line when it is situated in the region (the window width) which has been stored 19 previously. When the designated number of discharges is finished totally, the intensity, of a spectral line for every element, which has been stored 18 is analyzed totally or converted into a frequency distribution, its central value is then found, and the content of the element is computed by a working curve (a regression expression) which has been created in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属試料に含まれる元
素の分析方法に関し、特に、金属中の元素を発光分光分
析法で定量する際の分析精度向上方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing elements contained in a metal sample, and more particularly to a method for improving analysis accuracy when quantifying elements in metals by emission spectroscopy.

【0002】[0002]

【従来の技術】スパーク放電を用いる発光分光分析方法
は、まず、試料と対電極の間でスパーク放電を行い、金
属試料中に含まれる各元素を、その放電エネルギーによ
り蒸発・気化して各元素の濃度に応じた強度の固有スペ
クトル線を発生させる。その際、発生源にあるスペクト
ル線は、各元素の固有スペクトル線や散乱光が混在し、
所謂連続スペクトル線の状態となっているが、この連続
スペクトル線を分光器に導き、内部に設置された回析格
子により分光し、測定対象元素の固有スペクトル線が選
択的に検出される。そして、検出された複数の固有スペ
クトル線の強度をフォトマルチプライア(検出器)で測
光して数値化し、予め作成してあった各元素毎の検量線
に対照し、それぞれの含有量に換算することで定量が行
われる。この各元素毎の検量線は、それぞれ含有量既知
の複数個(20〜40個)の試料で発光スペクトル線強
度を求め、回帰計算を行って得た回帰式(1次式、2次
式あるいは3次式)である。
2. Description of the Related Art In an emission spectroscopic analysis method using spark discharge, first, spark discharge is carried out between a sample and a counter electrode, and each element contained in a metal sample is evaporated and vaporized by its discharge energy to make each element. The characteristic spectral line having an intensity corresponding to the concentration of is generated. At that time, the spectral lines at the source are mixed with the characteristic spectral lines and scattered light of each element,
Although it is in a so-called continuous spectrum line state, this continuous spectrum line is guided to a spectroscope and is dispersed by a diffraction grating installed inside, and the characteristic spectrum line of the element to be measured is selectively detected. Then, the intensities of the detected plural characteristic spectral lines are photometrically measured by a photomultiplier (detector) to be converted into numerical values, which are converted to the respective contents by comparing with the previously prepared calibration curves for each element. Therefore, the quantification is performed. The calibration curve for each element is obtained by performing regression calculation on the emission spectrum line intensities of a plurality of samples (20 to 40) each having a known content, and a regression equation (linear equation, quadratic equation or Cubic equation).

【0003】しかしながら、分析試料は、検量線作成用
のものも含めて、(a)同一の成分組成の試料が得られ
ない、(b)同一の金属組織の試料が得られない、
(c)試料中に含まれる非金属介在物の濃度、分布が試
料により異なる等の理由により試料毎にその物理的、化
学的性質が異なるので、スパーク放電に際しては、放電
形態(放電エネルギー)が試料毎に異なり、各元素のス
ペクトル線強度が一定にならず、分析精度低下の主要因
となっていた。
However, analytical samples, including those for preparing a calibration curve, cannot be obtained (a) samples having the same composition, or (b) samples having the same metallic structure cannot be obtained.
(C) Since the physical and chemical properties of each non-metallic inclusion are different in each sample due to the difference in concentration and distribution of non-metallic inclusions contained in the sample, the discharge form (discharge energy) is different during spark discharge. Different from sample to sample, the spectral line intensities of each element were not constant, which was the main cause of deterioration in analysis accuracy.

【0004】そこで、現在の発光分光分析方法は、以下
のような処置を施して分析精度の向上を図っている。 (1)放電回数を多く、つまり試料採取量を多くし、統
計的に誤差を少なくする。 (2)分析試料の主成分(鉄鋼であれば鉄、Al合金で
あればアルミニウム等)のスペクトル線強度を内標準と
して測定し、「金属の発光分光分析法(昭和42年9月
20日)共立出版(株)発行、212〜214頁」に記
載されているように、例えば、(目的元素スペクトル線
強度/主成分スペクトル線強度)を補正スペクトル線値
として演算、補正する。 (3)試料中に介在物の多い場合は、「鉄と鋼198
2、vol68、No.3,p523〜528」にも記
載されているように、主成分元素のスペクトル線強度の
変動が大きく、上記(2)の方法を用いると、目的元素
のスペクトル線強度は正常でも分母である主成分が変動
するため、分析精度低下させることがある。そのため、
例えば、「最新の鉄鋼状態分析(1979年8月10
日)(株)アグネ発行、107〜115頁」に記載され
ているように、1試料当たり1000〜2000回の放
電を行い、そのうち主成分元素の固有スペクトル線強度
が異常に低い場合(あるいは異常に高い場合)には、目
的元素の固有スペクトル線強度を求めない測光方式(所
謂Feトリガ方式)で各元素の含有量を算出する。つま
り、異常データをカットして、試料の真値よりもむしろ
代表値を求める分析方法である。
Therefore, the current emission spectroscopic analysis method is intended to improve the analysis accuracy by taking the following measures. (1) Increase the number of discharges, that is, increase the sampling amount, and statistically reduce the error. (2) The spectral line intensity of the main component (iron for steel, aluminum for Al alloy, etc.) of the analysis sample was measured as an internal standard, and the “metal emission spectroscopy (September 20, 1972) Kyoritsu Shuppan Co., Ltd., pages 212-214 ”, for example, (target element spectral line intensity / main component spectral line intensity) is calculated and corrected as a corrected spectral line value. (3) If there are many inclusions in the sample, “Iron and Steel 198
2, vol68, No. 3, p523-528 ”, the main component element has a large variation in the spectral line intensity, and when the method (2) above is used, the spectral line intensity of the target element is a denominator even if it is normal. Since the components vary, the accuracy of analysis may decrease. for that reason,
For example, “Latest Steel Condition Analysis (August 10, 1979)
Jpn., Agne Co., Ltd., pp. 107-115 ”, the sample is discharged 1000 to 2000 times, and the characteristic spectral line intensity of the main component element is abnormally low (or abnormal). If it is very high), the content of each element is calculated by a photometric method (so-called Fe trigger method) that does not determine the characteristic spectral line intensity of the target element. In other words, it is an analysis method that cuts abnormal data and obtains a representative value rather than the true value of the sample.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者の研究によれば、上記3つの処置を施しても以下に述
べるような問題の存在が明らかになった。 (1)の方法では、母集団を多くしても、その標準偏差
の減少への寄与は少なく、しかも放電回数を多くするこ
とは放電を長く続けることであり、そのため、試料が高
温となり、電気伝導性、熱伝導性が変化し放電の形態が
変わり、かえって測定対象元素の発光スペクトル線強度
にばらつきを生じさせる。
However, according to the research by the present inventor, the existence of the following problems has been clarified even if the above three treatments are performed. In the method of (1), even if the population is increased, the contribution to the reduction of the standard deviation is small, and increasing the number of discharges means that the discharges are continued for a long time. The conductivity and thermal conductivity are changed, the form of discharge is changed, and on the contrary, the emission spectrum line intensity of the element to be measured varies.

【0006】(2)の方法では、測定対象元素の固有ス
ペクトル線の変動と、主成分元素の変動が同期あるいは
追従しない場合、かえって大きな誤差を生じる。すなわ
ち、主成分元素はその含有量が当然多く、発光分光分析
では検出感度を鈍くしなければ検出できず、そのため、
小さい量の変化を完全に検出できない(補正の効果が少
ない)。
In the method (2), when the fluctuation of the characteristic spectrum line of the element to be measured and the fluctuation of the main component element are not synchronized or follow, a large error occurs. That is, the content of the main component element is naturally high, and it cannot be detected by emission spectroscopic analysis unless the detection sensitivity is slowed down.
Cannot detect small amount of change completely (less effective correction).

【0007】(3)の方法では、主成分の固有スペクト
ル線強度が異常な場合、目的元素の固有スペクトル線強
度が正常でデータとして採用されないという問題があ
る。つまり、主成分スペクトル線強度に予めデータとし
て採用するかどうかを判断する幅(分析分野ではウイン
ド幅という)を設定するため、試料によって主成分の含
有量が異なった場合、主成分スペクトル線強度は増加あ
るいは減少し、適切なウインド幅でなくなり、誤差を生
じる試料がある。そのため、主成分の含有量が類似した
試料で検量線を作成し、分析しなければならず、作業が
煩雑になるとともに、作業ミスの原因ともなる。
The method (3) has a problem that when the characteristic spectral line intensity of the main component is abnormal, the characteristic spectral line intensity of the target element is normal and is not used as data. In other words, the width of the main component spectral line intensity is set in advance to determine whether or not to use it as data (called the window width in the analytical field). There are some samples that increase or decrease and do not have an appropriate window width, causing an error. Therefore, it is necessary to prepare and analyze a calibration curve with samples having similar main component contents, which complicates the work and causes a work error.

【0008】以上述べたように、現在の技術レベルで
は、今以上の分析精度の向上は期待できないし、また鉄
鋼材料の高清浄度化の推進による、鋼中の炭素、硫黄、
窒素、隣等の定量下限拡大へのニーズに対応できない。
そこで、本発明は、かかる事情を鑑み、簡易で、且つ分
析精度が高く、分析元素の定量下限の拡大が可能な発光
分光分析方法を提供することを目的としている。
As described above, at the current technical level, further improvement in analysis accuracy cannot be expected, and carbon, sulfur, and
We cannot meet the needs for expanding the lower limit of quantification for nitrogen, neighbors, etc.
Therefore, in view of such circumstances, an object of the present invention is to provide an emission spectroscopic analysis method which is simple, has high analysis accuracy, and can expand the lower limit of quantification of an analysis element.

【0009】[0009]

【課題を解決するための手段】発明者は、上記目的を達
成するため、従来の発光分光分析方法を鋭意見直し、以
下の知見を得た。スパーク放電装置は、電圧を一定とし
た(通常200V〜400V程度)コンデンサ(キャパ
シタンス)、コイル(インダクタンス)及び抵抗で構成
された電気回路からなり、イグナイタ回路より高電圧
(1KV〜2KV)のトリガを出力し、それに同期して
放電用電極から試料に放電するようになっている。その
際、所謂放電ギャップ(対電極と試料との間隔:通常3
mm〜5mm)に流れる電流は、試料である金属電気伝
導度と熱伝導度によって支配され、試料が均質で常に同
一温度であれば、これら伝導性は変化せず一定で、分析
初期と分析終了付近で放電の電流値に差はない。つま
り、試料中の各元素を励起するエネルギーは一定であ
り、得られる各元素のスペクトル線強度も変動しない。
しかしながら、試料は、そのなかに含まれる不純物成分
の濃度、あるいはサンプリング方法によって凝固過程が
異なり、炭素、マンガン等の含有量によってもその結晶
形態が異なる。また、試料の中には、例えばMgO、S
iO2 、Al23 、TiN、MnS等のような酸化
物、窒化物、硫化物等の介在物も存在し、放電形態は、
前記したように、試料の形態により必然的に異なり、放
電電流の大きさも異なってくる。さらに、試料の励起エ
ネルギーは放電電流iの時間積(∫idt)であるの
で、電流値により発光スペクトル線の強度も変化する。
In order to achieve the above object, the inventor diligently reviewed the conventional emission spectroscopy analysis method and obtained the following findings. The spark discharge device is composed of an electric circuit composed of a capacitor (capacitance), a coil (inductance) and a resistor with a constant voltage (usually about 200V to 400V), and triggers a higher voltage (1KV to 2KV) than the igniter circuit. Output is performed, and in synchronization with this, the discharge electrode discharges the sample. At that time, a so-called discharge gap (distance between the counter electrode and the sample: usually 3
The electric current flowing in (mm ~ 5 mm) is governed by the electrical conductivity and the thermal conductivity of the sample metal, and if the sample is homogeneous and always at the same temperature, these conductivities will remain constant and the analysis will start and end. There is no difference in the discharge current value in the vicinity. That is, the energy for exciting each element in the sample is constant, and the spectral line intensity of each element obtained does not change.
However, the solidification process of the sample differs depending on the concentration of the impurity component contained therein or the sampling method, and the crystal form also varies depending on the contents of carbon, manganese and the like. Moreover, in the sample, for example, MgO, S
There are also inclusions such as oxides, nitrides, and sulfides such as iO 2 , Al 2 O 3 , TiN, and MnS, and the discharge form is
As described above, the shape of the sample inevitably varies, and the magnitude of the discharge current also varies. Furthermore, since the excitation energy of the sample is the time product (∫idt) of the discharge current i, the intensity of the emission spectrum line also changes depending on the current value.

【0010】そこで、発明者は、この知見に着眼し、放
電毎の変化した電流の大きさを計測し、その電流値が予
め設定された電流値の幅(ウインド幅)に入った時にの
み、測光した各元素の固有スペクトル線強度値をデータ
として採用する分析方法を創案したのである。すなわ
ち、本発明は、不活性ガス雰囲気中で、金属試料と対電
極との間で多数回のスパーク放電をさせ、その放電毎に
励起した該金属試料からの発光を分光し、得られた各元
素の固有スペクトル線の強度を測光して数値化し、該数
値を計算機で累積、演算処理して各元素の含有量を求め
る発光分光分析方法において、上記放電毎の放電電流値
を測定し、該測定値が予め定めた一定領域にある場合に
のみ、上記各元素の固有スペクトル線の数値化した強度
値を上記計算機で累積、演算することを特徴とする発光
分光分析方法である。また、本発明は、異常な結晶組織
や非金属介在物の少ない金属試料でスパーク発光分光分
析を行い、放電毎の電流値をすべて出現度数と放電電流
値との度数分布にデータ処理してその上、下を切り捨て
た領域を定め、その領域を請求項1の一定領域としたこ
とを特徴とする発光分光分析方法でもある。
Therefore, the present inventor has paid attention to this finding, measures the magnitude of the changed current for each discharge, and only when the current value falls within a preset current value width (window width), He has devised an analytical method that employs the characteristic spectral line intensity values of each photometric element as data. That is, in the present invention, spark discharge was performed a large number of times between a metal sample and a counter electrode in an inert gas atmosphere, and the emitted light from the metal sample excited for each discharge was dispersed, and each obtained In the emission spectroscopic analysis method for measuring the intensity of the characteristic spectral line of the element to quantify the value, accumulating the numerical value by a computer, and calculating the content of each element by arithmetic processing, measuring the discharge current value for each discharge, The emission spectroscopic analysis method is characterized in that the numerical values of the intensity values of the characteristic spectral lines of each element are accumulated and calculated by the computer only when the measured value is in a predetermined fixed region. Further, the present invention performs a spark emission spectroscopic analysis on a metal sample with few abnormal crystal structures and non-metallic inclusions, and processes all the current values for each discharge into a frequency distribution of the appearance frequency and the discharge current value. Also, the emission spectroscopic analysis method is characterized in that a region in which the upper and lower parts are cut off is defined and the region is defined as the constant region of claim 1.

【0011】[0011]

【作用】本発明では、不活性ガス雰囲気中で、金属試料
と対電極との間で多数回のスパーク放電をさせ、その放
電毎に励起した該金属試料からの発光を分光し、得られ
た各元素の固有スペクトル線の強度を測光して数値化
し、該数値を計算機で累積、演算処理して各元素の含有
量を求める発光分光分析方法において、上記放電毎の放
電電流値を測定し、該測定値が予め定めた一定領域にあ
る場合にのみ、上記各元素の固有スペクトル線の数値化
した強度値を上記計算機で累積、演算するようにしたの
で、各元素の固有スペクトル線強度をほとんど同程度の
放電電流値(励起エネルギー)下で評価できるようにな
る。その結果、試料の異常部からの情報は除外され、正
しい代表値が得られるようになる。
In the present invention, a spark discharge is generated a large number of times between a metal sample and a counter electrode in an inert gas atmosphere, and the emission from the metal sample excited at each discharge is spectrally obtained. Intensity of the characteristic spectral line of each element is measured and digitized, the numerical values are accumulated by a computer, in an emission spectroscopic analysis method for calculating the content of each element by arithmetic processing, the discharge current value for each discharge is measured, Only when the measured value is in a predetermined constant region, the numerical intensity values of the characteristic line of each element are accumulated and calculated by the computer, so that the characteristic line intensity of each element is almost the same. It becomes possible to evaluate under the same discharge current value (excitation energy). As a result, information from the abnormal part of the sample is excluded, and a correct representative value can be obtained.

【0012】また、本発明では、異常な結晶組織や非金
属介在物の少ない金属試料でスパーク発光分光分析を行
い、放電毎の電流値をすべて出現度数と放電電流値との
度数分布にデータ処理してその上、下を切り捨てた領域
を定め、その領域を請求項1の一定領域とするようにし
たので、従来の発光分光分析装置を何ら改造せず若干の
ソフトの追加で、低コストとで容易に分析精度がよくな
り、各元素の定量下限の拡大が達成できる。
Further, in the present invention, spark emission spectroscopic analysis is carried out on a metal sample having an abnormal crystal structure and a small amount of non-metal inclusions, and data processing of all current values for each discharge into frequency distribution of appearance frequency and discharge current value. In addition, the area cut off the bottom is defined, and the area is set as the constant area of claim 1. Therefore, it is possible to reduce the cost by adding some software without modifying the conventional optical emission spectrometer. Can easily improve the analysis accuracy and increase the lower limit of quantification of each element.

【0013】[0013]

【実施例】図1は、本発明に係るスパーク放電発光分光
分析方法を実施した装置の一例を模式的に示したもので
あり、放電装置1、分析試料(電極でもある)2及び対
電極3とからなる発光部と、回折格子7、スリット8、
検出器(フォトマルチプライア)6等からなる分光器
と、スペクトル線のアナログ量をディジタル変換してデ
ータ処理を行う測光装置4やスペクトル線強度を元素の
含有量に変換する含有量計算機5から構成されている。
EXAMPLE FIG. 1 schematically shows an example of an apparatus for carrying out the spark discharge optical emission spectroscopic analysis method according to the present invention. A discharge apparatus 1, an analysis sample (also an electrode) 2 and a counter electrode 3 are shown. And a light emitting portion, a diffraction grating 7, a slit 8,
Consists of a spectroscope including a detector (photomultiplier) 6 and the like, a photometric device 4 for digitally converting the analog amount of spectral lines to perform data processing, and a content calculator 5 for converting spectral line intensities into elemental contents. Has been done.

【0014】図2は、上記放電装置1に組み込まれた放
電回路の一部と、検出器よりスペクトル線強度を測光す
る測光装置の一部の一例であり、直流電源9からの電力
供給を、インダクタンス、キャパシタンス及び抵抗で制
御し、放電ギャップ13でスパーク放電させる。その
際、放電トリガとして、高圧部20で10000V以上
に昇圧した電流をイグナイタ11で絶縁を破り、コンデ
ンサ24にホールドした電気を流すことになる。そし
て、本発明の実施のため、上記装置に放電回路に電流計
10(図2参照)を、図1の測光装置に度数分布処理及
び記憶回路19を、そして中央演算回路17に各元素の
固有スペクトル線強度データを選択するための演算手段
を新たに組み込んである。
FIG. 2 shows an example of a part of the discharge circuit incorporated in the discharge device 1 and a part of a photometric device for photometrically measuring the spectral line intensity from a detector. Spark discharge is generated in the discharge gap 13 by controlling the inductance, capacitance and resistance. At that time, as a discharge trigger, the current boosted to 10000 V or more in the high voltage section 20 breaks the insulation by the igniter 11 and the electricity held in the capacitor 24 is passed. In order to carry out the present invention, an ammeter 10 (see FIG. 2) is provided in the above device, a frequency distribution processing and storage circuit 19 is provided in the photometric device of FIG. The calculation means for selecting the spectral line intensity data is newly incorporated.

【0015】以下に、本発明に係る発光分光分析方法の
実施内容を説明する。まず、図1の試料保持部に、異常
な結晶組織や非金属介在物の少ない比較的均一な金属試
料、ここでは炭素鋼をセットし、通常慣用する方法で放
電を行い、各放電毎(例えば200〜400回/秒)の
放電電流値を電流計で計測し、前記した放電電流の一定
範囲領域を定める。ここで、パルス変換器15は電流計
10によって測定された電流値をアナログ/ディジタル
変換された後、ホールドする回路である。また、パルス
変換器15は電流計10によって計測された電流を、積
分してホールドする積分回路であってもよい。このホー
ルド回路あるいは積分回路は、一回の放電毎に次の放電
が行われる前にクリアされるが、電流値は中央演算処理
装置17に送られる。そして、その放電電流値は、図3
のように出現回数との度数分布に整理された。本発明で
は、この度数分布の横軸(電流値)の両端をそれぞれa
%,b%だけ異常な値として削除し、a%−b%間の値
を正常な放電電流の領域(ウインド幅)とし、記憶回路
19に格納する。勿論、このa,bの値は、分析対象の
金属試料の種類によって異なるが、普通鋼の場合、aは
0〜20%,bは0〜10%の範囲であり、好ましくは
aが10%、bが5%である。
The implementation contents of the emission spectroscopic analysis method according to the present invention will be described below. First, a comparatively uniform metal sample with a small amount of abnormal crystal structure and non-metallic inclusions, here carbon steel, is set in the sample holder of FIG. 1 and discharged by a commonly used method. The discharge current value of (200 to 400 times / second) is measured with an ammeter to determine the above-mentioned constant range region of the discharge current. Here, the pulse converter 15 is a circuit that holds the current value measured by the ammeter 10 after the current value is converted from analog to digital. Further, the pulse converter 15 may be an integrating circuit that integrates and holds the current measured by the ammeter 10. The hold circuit or the integrating circuit is cleared before each subsequent discharge, but the current value is sent to the central processing unit 17. The discharge current value is shown in FIG.
It was arranged in the frequency distribution with the number of appearances. In the present invention, both ends of the horizontal axis (current value) of this frequency distribution are a
Only% and b% are deleted as abnormal values, and the value between a% and b% is set as a normal discharge current region (window width) and stored in the memory circuit 19. Of course, the values of a and b differ depending on the type of the metal sample to be analyzed, but in the case of ordinary steel, a is in the range of 0 to 20%, b is in the range of 0 to 10%, and preferably a is 10%. , B is 5%.

【0016】次に、実際の発光分光分析手順であるが、
分析対象金属試料を上記同様に試料保持部にセットし、
放電を行いその電流値を電流計で測定する。また、同一
放電で発生した各元素のスペクトル線は図1の分光器
(図2の12)に入り、回折、分光され、各元素の固有
スペクトル線波長位置に複数配置された検出器6(図2
の21)に入る。検出器からのスペクトル線強度の出力
は、一放電毎に得られ、パルス変換器によりパルスに呈
し、マルチプレクサを介し中央演算処理装置17に送ら
れ、予め定められ記憶回路19に格納されている上記放
電電流値のウインド幅(電流値の上限値、下限値:図3
に内容を示した)を基に、正常放電のスペクトル線と判
断されたものだけが選別され、スペクトル線強度の記憶
回路18に一放電毎に記憶されていく。その選別の様子
を図4に示すが、図4の上の図において、放電電流値が
上限値と下限値の間に入った場合に対応するスペクトル
線強度が、下の図でデータとして記憶回路18に記憶さ
れることが示されている。
Next, regarding the actual emission spectroscopic analysis procedure,
Set the metal sample to be analyzed in the sample holder as above,
Discharge and measure the current value with an ammeter. Further, the spectral lines of each element generated by the same discharge enter the spectroscope (12 in FIG. 2) of FIG. 1, are diffracted and separated, and a plurality of detectors 6 (FIG. Two
21). The output of the spectral line intensity from the detector is obtained for each discharge, is presented as a pulse by the pulse converter, is sent to the central processing unit 17 via the multiplexer, and is stored in the predetermined memory circuit 19 as described above. Window width of discharge current value (upper and lower limit value of current value: Fig. 3
Based on the above), only those which are determined to be normal discharge spectrum lines are selected and stored in the spectrum line intensity storage circuit 18 for each discharge. The state of the selection is shown in FIG. 4. In the upper diagram of FIG. 4, the spectrum line intensity corresponding to the case where the discharge current value falls between the upper limit value and the lower limit value is stored in the lower diagram as data in the storage circuit. 18 is shown.

【0017】最後に、指定した放電回数(通常1000
回〜2000回程度)をすべて放電した後、放電を終了
し、記憶回路18にある各元素のスペクトル線強度を、
例えば全積分する、あるいは度数分布に変換した後、そ
の中央値として求め、その値を求めて、予め作成してお
いた検量線により含有量を算出する。実際に炭素鋼中の
Alを分析した結果の一例を表1に示す。本試料の場
合、Alの分析精度(繰り返し精度:σ)は、従来法の
0.0038%に対して、0.0011%と3倍以上も
向上した。なお、ここでの従来法とは、『従来の技術』
の項で最後に述べた所謂Feトリガ方式である。
Finally, the specified number of discharges (usually 1000
Discharge to about 2000 times), the discharge is terminated, and the spectral line intensity of each element in the memory circuit 18 is changed to
For example, after total integration or conversion into a frequency distribution, the median value thereof is calculated, the value is calculated, and the content is calculated by a calibration curve prepared in advance. Table 1 shows an example of the result of actually analyzing Al in carbon steel. In the case of this sample, the analysis accuracy (repetition accuracy: σ) of Al was 0.0011%, which is three times more than 0.0038% of the conventional method. The conventional method here is "conventional technology".
This is the so-called Fe trigger method described last in the section.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上述べたように、本発明により、発光
分光分析方法の分析精度を容易にしかも低コストで向上
させることができた。その結果、各元素の分析可能範囲
の拡大、つまり定量下限の拡大と共に、高純度鋼の開
発、精錬工程での歩留り向上及び製造コストの低減、ま
た、操業時間の短縮、分析コストの低減等の副次効果も
期待できる。
As described above, according to the present invention, the analysis accuracy of the emission spectroscopic analysis method can be improved easily and at low cost. As a result, in addition to expanding the range of analysis of each element, that is, expanding the lower limit of quantification, development of high-purity steel, improvement of yield in the refining process and reduction of manufacturing cost, shortening of operating time, reduction of analysis cost, etc. Side effects can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】発光分光分析装置の全体構成を示す模式図であ
る。
FIG. 1 is a schematic diagram showing the overall configuration of an emission spectroscopy analyzer.

【図2】電流計を含むスパーク放電の回路図と、測光装
置の概略構成を示した図である。
FIG. 2 is a circuit diagram of spark discharge including an ammeter and a schematic configuration of a photometric device.

【図3】正常な放電電流値の一定領域を設定する方法の
説明図である。
FIG. 3 is an explanatory diagram of a method of setting a constant region of a normal discharge current value.

【図4】図3の放電電流値の一定領域に対応する各元素
のスペクトル線の選択状況を説明する図である。
FIG. 4 is a diagram illustrating a selection status of spectral lines of each element corresponding to a constant region of the discharge current value of FIG.

【符号の説明】[Explanation of symbols]

1 放電(発光)装置 2 分析試料 3 対電極 4 測光装置 5 データ処理装置 6 検出器(フォトマルチプライア) 7 回折格子 8 スリット 9 電源部 10 電流計 11 イグナイタ放電部 12 分光器 13 スパーク放電部 14 A/D変換器 15 パルス変換器 16 マルチプレクサ 17 中央演算処理装置 18 スペクトル線強度記憶回路 19 度数分布処理及び記憶回路 20 高電圧部 21 検出器(フォトマルチプライア) 22 A/D変換器 23 パルス変換器 24 放電用コンデンサ 25 端末機 1 Discharge (light emission) device 2 Analytical sample 3 Counter electrode 4 Photometric device 5 Data processing device 6 Detector (photomultiplier) 7 Diffraction grating 8 Slit 9 Power supply unit 10 Ammeter 11 Igniter discharge unit 12 Spectrometer 13 Spark discharge unit 14 A / D converter 15 Pulse converter 16 Multiplexer 17 Central processing unit 18 Spectral line intensity storage circuit 19 Frequency distribution processing and storage circuit 20 High voltage section 21 Detector (photomultiplier) 22 A / D converter 23 Pulse conversion Container 24 discharging capacitor 25 terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガス雰囲気中で、金属試料と対電
極との間で多数回のスパーク放電をさせ、その放電毎に
励起した該金属試料からの発光を分光し、得られた各元
素の固有スペクトル線の強度を測光して数値化し、該数
値を計算機で累積、演算処理して各元素の含有量を求め
る発光分光分析方法において、 上記放電毎の放電電流値を測定し、該測定値が予め定め
た一定領域にある場合にのみ、上記各元素の固有スペク
トル線の数値化した強度値を上記計算機で累積、演算す
ることを特徴とする発光分光分析方法。
1. An element obtained by subjecting a metal sample and a counter electrode to a large number of spark discharges in an inert gas atmosphere and spectrally analyzing the light emitted from the metal sample excited at each discharge. In the optical emission spectroscopic analysis method, in which the intensity of the characteristic spectral line of is measured and digitized, and the numerical values are accumulated and arithmetically processed to obtain the content of each element, the discharge current value for each discharge is measured, and the measurement is performed. An emission spectroscopic analysis method, wherein the numerically calculated intensity values of the characteristic spectral lines of each element are accumulated and calculated by the computer only when the value is in a predetermined constant region.
【請求項2】 異常な結晶組織や非金属介在物の少ない
金属試料でスパーク発光分光分析を行い、放電毎の電流
値をすべて出現度数と放電電流値との度数分布にデータ
処理してその上、下を切り捨てた領域を定め、その領域
を請求項1の一定領域としたことを特徴とする発光分光
分析方法。
2. A spark emission spectroscopic analysis is carried out on a metal sample having an abnormal crystal structure and a small amount of non-metal inclusions, and all the current values for each discharge are data-processed into a frequency distribution of appearance frequency and discharge current value. An emission spectroscopic analysis method, characterized in that a region of which the lower part is cut off is defined and the region is defined as the constant region of claim 1.
JP32668294A 1994-12-28 1994-12-28 Emission spectrochemical analytical method Pending JPH08184564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32668294A JPH08184564A (en) 1994-12-28 1994-12-28 Emission spectrochemical analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32668294A JPH08184564A (en) 1994-12-28 1994-12-28 Emission spectrochemical analytical method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004002870A Division JP3733966B2 (en) 2004-01-08 2004-01-08 Emission spectroscopic method

Publications (1)

Publication Number Publication Date
JPH08184564A true JPH08184564A (en) 1996-07-16

Family

ID=18190485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32668294A Pending JPH08184564A (en) 1994-12-28 1994-12-28 Emission spectrochemical analytical method

Country Status (1)

Country Link
JP (1) JPH08184564A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072318A1 (en) * 2006-12-13 2008-06-19 Shimadzu Corporation Emission analyzer
JP2009156742A (en) * 2007-12-27 2009-07-16 Shimadzu Corp Emission spectrometer
US8179657B2 (en) 2006-10-31 2012-05-15 Shimadzu Corporation Emission analyzer
JP2019174443A (en) * 2018-03-26 2019-10-10 一般財団法人電力中央研究所 Method, quantitative device, and quantitative program of quantifying chloride ion concentration of concrete

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179657B2 (en) 2006-10-31 2012-05-15 Shimadzu Corporation Emission analyzer
WO2008072318A1 (en) * 2006-12-13 2008-06-19 Shimadzu Corporation Emission analyzer
JPWO2008072318A1 (en) * 2006-12-13 2010-03-25 株式会社島津製作所 Luminescence analyzer
JP2009156742A (en) * 2007-12-27 2009-07-16 Shimadzu Corp Emission spectrometer
JP2019174443A (en) * 2018-03-26 2019-10-10 一般財団法人電力中央研究所 Method, quantitative device, and quantitative program of quantifying chloride ion concentration of concrete

Similar Documents

Publication Publication Date Title
Detalle et al. An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy
CN113281325B (en) Laser-induced breakdown spectroscopy standard-sample-free quantification method and system
Harville et al. Line selection and evaluation of radio frequency glow discharge atomic emission spectrometry for the analysis of copper and aluminum alloys
JPH08184564A (en) Emission spectrochemical analytical method
Harville et al. Determination of precious metal alloys by radio frequency glow discharge atomic emission spectroscopy
Sorrentino et al. Fast analysis of complex metallic alloys by double-pulse time-integrated laser-induced breakdown spectroscopy
JP3733966B2 (en) Emission spectroscopic method
Fournier et al. Standardless semi-quantitative analysis with WDS-EPMA
JP3610256B2 (en) X-ray fluorescence analyzer
JP3572734B2 (en) Emission spectroscopy method
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JP3106868B2 (en) Emission spectrometer
JPH07248295A (en) Emission spectral analyzing method and apparatus
CN114460062B (en) Laser-induced breakdown spectroscopy quantification method and system based on single standard sample calibration
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JPH1183744A (en) Emission spectral analysis of ni and cr in stainless steel
JP3972307B2 (en) Ni emission spectroscopic analysis method and steel making method using this method
Weiss et al. Towards a catalogue of glow discharge emission spectra
Beaty et al. Principles on Analysis by Spark Sampling and Plasma Excitation as Applied to Super Alloys
JPH03295449A (en) Emission spectrochemical analysis
JP2000009645A (en) Emission spectroscopic analyzer
JP4631413B2 (en) Spark discharge emission spectroscopic analysis method of S element in stainless steel
JPH10318926A (en) Emission spectrochemical analysis method of si in silicon steel
JPH0961356A (en) Emission spectrometric analyzing method
Platbrood et al. Automated qualitative wavelength‐dispersive x‐ray fluorescence analysis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224