WO2008072318A1 - Emission analyzer - Google Patents

Emission analyzer Download PDF

Info

Publication number
WO2008072318A1
WO2008072318A1 PCT/JP2006/324834 JP2006324834W WO2008072318A1 WO 2008072318 A1 WO2008072318 A1 WO 2008072318A1 JP 2006324834 W JP2006324834 W JP 2006324834W WO 2008072318 A1 WO2008072318 A1 WO 2008072318A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switching element
charging
constant
discharge
Prior art date
Application number
PCT/JP2006/324834
Other languages
French (fr)
Japanese (ja)
Inventor
Haruki Osa
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2008549153A priority Critical patent/JP4919104B2/en
Priority to CN2006800566272A priority patent/CN101558291B/en
Priority to US12/516,750 priority patent/US8179657B2/en
Priority to PCT/JP2006/324834 priority patent/WO2008072318A1/en
Publication of WO2008072318A1 publication Critical patent/WO2008072318A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Definitions

  • the present invention relates to an emission analysis device using spark discharge.
  • a spark discharge type emission spectrometer energy stored in a capacitor is applied to a discharge electrode to generate a spark discharge between the electrode and a metal sample, thereby evaporating elements in the metal sample and discharging.
  • This element is excited by plasma. Since an element excited in the plasma emits light at a specific wavelength, the element can be quantified by measuring the light intensity at the wavelength by analyzing the emitted light. If the contained element is unknown, qualitative analysis can be performed by obtaining an emission spectrum in a predetermined wavelength range and examining the wavelength at which the line spectrum exists. Generally, spark discharge is repeatedly performed at a period of several tens to several hundreds of Hz, and the measurement accuracy is improved by integrating the photometric values obtained for each discharge.
  • FIG. 3 is a block diagram of an emission analyzer using a conventional switching capacitor charging circuit.
  • the light emitting section includes a capacitor charging circuit 1, a capacitor circuit 2, an igniter circuit 3, and a light emitting stand 4.
  • the capacitor charging circuit 1 includes a DC power source 11, a flyback transformer 12 having primary and secondary windings, a switching element 13 such as an FET, and a charging control unit 14 for driving the switching element 13.
  • the capacitor circuit 2 includes a rectifier diode 21, a discharge capacitor 22 that stores electrical energy for discharge, and a charge voltage detection unit 23 that detects a charge voltage of the discharge capacitor 22.
  • the igniter circuit 3 includes an igniter transformer 31 having a primary winding and a secondary winding, and an igniter driving unit for generating a high voltage at the secondary winding of the igniter transformer 31. Includes 32.
  • the light emitting stand 4 includes a discharge electrode 41 and a sample (usually a metal) 42 which is an analyte.
  • the primary power wire of the flyback transformer 12 and the switching element 13 are connected in series at both ends of the DC power supply 11, and the switching element 13 is turned on (conducted by the charging control unit 14). ), A direct current flows through the primary winding of the flyback transformer 12 and the excitation energy is stored in the flyback transformer 12.
  • the charging control unit 14 turns on the switching element 13 for a preset time, and when the switching element 13 is turned off, a back electromotive force is generated in the secondary winding of the flyback transformer 12.
  • the excitation energy force capacitor circuit 2 stored in the flyback transformer 12 immediately before that is supplied to the discharge capacitor 22 through the rectifier diode 21 and the discharge capacitor 22 is charged.
  • the switching element 13 is on / off controlled as shown in FIG. 4, and every time the switching element 13 is turned off, the charging voltage of the discharging capacitor 22 is determined by the excitation energy stored in the flyback transformer 12 immediately before the switching element 13 is turned off. Goes up step by step.
  • the charging voltage detection unit 23 monitors the charging voltage of the discharging capacitor 22, and the charging control unit 14 determines whether or not the charging voltage exceeds a predetermined voltage VI based on the monitored value.
  • the charging control unit 14 repeats the on / off control of the switching element 13 until the charging voltage exceeds the predetermined voltage VI. When the charging voltage exceeds the predetermined voltage VI, the on / off operation of the switching element 13 is stopped so that the discharging capacitor 22 Stop charging.
  • the photometry unit 5 including a spectroscope and a light detector measures emitted light having a wavelength peculiar to this element, and collects information on the elements contained in the metal sample 42.
  • the capacitor charging circuit 1 as described above has the following problems. That is, since the time during which the switching element 13 is turned on is constant, when the voltage of the DC power supply 11 changes, the amount of excitation energy stored per on / off operation of the switching element 13 changes. Further, the capacitance of the discharge capacitor 22 fluctuates due to the temperature rise of the discharge capacitor 22 and the like. As described above, when the accumulated amount of excitation energy in the flyback transformer 12 or the capacitance of the discharge capacitor 22 fluctuates, the switching element 13 that is required to charge the discharge capacitor 22 to a certain constant voltage V 1 is turned on. / The number of OFF operations will change. Then, as shown in FIG.
  • the timing at which the charging voltage of the discharging capacitor 22 exceeds the threshold voltage VI varies, and the switching element 13 is turned on / off at most once for the charging voltage of the discharging capacitor 22 when charging is stopped. Variation in voltage corresponding to operation occurs. As a result, the energy stored in the discharging capacitor 22 varies.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-333323 (paragraphs 0004-0007, FIG. 5)
  • the present invention which has been made to solve the above problems, stores a discharge electrode disposed with a predetermined gap between a sample, an igniter circuit connected to the discharge electrode, and electrical energy for discharge.
  • the capacitor charging circuit comprises:
  • a flyback transformer in which a primary feeder is connected to the DC power source, and electric energy is supplied to the capacitor from the secondary feeder;
  • the control means turns on the switching means and then supplies the excitation current supplied to the primary winding of the flyback transformer at a certain constant value. -Turn off the switching means to stop. Since the excitation energy accumulated in the flyback transformer depends on the inductance of the winding and the current flowing in the winding, control is performed so that the supply of that current stops when the excitation current reaches a certain value. If this is done, the excitation energy stored in the flyback transformer per on / off operation of the switching means will be constant regardless of the DC power supply voltage. Furthermore, the control means repeats the ON / OFF operation of the switching means for a fixed number of times, thereby condensing the condenser. Since the capacitor is charged (that is, the excitation energy stored in the flyback transformer is transferred to the capacitor), the energy held in the capacitor when charging stops is also constant.
  • the time from the start of charge to the end of charge is It becomes constant. If the time from the end of charging to the operation of the igniter circuit is constant, the time to operate the charging start force igniter circuit is also constant. For example, the energy consumption by the circuit that detects the charging voltage of the capacitor, etc. The amount (loss) is also constant. Therefore, the energy stored in the capacitor immediately before the spark discharge is generated by operating the igniter circuit is constant.
  • the accumulated energy of the capacitor during discharge depends on the number of repetitions of the on / off operation of the switching means, so that the number of repetitions can be set from the outside. It is also possible to set a predetermined value for determining the current value of the excitation current from the outside in order to turn off the switching element.
  • the accumulated energy of the discharge capacitor is kept constant when spark discharge is generated without being affected by fluctuations in the voltage of the DC power supply or the capacitance of the capacitor. Can be.
  • the generation of plasma due to discharge can be performed stably and almost under the same conditions, and the emission of the target element in the plasma can also be performed stably.
  • FIG. 1 is a block configuration diagram centering on a light emitting unit of an emission analyzer according to an embodiment of the present invention.
  • FIG. 2 is a main timing chart in the light emission part of the emission spectrometer according to the present embodiment.
  • FIG. 3 is a block configuration diagram centering on a light emitting portion of a conventional emission analyzer.
  • FIG. 4 is a waveform diagram of the main part of a light emission part of a conventional emission spectrometer.
  • FIG. 5 is an explanatory diagram of variation in charging voltage in a light emitting unit of a conventional emission spectrometer.
  • FIG. 1 is a block diagram centering on the light emitting part of the emission analyzer according to the present embodiment
  • FIG. 2 is a main timing diagram.
  • the same components as those of the conventional emission analyzer described in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • an excitation current detection part 15 is connected in series with the primary winding of the flyback transformer 12 and the switching element 13.
  • the current value detected by the current detection unit 15 is input to the charge control unit 16.
  • the charging control unit 16 determines the on / off operation timing of the switching element 13 based on the current detection value from the excitation current detection unit 15 instead of the voltage detection value from the charging voltage detection unit 23.
  • the charging voltage detection unit 23 is also provided. For example, this can check whether or not the discharging capacitor 22 is normally charged, It is provided to prevent overcharging or to detect that the discharge has been completed.
  • the operation of the light emitting unit will be described step by step.
  • a direct current excitation current flows from the direct current power source 11 to the primary winding of the flyback transformer 12, and excitation energy is accumulated in the flyback transformer 12.
  • the excitation current increases substantially linearly during the ON period of the switching element 13 as shown in FIG.
  • the current value of the excitation current is detected momentarily by the excitation current detection unit 15, and the charge control unit 16 determines whether or not the current value has reached a predetermined threshold value il. When it is detected that the current value of the excitation current has reached the threshold value il, the charging control unit 16 quickly drives the switching element 13 off.
  • the charging control unit 16 previously stores the length of a period of one on / off operation of the switching element 13 (the time interval from when the switching element 13 is turned on to when it is turned on) and the on / off movement. The number of repetitions of the work is set. Therefore, the charging control unit 16 stops the charging by executing the on / off operation of the switching element 13 for the number of repetitions in the on / off operation period length.
  • the slope of the increase in excitation current when the switching element 13 is on changes.
  • the slope of the increase in excitation current is gentle in (B) because the voltage of DC power supply 11 is lower than in (A).
  • the on-time of the switching element 13 is not always constant, and switching is performed when the increase of the exciting current is gentle.
  • the on-time of the element 13 is increased.
  • the length of one ON-Z OFF operation is fixed (does not vary), so if the ON time becomes longer, the OFF time becomes shorter accordingly.
  • the excitation energy E stored in the flyback transformer 12 is equal to the winding inductance less excitation current I.
  • E (l / 2) -LI
  • the excitation energy is also constant. Therefore, every time the switching element 13 is turned off, the same amount of excitation energy is transferred from the flyback transformer 12 to the discharging capacitor 22. Since the number of on / off operations of the switching element 13 is also determined, the energy stored in the discharging capacitor 22 is constant when charging is stopped.
  • the length of the ON / OFF operation period of the switching element 13 and the number of repetitions thereof are constant (they are not changed during the analysis of at least one sample).
  • the time required from the start of charging to the completion of charging is constant.
  • a charging voltage detector 23 is connected to the discharging capacitor 22 in parallel.
  • a bleeder resistor is also connected in parallel to the discharging capacitor 22 for ensuring safety. These leak the electric charge held in the discharge capacitor 22, that is, consume a small part of the stored electric energy.
  • the required time is constant as described above, the amount of energy consumed is constant. Is also constant.
  • the time from the start of charging to the execution of discharging that is, the operation of the igniter circuit 3 is also constant, the electrical energy accumulated in the discharging capacitor 22 at the time of discharging can be made constant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

After a switching element (13) is turned on, a charge control section (16) makes a decision whether a current detected at an exciting current detecting section (15) has reached a predetermined level or not, and turns the switching element (13) off if the predetermined level has been reached. When the exciting current is controlled to a constant level, exciting energy stored in a flyback transformer (12) also becomes constant and that constant energy is stored in a capacitor (22) every time when the switching element (13) is turned off. A charge control section (16) repeats the on/off operation of the switching element (13) by a predetermined number of times at a predetermined interval before stopping the charging operation. Consequently, a constant energy is held in the capacitor (22) when the charging operation stops and the time from the start to the end of charging also becomes constant. Conditions for repeating spark discharge are thereby satisfied and an analysis precision and reproducibility are enhanced.

Description

明 細 書  Specification
発光分析装置  Luminescence analyzer
技術分野  Technical field
[0001] 本発明は、スパーク放電を利用した発光分析装置に関する。  [0001] The present invention relates to an emission analysis device using spark discharge.
背景技術  Background art
[0002] スパーク放電型の発光分析装置では、コンデンサに蓄積したエネルギーを放電電 極に与えることで該電極と金属試料との間にスパーク放電を発生させ、金属試料中 の元素を蒸発させるとともに放電プラズマによってこの元素を励起する。プラズマ中 で励起された元素は特有の波長で以て発光するため、この発光光を分光して該波長 の光強度を測定することによりその元素を定量することができる。また、含有元素が不 明な場合、所定波長範囲の発光スペクトルを取得して線スペクトルが存在する波長を 調べることにより定性分析を行うこともできる。一般に、数十〜数百 Hz程度の周期で 繰り返しスパーク放電を行い、各放電に対応して得られた測光値を積算処理すること で測定精度を上げるようにしている。  In a spark discharge type emission spectrometer, energy stored in a capacitor is applied to a discharge electrode to generate a spark discharge between the electrode and a metal sample, thereby evaporating elements in the metal sample and discharging. This element is excited by plasma. Since an element excited in the plasma emits light at a specific wavelength, the element can be quantified by measuring the light intensity at the wavelength by analyzing the emitted light. If the contained element is unknown, qualitative analysis can be performed by obtaining an emission spectrum in a predetermined wavelength range and examining the wavelength at which the line spectrum exists. Generally, spark discharge is repeatedly performed at a period of several tens to several hundreds of Hz, and the measurement accuracy is improved by integrating the photometric values obtained for each discharge.
[0003] こうした発光分析装置では、スパーク放電を行うために比較的短い時間でコンデン サに数百 V程度の電圧を充電する必要がある。こうした目的のために、近年、スイツ チング方式のコンデンサ充電回路が広く利用されている(例えば特許文献 1など参照 )。図 3は従来のスイッチング方式のコンデンサ充電回路を用いた発光分析装置のブ ロック構成図である。  In such an emission analyzer, it is necessary to charge a capacitor with a voltage of about several hundred volts in a relatively short time in order to perform a spark discharge. For this purpose, switching type capacitor charging circuits have been widely used in recent years (see, for example, Patent Document 1). Fig. 3 is a block diagram of an emission analyzer using a conventional switching capacitor charging circuit.
[0004] この発光分析装置において発光部は、コンデンサ充電回路 1、コンデンサ回路 2、 ィグナイタ回路 3、及び発光スタンド 4から構成される。コンデンサ充電回路 1は、直流 電源 11、一次卷線と二次卷線とを有するフライバックトランス 12、 FET等のスィッチ ング素子 13、該スイッチング素子 13を駆動するための充電制御部 14を含む。コンデ ンサ回路 2は、整流ダイオード 21、放電のための電気エネルギーを蓄積する放電用 コンデンサ 22、及び放電用コンデンサ 22の充電電圧を検出する充電電圧検出部 23 を含む。ィグナイタ回路 3は、一次卷線と二次卷線とを有するイダナイタトランス 31、 及びイダナイタトランス 31の二次卷線に高電圧を発生させるためのィグナイタ駆動部 32を含む。また発光スタンド 4は、放電電極 41、及び被分析物である試料 (通常は金 属) 42を含む。 [0004] In this emission analyzer, the light emitting section includes a capacitor charging circuit 1, a capacitor circuit 2, an igniter circuit 3, and a light emitting stand 4. The capacitor charging circuit 1 includes a DC power source 11, a flyback transformer 12 having primary and secondary windings, a switching element 13 such as an FET, and a charging control unit 14 for driving the switching element 13. The capacitor circuit 2 includes a rectifier diode 21, a discharge capacitor 22 that stores electrical energy for discharge, and a charge voltage detection unit 23 that detects a charge voltage of the discharge capacitor 22. The igniter circuit 3 includes an igniter transformer 31 having a primary winding and a secondary winding, and an igniter driving unit for generating a high voltage at the secondary winding of the igniter transformer 31. Includes 32. The light emitting stand 4 includes a discharge electrode 41 and a sample (usually a metal) 42 which is an analyte.
[0005] コンデンサ充電回路 1において直流電源 11の両端にはフライバックトランス 12の一 次卷線とスイッチング素子 13とが直列に接続されており、充電制御部 14によりスイツ チング素子 13がオン (導通)されると直流電流がフライバックトランス 12の一次卷線に 流れ、フライバックトランス 12に励磁エネルギーが蓄積される。充電制御部 14は予め 設定された時間だけスイッチング素子 13をオンし、スイッチング素子 13がオフされる とフライバックトランス 12の二次卷線には逆起電力が発生する。これにより、その直前 にフライバックトランス 12に蓄積された励磁エネルギー力 コンデンサ回路 2において 整流ダイオード 21を通して放電用コンデンサ 22に供給され、放電用コンデンサ 22は 充電される。  In the capacitor charging circuit 1, the primary power wire of the flyback transformer 12 and the switching element 13 are connected in series at both ends of the DC power supply 11, and the switching element 13 is turned on (conducted by the charging control unit 14). ), A direct current flows through the primary winding of the flyback transformer 12 and the excitation energy is stored in the flyback transformer 12. The charging control unit 14 turns on the switching element 13 for a preset time, and when the switching element 13 is turned off, a back electromotive force is generated in the secondary winding of the flyback transformer 12. As a result, the excitation energy force capacitor circuit 2 stored in the flyback transformer 12 immediately before that is supplied to the discharge capacitor 22 through the rectifier diode 21 and the discharge capacitor 22 is charged.
[0006] スイッチング素子 13は図 4に示すようにオン/オフ制御され、スイッチング素子 13 がオフされる毎にその直前にフライバックトランス 12に蓄積された励磁エネルギーに よって放電用コンデンサ 22の充電電圧はステップ状に上昇してゆく。充電電圧検出 部 23は放電用コンデンサ 22の充電電圧をモニタし、充電制御部 14はこのモニタ値 により充電電圧が所定電圧 VIを上回ったか否かを判定する。充電制御部 14は充電 電圧が所定電圧 VIを上回るまでスイッチング素子 13のオン/オフ制御を繰り返し、 充電電圧が所定電圧 VIを上回るとスイッチング素子 13のオン動作を停止することで 放電用コンデンサ 22の充電を停止させる。  The switching element 13 is on / off controlled as shown in FIG. 4, and every time the switching element 13 is turned off, the charging voltage of the discharging capacitor 22 is determined by the excitation energy stored in the flyback transformer 12 immediately before the switching element 13 is turned off. Goes up step by step. The charging voltage detection unit 23 monitors the charging voltage of the discharging capacitor 22, and the charging control unit 14 determines whether or not the charging voltage exceeds a predetermined voltage VI based on the monitored value. The charging control unit 14 repeats the on / off control of the switching element 13 until the charging voltage exceeds the predetermined voltage VI. When the charging voltage exceeds the predetermined voltage VI, the on / off operation of the switching element 13 is stopped so that the discharging capacitor 22 Stop charging.
[0007] これにより充電が完了するから、その後にィグナイタ回路 3においてィグナイタ駆動 部 32によりイダナイタトランス 31に高電圧が生じると、放電電極 41と金属試料 42との 間にスパーク放電が生じる。このとき金属試料 42の表面は局所的に高温となり、その 試料表面に存在する元素は蒸発する。また同時に、放電用コンデンサ 22に蓄えられ ていたエネルギーが放電電極 41と金属試料 42との間(ギャップ)に移動してプラズマ を形成し、上記蒸発した元素はプラズマ中の電子により励起される。そして、励起さ れた元素が安定な状態に戻るときに、そのエネルギー差に相当する波長の光を発す る。分光器や光検出器などを含む測光部 5はこの元素特有の波長を持つ発光光を 測定し、金属試料 42の含有元素に関する情報を収集する。 [0008] 以上のように従来のスイッチング方式によるコンデンサ充電回路 1では、放電用コン デンサ 22の充電電圧が所定電圧 VIを上回ると充電を停止する、という方法で放電 用コンデンサ 22に必要な電気エネルギーを蓄えるようにしている。 [0007] Since the charging is completed by this, if a high voltage is subsequently generated in the igniter transformer 31 by the igniter driving unit 32 in the igniter circuit 3, a spark discharge is generated between the discharge electrode 41 and the metal sample 42. At this time, the surface of the metal sample 42 is locally heated and the elements present on the sample surface evaporate. At the same time, the energy stored in the discharge capacitor 22 moves between the discharge electrode 41 and the metal sample 42 (gap) to form plasma, and the evaporated elements are excited by electrons in the plasma. When the excited element returns to a stable state, light having a wavelength corresponding to the energy difference is emitted. The photometry unit 5 including a spectroscope and a light detector measures emitted light having a wavelength peculiar to this element, and collects information on the elements contained in the metal sample 42. [0008] As described above, in the capacitor charging circuit 1 using the conventional switching method, the electric energy required for the discharging capacitor 22 is stopped by a method in which charging is stopped when the charging voltage of the discharging capacitor 22 exceeds a predetermined voltage VI. To store.
[0009] し力 ながら、上記のようなコンデンサ充電回路 1では次のような問題がある。即ち、 スイッチング素子 13をオンしている時間は一定であるため、直流電源 11の電圧が変 動するとスイッチング素子 13のオン/オフ動作 1回当たりの励磁エネルギーの蓄積 量が変化する。また、放電用コンデンサ 22の温度上昇などによって、その静電容量 は変動する。このようにフライバックトランス 12における励磁エネルギーの蓄積量や放 電用コンデンサ 22の静電容量が変動すると、放電用コンデンサ 22を或る一定電圧 V 1まで充電するために必要なスイッチング素子 13のオン/オフ動作の回数が変化す ることとなる。すると、図 5に示すように、放電用コンデンサ 22の充電電圧が閾値電圧 VIを越えるタイミングにばらつきが生じ、充電停止時の放電用コンデンサ 22の充電 電圧に最大 1回のスイッチング素子 13オン/オフ動作に相当する電圧のばらつきが 生じる。これにより、放電用コンデンサ 22に蓄えられるエネルギーは変動する。  However, the capacitor charging circuit 1 as described above has the following problems. That is, since the time during which the switching element 13 is turned on is constant, when the voltage of the DC power supply 11 changes, the amount of excitation energy stored per on / off operation of the switching element 13 changes. Further, the capacitance of the discharge capacitor 22 fluctuates due to the temperature rise of the discharge capacitor 22 and the like. As described above, when the accumulated amount of excitation energy in the flyback transformer 12 or the capacitance of the discharge capacitor 22 fluctuates, the switching element 13 that is required to charge the discharge capacitor 22 to a certain constant voltage V 1 is turned on. / The number of OFF operations will change. Then, as shown in FIG. 5, the timing at which the charging voltage of the discharging capacitor 22 exceeds the threshold voltage VI varies, and the switching element 13 is turned on / off at most once for the charging voltage of the discharging capacitor 22 when charging is stopped. Variation in voltage corresponding to operation occurs. As a result, the energy stored in the discharging capacitor 22 varies.
[0010] また放電用コンデンサ 22の充電電圧のモニタ値で充電停止の制御を行っているた め、上述のように放電用コンデンサ 22自体の静電容量が変化すると、仮に最終的な 充電電圧は一定であっても、該コンデンサ 22に保持されるエネルギーは変化するこ とになる。  [0010] In addition, since the charge stop control is performed by the monitor value of the charging voltage of the discharging capacitor 22, if the capacitance of the discharging capacitor 22 itself changes as described above, the final charging voltage is temporarily Even if it is constant, the energy held in the capacitor 22 will change.
[0011] スパーク放電を行う際に放電用コンデンサ 22に蓄えられたエネルギーが一定でな いと、放電時にプラズマの発生状態が変化する。それにより、金属試料 42に含まれる 元素量が一定であったとしても発光強度にばらつきが生じて、これが分析精度や再 現性の低下の原因となるおそれがある。  [0011] If the energy stored in the discharge capacitor 22 is not constant during spark discharge, the plasma generation state changes during discharge. As a result, even if the amount of elements contained in the metal sample 42 is constant, the emission intensity varies, which may cause a decrease in analysis accuracy and reproducibility.
[0012] 特許文献 1 :特開 2004— 333323 (段落 0004— 0007、図 5)  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-333323 (paragraphs 0004-0007, FIG. 5)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 即ち、スパーク放電型の発光分析装置では分析精度や再現性を高めるためには、 放電直前のコンデンサの蓄積エネルギーを一定に維持することが重要であるにも拘 わらず、従来の装置ではその蓄積エネルギーを一定にすることが難しかった。本発 明はこうした課題を解決するために成されたものであり、その目的とするところは、ス パーク放電を発生させるための放電用コンデンサの蓄積エネルギーの安定性を向上 させることで、放電に伴う目的元素の発光を安定化させることができる発光分析装置 を提供することにある。 [0013] That is, in order to improve the analysis accuracy and reproducibility of a spark discharge type emission spectrometer, it is important to keep the accumulated energy of the capacitor just before discharge constant, but the conventional apparatus Then, it was difficult to make the stored energy constant. Main departure Is designed to solve these problems, and the purpose of this is to improve the stability of the stored energy of the discharge capacitor for generating spark discharge, and to An object of the present invention is to provide an emission analyzer capable of stabilizing the light emission of an element.
課題を解決するための手段  Means for solving the problem
[0014] 上記課題を解決するために成された本発明は、試料との間に所定間隙で配置され る放電電極と、該放電電極に接続されるィグナイタ回路と、放電用の電気エネルギー を蓄えるコンデンサと、該コンデンサを充電するコンデンサ充電回路と、を具備する 発光分析装置において、前記コンデンサ充電回路は、  [0014] The present invention, which has been made to solve the above problems, stores a discharge electrode disposed with a predetermined gap between a sample, an igniter circuit connected to the discharge electrode, and electrical energy for discharge. In a light emission analyzer comprising a capacitor and a capacitor charging circuit that charges the capacitor, the capacitor charging circuit comprises:
a)直流電源と、  a) DC power supply,
b)該直流電源に一次卷線が接続され、二次卷線から前記コンデンサに電気工ネル ギーを供給するフライバックトランスと、  b) a flyback transformer in which a primary feeder is connected to the DC power source, and electric energy is supplied to the capacitor from the secondary feeder;
c)前記直流電源から前記フライバックトランスの一次卷線に供給される励磁電流を オン Zオフ制御するスイッチング手段と、  c) switching means for on-Z-off controlling the exciting current supplied from the DC power source to the primary winding of the flyback transformer;
d)前記励磁電流の電流値を検出する電流検出手段と、  d) current detection means for detecting the current value of the excitation current;
e)前記スイッチング手段をオンさせた後に前記電流検出手段により検出された電流 値が所定値に達すると前記スイッチング手段をオフさせるというオン/オフ動作を、 所定の時間間隔で所定の回数だけ繰り返すように、前記スイッチング手段の動作を 制御する制御手段と、  e) An on / off operation of turning off the switching means when the current value detected by the current detection means reaches a predetermined value after turning on the switching means is repeated a predetermined number of times at predetermined time intervals. Control means for controlling the operation of the switching means;
を備えることを特徴としてレヽる。  It is characterized by having
[0015] 本発明に係る発光分析装置では、制御手段はスイッチング手段をオンさせた後、フ ライバックトランスの一次卷線に供給される励磁電流が或る一定値になった時点でそ の供給をー且停止するべくスイッチング手段をオフさせる。フライバックトランスに蓄積 される励磁エネルギーは卷線のインダクタンスと卷線に流れる電流値に依存するた め、励磁電流が一定の所定値に達したときにその電流の供給を停止するように制御 を行うと、スイッチング手段のオン/オフ動作 1回当たりにフライバックトランスに蓄積 される励磁エネルギーは直流電源の電圧とは無関係に一定となる。さらに制御手段 は、決まった回数だけスイッチング手段のオン/オフ動作を繰り返すことでコンデン サを充電する(つまりフライバックトランスに蓄えた励磁エネルギーをコンデンサに移 動させる)から、充電停止時点でコンデンサに保持されるエネルギーも一定となる。 In the emission analysis apparatus according to the present invention, the control means turns on the switching means and then supplies the excitation current supplied to the primary winding of the flyback transformer at a certain constant value. -Turn off the switching means to stop. Since the excitation energy accumulated in the flyback transformer depends on the inductance of the winding and the current flowing in the winding, control is performed so that the supply of that current stops when the excitation current reaches a certain value. If this is done, the excitation energy stored in the flyback transformer per on / off operation of the switching means will be constant regardless of the DC power supply voltage. Furthermore, the control means repeats the ON / OFF operation of the switching means for a fixed number of times, thereby condensing the condenser. Since the capacitor is charged (that is, the excitation energy stored in the flyback transformer is transferred to the capacitor), the energy held in the capacitor when charging stops is also constant.
[0016] また、スイッチング素子のオン/オフ動作の繰り返し回数と時間間隔(スイッチング 素子の 1回のオン Zオフ動作の所要時間)とは決まっているため、充電開始から充電 終了時点までの時間は一定となる。そして、充電終了時点からィグナイタ回路を動作 させるまでの時間が一定であれば、充電開始力 ィグナイタ回路を動作させるまでの 時間も一定となり、例えばコンデンサの充電電圧を検出する回路などによるエネルギ 一の消費量 (損失量)も一定となる。したがって、ィグナイタ回路を動作させてスパー ク放電を起こす直前のコンデンサの蓄積エネルギーは一定となる。  [0016] In addition, since the number of times the switching element is turned on / off and the time interval (the time required for one on / off operation of the switching element) are determined, the time from the start of charge to the end of charge is It becomes constant. If the time from the end of charging to the operation of the igniter circuit is constant, the time to operate the charging start force igniter circuit is also constant. For example, the energy consumption by the circuit that detects the charging voltage of the capacitor, etc. The amount (loss) is also constant. Therefore, the energy stored in the capacitor immediately before the spark discharge is generated by operating the igniter circuit is constant.
[0017] なお、放電時におけるコンデンサの蓄積エネルギーはスイッチング手段のオン/ォ フ動作の繰り返し回数に依存するから、この繰り返し回数を外部から設定可能として おくようにするとよレ、。また、スイッチング素子をオフするために励磁電流の電流値を 判定する所定値を外部から設定できるようにしてもょレ、。  [0017] It should be noted that the accumulated energy of the capacitor during discharge depends on the number of repetitions of the on / off operation of the switching means, so that the number of repetitions can be set from the outside. It is also possible to set a predetermined value for determining the current value of the excitation current from the outside in order to turn off the switching element.
発明の効果  The invention's effect
[0018] 本発明に係る発光分析装置によれば、直流電源の電圧変動やコンデンサの静電 容量の変動などの影響を受けることなぐスパーク放電を発生させる際の放電用コン デンサの蓄積エネルギーを一定にすることができる。それによつて、放電によるプラズ マの発生を常に安定に且つほぼ同条件で行うことができ、プラズマ中での目的元素 の発光も安定的に行うことができる。而して、発光分析の精度及び再現性の向上を 図ること力 Sできる。  [0018] According to the emission analysis apparatus according to the present invention, the accumulated energy of the discharge capacitor is kept constant when spark discharge is generated without being affected by fluctuations in the voltage of the DC power supply or the capacitance of the capacitor. Can be. As a result, the generation of plasma due to discharge can be performed stably and almost under the same conditions, and the emission of the target element in the plasma can also be performed stably. Thus, it is possible to improve the accuracy and reproducibility of the emission analysis.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の一実施例による発光分析装置の発光部を中心とするブロック構成図。  FIG. 1 is a block configuration diagram centering on a light emitting unit of an emission analyzer according to an embodiment of the present invention.
[図 2]本実施例による発光分析装置の発光部における主要なタイミング図。  FIG. 2 is a main timing chart in the light emission part of the emission spectrometer according to the present embodiment.
[図 3]従来の発光分析装置の発光部を中心とするブロック構成図。  FIG. 3 is a block configuration diagram centering on a light emitting portion of a conventional emission analyzer.
[図 4]従来の発光分析装置の発光部における要部の波形図。  FIG. 4 is a waveform diagram of the main part of a light emission part of a conventional emission spectrometer.
[図 5]従来の発光分析装置の発光部における充電電圧のばらつきの説明図。  FIG. 5 is an explanatory diagram of variation in charging voltage in a light emitting unit of a conventional emission spectrometer.
符号の説明  Explanation of symbols
[0020] 1…コンデンサ充電回路 11 -…直流電源 [0020] 1 ... Capacitor charging circuit 11-… DC power supply
12- …フライバックトラン  12-… flyback run
13- …スイッチング素子  13-… Switching element
15- …励磁電流検出部  15-… Excitation current detector
16- …充電制御部  16-… Charge controller
2· - · 'コンデンサ回路  2--'Capacitor circuit
21 - …整流ダイオード  21-… Rectifier diode
22- …放電用コンデンサ  22-… Discharge capacitor
23- …充電電圧検出部  23-… Charging voltage detector
3· · · 'ィダナイタ回路  3.
31 - · ·ィグナイタ卜ランス  31-ignitorance
32- …ィダナイタ駆動部  32-… Dydanita Drive
4· · · '発光スタンド  4.
41 - ■· ·放電電極  41-■ · · Discharge electrode
42- …金属試料  42-… Metal sample
5· · · •測光部  5
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明に係る発光分析装置の一実施例を図面を参照して説明する。図 1は 本実施例による発光分析装置の発光部を中心とするブロック構成図、図 2は主要な タイミング図である。図 3で説明した従来の発光分析装置と同一の構成要素には同一 の符号を付して詳しい説明を省略する。  Hereinafter, an embodiment of an emission analyzer according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram centering on the light emitting part of the emission analyzer according to the present embodiment, and FIG. 2 is a main timing diagram. The same components as those of the conventional emission analyzer described in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0022] 本実施例による発光分析装置の発光部では、コンデンサ充電回路 1において、フラ ィバックトランス 12の一次卷線及びスイッチング素子 13と直列に励磁電流検出部 15 が接続されており、その励磁電流検出部 15により検出された電流値が充電制御部 1 6に入力されている。充電制御部 16は充電電圧検出部 23からの電圧検出値の代わ りに励磁電流検出部 15からの電流検出値に基づいてスイッチング素子 13のオン/ オフ動作のタイミングを決定する。なお、図 1でも充電電圧検出部 23を備えるが、こ れは例えば、放電用コンデンサ 22が正常に充電されているか否かをチェックしたり、 過充電を防止したり、或いは、放電が完全に行われたことを検知したりするために設 けられている。 In the light emission part of the emission analyzer according to the present embodiment, in the capacitor charging circuit 1, an excitation current detection part 15 is connected in series with the primary winding of the flyback transformer 12 and the switching element 13. The current value detected by the current detection unit 15 is input to the charge control unit 16. The charging control unit 16 determines the on / off operation timing of the switching element 13 based on the current detection value from the excitation current detection unit 15 instead of the voltage detection value from the charging voltage detection unit 23. In FIG. 1, the charging voltage detection unit 23 is also provided. For example, this can check whether or not the discharging capacitor 22 is normally charged, It is provided to prevent overcharging or to detect that the discharge has been completed.
[0023] 順を追って上記発光部の動作を説明する。充電制御部 16によりスイッチング素子 1 3がオンされると、直流電源 11から直流の励磁電流がフライバックトランス 12の一次 卷線に流れ、フライバックトランス 12に励磁エネルギーが蓄積される。このとき励磁電 流は、図 2に示すようにスイッチング素子 13のオン期間中にほぼ直線的に増加する。 この励磁電流の電流値は励磁電流検出部 15により時々刻々と検出され、充電制御 部 16はこの電流値が予め決められた閾値 ilに到達したか否力を判定する。励磁電 流の電流値が閾値 ilに達したことを検知すると、充電制御部 16は速やかにスィッチ ング素子 13をオフ駆動する。これにより励磁電流の供給は遮断される。スイッチング 素子 13がオフされるとフライバックトランス 12の二次卷線には逆起電力が発生する。 これにより、その直前にフライバックトランス 12に蓄積された励磁エネルギーが放電 用コンデンサ 22に供給され、放電用コンデンサ 22は充電される。  [0023] The operation of the light emitting unit will be described step by step. When the switching element 13 is turned on by the charging control unit 16, a direct current excitation current flows from the direct current power source 11 to the primary winding of the flyback transformer 12, and excitation energy is accumulated in the flyback transformer 12. At this time, the excitation current increases substantially linearly during the ON period of the switching element 13 as shown in FIG. The current value of the excitation current is detected momentarily by the excitation current detection unit 15, and the charge control unit 16 determines whether or not the current value has reached a predetermined threshold value il. When it is detected that the current value of the excitation current has reached the threshold value il, the charging control unit 16 quickly drives the switching element 13 off. As a result, the supply of excitation current is cut off. When the switching element 13 is turned off, a back electromotive force is generated in the secondary winding of the flyback transformer 12. As a result, the excitation energy stored in the flyback transformer 12 immediately before is supplied to the discharging capacitor 22, and the discharging capacitor 22 is charged.
[0024] 充電制御部 16には予め、スイッチング素子 13の 1回のオン/オフ動作の期間の長 さ(スイッチング素子 13をオンしてから次にオンするまでの時間間隔)とオン/オフ動 作の繰り返し回数とが設定されている。そこで充電制御部 16は、そのオン/オフ動 作期間長さでその繰り返し回数だけスイッチング素子 13のオン/オフ動作を実行し て充電を停止する。  [0024] The charging control unit 16 previously stores the length of a period of one on / off operation of the switching element 13 (the time interval from when the switching element 13 is turned on to when it is turned on) and the on / off movement. The number of repetitions of the work is set. Therefore, the charging control unit 16 stops the charging by executing the on / off operation of the switching element 13 for the number of repetitions in the on / off operation period length.
[0025] 直流電源 11の電圧が変動すると、スイッチング素子 13がオンしているときの励磁電 流の増加の傾きが変化する。例えば図 2において(B)では (A)よりも直流電源 11の 電圧が低いために励磁電流の増加の傾きが緩やかになっている。これに対し、この 励磁電流が閾値 ilに達するまでスイッチング素子 13はオンされ続けるから、スィッチ ング素子 13のオン時間は一定とは限らず、励磁電流の増加の傾きが緩やかである 場合にはスイッチング素子 13のオン時間が長くなる。但し、前述のように 1回のオン Zオフ動作の期間の長さは決まっている(変動しない)から、オン時間が長くなつた場 合にはその分だけオフ時間が短くなる。  [0025] When the voltage of the DC power supply 11 fluctuates, the slope of the increase in excitation current when the switching element 13 is on changes. For example, in Fig. 2, the slope of the increase in excitation current is gentle in (B) because the voltage of DC power supply 11 is lower than in (A). On the other hand, since the switching element 13 is kept on until the exciting current reaches the threshold value il, the on-time of the switching element 13 is not always constant, and switching is performed when the increase of the exciting current is gentle. The on-time of the element 13 is increased. However, as described above, the length of one ON-Z OFF operation is fixed (does not vary), so if the ON time becomes longer, the OFF time becomes shorter accordingly.
[0026] フライバックトランス 12に蓄積される励磁エネルギー Eは、卷線インダクタンスレ励 磁電流 Iに対して、 E= (l/2) -L-I [0026] The excitation energy E stored in the flyback transformer 12 is equal to the winding inductance less excitation current I. E = (l / 2) -LI
となるから、励磁電流 Iが一定である場合には励磁エネルギーも一定となる。したがつ て、スイッチング素子 13がオフされる毎に同一量の励磁エネルギーがフライバックトラ ンス 12から放電用コンデンサ 22に移されることになる。そして、スイッチング素子 13 のオン/オフ動作回数も決まっているため、充電が停止されるときに放電用コンデン サ 22に蓄積されているエネルギーは一定となる。  Therefore, when the excitation current I is constant, the excitation energy is also constant. Therefore, every time the switching element 13 is turned off, the same amount of excitation energy is transferred from the flyback transformer 12 to the discharging capacitor 22. Since the number of on / off operations of the switching element 13 is also determined, the energy stored in the discharging capacitor 22 is constant when charging is stopped.
[0027] 上述のように放電用コンデンサ 22の充電が完了すると、図示しない制御回路の制 御の下に、ィグナイタ回路 3においてィグナイタ駆動部 32からイダナイタトランス 31に 高電圧を発生させ、発光スタンド 4の放電電極 41と金属試料 42との間にスパーク放 電を生じさせる。これにより、金属試料 42の表面に存在する元素は蒸発し、放電電極 41と金属試料 42との間に形成されるプラズマ中で上記元素に由来する発光が生じ る。 When the charging of the discharging capacitor 22 is completed as described above, a high voltage is generated from the igniter driving unit 32 to the igniter transformer 31 in the igniter circuit 3 under the control of a control circuit (not shown), and the light emitting stand Spark discharge is generated between the discharge electrode 41 of 4 and the metal sample 42. Thereby, the elements present on the surface of the metal sample 42 evaporate, and light emission derived from the elements occurs in the plasma formed between the discharge electrode 41 and the metal sample 42.
[0028] スイッチング素子 13の 1回のオン/オフ動作の期間の長さとその繰り返し回数とは 一定である(少なくとも 1個の試料の分析中には変更されることはなレ、)から、充電の 開始から充電完了までの所要時間は一定である。放電用コンデンサ 22には並列に 充電電圧検出部 23が接続されており、またそれ以外に図示しなレ、が、安全確保のた めにブリーダ抵抗も放電用コンデンサ 22に並列接続されている。これらは放電用コン デンサ 22に保持されている電荷を漏洩させ、つまりは蓄積された電気エネルギーの ごく一部を消費するが、上述の如く所要時間が一定であるためにその消費エネルギ 一の量も一定となる。さらに、充電開始から放電実行、つまりはィグナイタ回路 3を動 作させるまでの時間も一定となるため、放電時に放電用コンデンサ 22に蓄積されて レ、る電気エネルギーを一定にすることができる。  [0028] The length of the ON / OFF operation period of the switching element 13 and the number of repetitions thereof are constant (they are not changed during the analysis of at least one sample). The time required from the start of charging to the completion of charging is constant. A charging voltage detector 23 is connected to the discharging capacitor 22 in parallel. In addition, a bleeder resistor is also connected in parallel to the discharging capacitor 22 for ensuring safety. These leak the electric charge held in the discharge capacitor 22, that is, consume a small part of the stored electric energy. However, since the required time is constant as described above, the amount of energy consumed is constant. Is also constant. Furthermore, since the time from the start of charging to the execution of discharging, that is, the operation of the igniter circuit 3 is also constant, the electrical energy accumulated in the discharging capacitor 22 at the time of discharging can be made constant.
[0029] それにより、スパーク放電を例えば周期的に繰り返し実行する場合に、放電電極 41 と金属試料 42との間でのスパーク放電やプラズマ中での発光の条件を揃えることが でき、無用な測光値のばらつきを抑えて分析精度や再現性の向上を図ることができ る。  [0029] Thereby, when the spark discharge is repeatedly executed, for example, the conditions for the spark discharge between the discharge electrode 41 and the metal sample 42 and the light emission in the plasma can be made uniform, and unnecessary photometry. Analysis accuracy and reproducibility can be improved by suppressing variation in values.
[0030] なお、上記説明から明らかなように、スイッチング素子 13のオン Zオフ動作の繰り 返し回数を変更すると放電実行時の放電用コンデンサ 22における蓄積エネルギー が相違する。したがって、例えば試料の種類や放電雰囲気の相違などによって放電 条件を変更したい場合にはオン/オフ動作の繰り返し回数を変更するようにするとよ レ、。、 [0030] As is clear from the above description, if the number of repetitions of the on-Z-off operation of the switching element 13 is changed, the stored energy in the discharge capacitor 22 at the time of discharge execution Is different. Therefore, for example, if you want to change the discharge conditions depending on the type of sample or the discharge atmosphere, change the number of repetitions of the on / off operation. ,
また、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、追カロ 、修正を行っても本願請求の範囲に包含されることは明らかである。  Further, the above-described embodiment is an example of the present invention, and it is apparent that the present invention is encompassed in the scope of the present application even if appropriate modifications, additional calories and corrections are made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 試料との間に所定間隙で配置される放電電極と、該放電電極に接続されるィグナ イタ回路と、放電用の電気エネルギーを蓄えるコンデンサと、該コンデンサを充電す るコンデンサ充電回路と、を具備する発光分析装置において、前記コンデンサ充電 回路は、  [1] A discharge electrode arranged with a predetermined gap between the sample, an igniter circuit connected to the discharge electrode, a capacitor for storing electric energy for discharge, and a capacitor charging circuit for charging the capacitor , The capacitor charging circuit comprises:
a)直流電源と、  a) DC power supply,
b)該直流電源に一次卷線が接続され、二次卷線から前記コンデンサに電気工ネル ギーを供給するフライバックトランスと、  b) a flyback transformer in which a primary feeder is connected to the DC power source, and electric energy is supplied to the capacitor from the secondary feeder;
c)前記直流電源から前記フライバックトランスの一次卷線に供給される励磁電流を オン/オフ制御するスイッチング手段と、  c) switching means for controlling on / off of the exciting current supplied from the DC power source to the primary winding of the flyback transformer;
d)前記励磁電流の電流値を検出する電流検出手段と、  d) current detection means for detecting the current value of the excitation current;
e)前記スイッチング手段をオンさせた後に前記電流検出手段により検出された電流 値が所定値に達すると前記スイッチング手段をオフさせるというオン/オフ動作を、 所定の時間間隔で所定の回数だけ繰り返すように、前記スイッチング手段の動作を 制御する制御手段と、  e) An on / off operation of turning off the switching means when the current value detected by the current detection means reaches a predetermined value after turning on the switching means is repeated a predetermined number of times at predetermined time intervals. Control means for controlling the operation of the switching means;
を備えることを特徴とする発光分析装置。  An emission analysis apparatus comprising:
[2] 前記スイッチング手段のオン/オフ動作の繰り返し回数を外部から設定可能とした ことを特徴とする請求項 1に記載の発光分析装置。 [2] The luminescence analyzer according to [1], wherein the number of repetitions of the on / off operation of the switching means can be set from the outside.
PCT/JP2006/324834 2006-10-31 2006-12-13 Emission analyzer WO2008072318A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008549153A JP4919104B2 (en) 2006-12-13 2006-12-13 Luminescence analyzer
CN2006800566272A CN101558291B (en) 2006-12-13 2006-12-13 Emission analyzer
US12/516,750 US8179657B2 (en) 2006-10-31 2006-12-13 Emission analyzer
PCT/JP2006/324834 WO2008072318A1 (en) 2006-12-13 2006-12-13 Emission analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324834 WO2008072318A1 (en) 2006-12-13 2006-12-13 Emission analyzer

Publications (1)

Publication Number Publication Date
WO2008072318A1 true WO2008072318A1 (en) 2008-06-19

Family

ID=39511349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324834 WO2008072318A1 (en) 2006-10-31 2006-12-13 Emission analyzer

Country Status (3)

Country Link
JP (1) JP4919104B2 (en)
CN (1) CN101558291B (en)
WO (1) WO2008072318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235033A1 (en) * 2010-03-25 2011-09-29 Shimadzu Corporation Emission spectrophotometer
CN104659654A (en) * 2013-11-15 2015-05-27 株式会社岛津制作所 Luminescence analysis device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799415B (en) * 2010-03-04 2011-05-11 北京纳克分析仪器有限公司 All-digital energy-adjustable spark light source
CN104534510A (en) * 2014-12-19 2015-04-22 陈廷 Fuel gas heating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184564A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Emission spectrochemical analytical method
JP2000009645A (en) * 1998-06-26 2000-01-14 Horiba Ltd Emission spectroscopic analyzer
JP2004144766A (en) * 2004-01-08 2004-05-20 Jfe Steel Kk Method for emission spectral analysis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110870B2 (en) * 1972-11-17 1976-04-07
JPS60114746A (en) * 1983-11-25 1985-06-21 Shimadzu Corp Spark discharge circuit for emission spectrochemical analysis
JP3728894B2 (en) * 1997-08-25 2005-12-21 株式会社島津製作所 Emission analysis power supply
JP3870582B2 (en) * 1998-12-02 2007-01-17 株式会社島津製作所 Luminescence analyzer
US6518733B1 (en) * 2001-08-03 2003-02-11 Linear Technology Corporation Circuits and techniques for capacitor charging circuits
JP2003052173A (en) * 2001-08-06 2003-02-21 Canon Inc Flyback-type voltage step-up circuit of capacitor
JP3708529B2 (en) * 2003-03-18 2005-10-19 Smk株式会社 Constant voltage output control method and constant voltage output control device for switching power supply circuit
JP2004333323A (en) * 2003-05-08 2004-11-25 Shimadzu Corp Emission spectrophotometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184564A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Emission spectrochemical analytical method
JP2000009645A (en) * 1998-06-26 2000-01-14 Horiba Ltd Emission spectroscopic analyzer
JP2004144766A (en) * 2004-01-08 2004-05-20 Jfe Steel Kk Method for emission spectral analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235033A1 (en) * 2010-03-25 2011-09-29 Shimadzu Corporation Emission spectrophotometer
JP2011203101A (en) * 2010-03-25 2011-10-13 Shimadzu Corp Emission spectrophotometer
US8643838B2 (en) * 2010-03-25 2014-02-04 Shimadzu Corporation Emission spectrophotometer
CN104659654A (en) * 2013-11-15 2015-05-27 株式会社岛津制作所 Luminescence analysis device

Also Published As

Publication number Publication date
JP4919104B2 (en) 2012-04-18
CN101558291B (en) 2011-02-16
JPWO2008072318A1 (en) 2010-03-25
CN101558291A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US8179657B2 (en) Emission analyzer
JP5374942B2 (en) Flash charging circuit and flash charging control method
JP2008300632A (en) Solar simulator
JP4919104B2 (en) Luminescence analyzer
US7778007B2 (en) Optical emission analysis apparatus
JP6079574B2 (en) Luminescence analyzer
JP4453599B2 (en) Luminescence analyzer
KR20110075912A (en) Ignition device for a flash lamp
JP4883182B2 (en) Luminescence analyzer
JP2003197556A (en) Optical heating apparatus
US7643267B2 (en) Optical emission spectrometry device
US8873044B2 (en) Apparatus and methods for optical emission spectroscopy
JP5569086B2 (en) Optical emission spectrometer
JP5601294B2 (en) Light source device
JP3870582B2 (en) Luminescence analyzer
KR101375458B1 (en) Xenon lamp drive unit, method for driving xenon lamp, and artificial solar light irradiation unit
JP4692473B2 (en) Discharge lamp lighting device and lighting fixture
JP2004333323A (en) Emission spectrophotometer
EP3510445B1 (en) Determination of starting time for flash emitted from flash tube
JP2016201934A (en) Deterioration detection device and deterioration detection method of power supply device
JP2008210762A (en) Ultraviolet irradiation system
JP2007227153A (en) Electronic flash device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056627.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549153

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12516750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834589

Country of ref document: EP

Kind code of ref document: A1