JPH03135733A - Liquid level detecting device - Google Patents

Liquid level detecting device

Info

Publication number
JPH03135733A
JPH03135733A JP27417489A JP27417489A JPH03135733A JP H03135733 A JPH03135733 A JP H03135733A JP 27417489 A JP27417489 A JP 27417489A JP 27417489 A JP27417489 A JP 27417489A JP H03135733 A JPH03135733 A JP H03135733A
Authority
JP
Japan
Prior art keywords
thin film
liquid level
resistance
platinum
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27417489A
Other languages
Japanese (ja)
Inventor
Hideaki Aoki
秀明 青木
Kenichi Suenami
末浪 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27417489A priority Critical patent/JPH03135733A/en
Publication of JPH03135733A publication Critical patent/JPH03135733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy and reliability of liquid level detection by arranging platinum thin film resistance bodies at the upper and lower end parts of a heat-conductive insulating substrate arranged in a liquid tank, further arranging a heat generating body on the thin film resistance body at the upper end part and connecting the thin film resistance bodies to constant-current sources respectively, and detecting the difference between their terminal voltages. CONSTITUTION:The upper resistance body 2 made of the heat generating body 4 and a platinum thin film is provided at the upper end part of the ceramic substrate 1 and the lower resistance body 3 is arranged at the lower end part at well. Those resistance bodies are connected to the constant-current sources respectively and voltages developed across the resistance bodies are inputted to an operational amplifier 6, which detect their difference voltage. The heat- conductive insulating substrate is dipped in liquid and the temperature difference between the upper and lower end parts of the substrate is detected electrically to measure the liquid level; and neither mechanical constitution nor variable resistance which causes a measurement error is required and the high-accuracy and high-reliability detecting device is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車のガソリン残量等の液体レベル検出装置
として利用可能である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention can be used as a liquid level detection device for detecting the remaining amount of gasoline in an automobile.

従来の技術 従来ガソリン残量の検出は、ガソリンにフロートをうか
べ 一端をフロートに接続した棒の他端を支点に接続し
、この棒の途中で可変抵抗の摺動子を動かすことにより
、フロートの上下位置を電気抵抗値に変換し、電気的に
検出していた。
Conventional technology Conventionally, the remaining amount of gasoline can be detected by placing a float in the gasoline.One end of a rod is connected to the float, the other end is connected to a fulcrum, and a variable resistance slider is moved in the middle of this rod. The vertical position was converted into an electrical resistance value and detected electrically.

発明が解決しようとする課題 上記従来例ではフロートや棒など機械的な構成を必要と
し、長期的な信頼性、精度、再現性等が充分ではない。
Problems to be Solved by the Invention The above conventional examples require mechanical structures such as floats and rods, and do not have sufficient long-term reliability, accuracy, reproducibility, etc.

可変抵抗についても、直線性、温度特性、長期的な信頼
性に問題があり、従来例の構成での高精度化、高信頼化
にはコストアップ等の課題があった。
Variable resistors also have problems with linearity, temperature characteristics, and long-term reliability, and increasing the precision and reliability of conventional configurations poses problems such as increased costs.

課題を解決するだめの手段 上記目的を達成するために、本発明は、液体槽内に配置
される熱伝導性絶縁基板の上端部と下端部に白金系薄膜
抵抗体を配設し、さらに絶縁基板の上端部の白金系薄膜
抵抗体に発熱体を配設し、前記白金系薄膜抵抗体のそれ
ぞれを定電流源に接続するとともに、それぞれの抵抗体
の端子電圧の差を検出する演算増幅器を設けたことを特
徴とするものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides platinum-based thin film resistors on the upper and lower ends of a thermally conductive insulating substrate disposed in a liquid tank, and further provides insulation. A heating element is disposed on the platinum-based thin film resistor at the upper end of the substrate, each of the platinum-based thin film resistors is connected to a constant current source, and an operational amplifier is installed to detect the difference in terminal voltage of each resistor. It is characterized by the fact that it has been provided.

作用 本発明によれば、従来の液体レベル検出装置の機械的構
成と可変抵抗とをなくし、全てを電気的な構成で置き換
えることができるため、液体レベル検出の精度、信頼性
、再現性が著しく向上する。
According to the present invention, it is possible to eliminate the mechanical structure and variable resistance of a conventional liquid level detection device and replace them all with an electrical structure, thereby significantly improving the accuracy, reliability, and reproducibility of liquid level detection. improves.

実施例 本発明の一実施例を第1図、第2図を用いて説明する。Example An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

絶縁基板は均質な熱伝導性であればよく、熱の不良導体
は望ましくない。磁器基板が適当である。磁器基板1の
上端部に発熱体4及び白金系薄膜からなる上部抵抗体2
を設け、下端部にも同じように下部抵抗体3を配置する
。これ等の抵抗体をそれぞれ定電流源に接続し、それぞ
れの抵抗体に生じる電圧を演算増幅器に入力することに
より、それ等の差電圧を検出する。
The insulating substrate only needs to have homogeneous thermal conductivity, and a poor conductor of heat is not desirable. A ceramic substrate is suitable. A heating element 4 and an upper resistor 2 made of a platinum-based thin film are disposed at the upper end of the ceramic substrate 1.
, and a lower resistor 3 is similarly arranged at the lower end. These resistors are each connected to a constant current source, and the voltage generated in each resistor is inputted to an operational amplifier, thereby detecting the voltage difference between them.

このように本実施例では熱伝導性の絶縁基板を液体の中
に浸し、基板の上端部と下端部の温度差を電気的に検出
することにより、液面レベルを測定する構成であり、機
械的な構成や測定誤差の原因となる可変抵抗も必要とせ
ず、高精度、高信頼なレベル検出装置を提供することが
できる。
In this example, the thermally conductive insulating substrate is immersed in liquid, and the liquid level is measured by electrically detecting the temperature difference between the upper and lower ends of the substrate. It is possible to provide a highly accurate and highly reliable level detection device without the need for a variable resistor that may cause measurement errors or other configurations.

第2図は磁器基板の液面位置(H−h)と、差電圧との
間の関係において直線性を維持するため、磁器基板を下
に行くほど細くしたことを特徴とする実施例を示す。温
度測定に他の測温抵抗体を用いても同じ結果が得られる
Figure 2 shows an embodiment in which the ceramic substrate is made thinner toward the bottom in order to maintain linearity in the relationship between the liquid level position (H-h) of the ceramic substrate and the differential voltage. . The same results can be obtained by using other resistance thermometers for temperature measurement.

また第3図aに示すように絶縁基板の上端部から下端部
まで、白金系薄膜抵抗体を形成し、液体に浸漬された部
分が液体の吸熱により冷却され抵抗値が低下することか
ら、抵抗体の抵抗値を測定することにより、液面レベル
を検出できる。また第3図すに示すように、絶縁基板の
上端部から下端部まで白金系薄膜抵抗体のチップを多数
個貼り付け、これ等を直列に接続することによシ、同様
の検出を行なうことができる。これ等の場合、白金系薄
膜抵抗体が発熱体をも兼ねている。第3図aでは絶縁基
板の全面に白金系薄膜抵抗体を形成しなければならず、
着膜設備の大型化を招き、抵抗膜厚の均等性がレベル検
出の直線性に直結するため抵抗体全面にわたって均等な
膜厚の実現に細かい製造上の配慮を必要とする。高価な
白金系材料を多量に着膜することから、材料コストも高
くつく。同図すでも多数個の抵抗体チップの抵抗値の均
等性がレベル検出の直線性に直結するため、抵抗値と抵
抗温度係数のばらつきを小さくすることが製造上の課題
である。多数個の抵抗体チップを絶縁基板に貼り付け、
これ等を直列に接続することも、多くの工数を要し製造
上の課題である。
In addition, as shown in Figure 3a, a platinum-based thin film resistor is formed from the upper end to the lower end of the insulating substrate, and the part immersed in the liquid is cooled by the heat absorption of the liquid and the resistance value decreases. By measuring the resistance of the body, the liquid level can be detected. Furthermore, as shown in Figure 3, a similar detection can be performed by pasting a large number of platinum-based thin film resistor chips from the upper end to the lower end of an insulating substrate and connecting them in series. Can be done. In these cases, the platinum-based thin film resistor also serves as a heating element. In Figure 3a, a platinum-based thin film resistor must be formed on the entire surface of the insulating substrate.
This leads to an increase in the size of the film deposition equipment, and because the uniformity of the resistor film thickness is directly linked to the linearity of level detection, detailed manufacturing considerations are required to achieve a uniform film thickness over the entire surface of the resistor. Since a large amount of expensive platinum-based material is deposited, the material cost is also high. As shown in the figure, the uniformity of the resistance values of a large number of resistor chips is directly linked to the linearity of level detection, so it is a manufacturing issue to reduce variations in resistance values and resistance temperature coefficients. A large number of resistor chips are attached to an insulating substrate,
Connecting these in series also requires a lot of man-hours and is a manufacturing issue.

しかし本実施例では、熱伝導性絶縁基板に形成する白金
系薄膜抵抗体を、絶縁基板の上端部と下端部に各1個づ
つと限定し、小さい抵抗形状でよいことから、抵抗体チ
ップを貼り付けてもよく、着膜設備の大型化の問題は解
消する。着膜が部分限定であることから広い部分の膜厚
の均等性も不要である。抵抗体は2個であることから、
材料使用量も少なく、抵抗体チップを貼り付けるにして
も、工数も少なく安価に製造可能である。
However, in this example, the platinum-based thin film resistors formed on the thermally conductive insulating substrate are limited to one each on the upper and lower ends of the insulating substrate, and since a small resistance shape is sufficient, the resistor chip is It can also be pasted, which solves the problem of increasing the size of film deposition equipment. Since the deposited film is localized, uniformity of the film thickness over a wide area is not required. Since there are two resistors,
The amount of material used is small, and even if a resistor chip is attached, the number of man-hours is small and it can be manufactured at low cost.

では、この液体レベル検出装置の原理について詳しく説
明する。
Now, the principle of this liquid level detection device will be explained in detail.

絶縁基板の上端部の発熱体が定電力で駆動されると、発
生した熱は絶縁基板を伝わって下端部まで達する。上端
部抵抗体2の高さ寸法をH1絶縁基板が高さ寸法りまで
液体に漬かっているとすると、この部分は液体の温度で
2と同一温度で一定となる。従って上端部抵抗体2の温
度T、はT、=r (H−h ) 1−1−T2−=・
(1)r:絶縁基板の単位長さ当りの熱抵抗 1:絶縁基板の熱流 で決定される。上端部と下端部の抵抗体をそれぞれ定電
流電源に接続し、それぞれの抵抗体に発生する電圧V、
、V2の差電圧ayを演算増幅器6で検出すると、 v、=R4×I=Ro(1−4−ttT、)X  −・
−(2)V2=R2XI=R(1(1+αT 2)I 
  ・・−=−(3)R1:温度T1での抵抗体の抵抗
値 R2:温度で2での抵抗体の抵抗値 Ro二二基湿温度の抵抗体の抵抗値 エニ電流値 α:白金系薄膜抵抗体の温度係数 (2)式から(3)式を引くと d v=v 1−V2=RoXIXα(T、−T2) 
・−−−−・(4)(4)式に(1)式を代入すると dv=Ro×工×α×rxi(H−h)  ・・・・・
・(6)(6)式より差電圧aVは液面の位置(H−h
)に比例する。(H−h)が大きくなりT、が上昇する
と、発熱体からの熱の流れは、絶縁基板の熱伝導のみで
なく、絶縁基板上端部からの熱輻射が大きくなり、熱伝
導に比べて無視できなくなる。この場合みかけの熱抵抗
は小さくなるため、絶縁基板の幅寸法を上端部を太く、
下端部へ行くに従って細くすることにより、rを一定と
して(6)式の直線比例関係を維持することができる。
When the heating element at the upper end of the insulating substrate is driven with constant power, the generated heat travels through the insulating substrate and reaches the lower end. Assuming that the height of the upper end resistor 2 is immersed in the liquid up to the height of the H1 insulating substrate, the temperature of this portion is constant at the same temperature as the temperature of the liquid. Therefore, the temperature T of the upper end resistor 2 is T, =r (H-h) 1-1-T2-=.
(1) r: Thermal resistance per unit length of the insulating substrate 1: Determined by the heat flow of the insulating substrate. The resistors at the upper and lower ends are connected to a constant current power supply, and the voltage V generated in each resistor is
, V2 is detected by the operational amplifier 6, v,=R4×I=Ro(1-4-ttT,)X −・
-(2)V2=R2XI=R(1(1+αT 2)I
...-=-(3) R1: Resistance value of the resistor at temperature T1 R2: Resistance value of the resistor at temperature 2 Ro22 Resistance value of the resistor at humidity temperature Any current value α: Platinum-based Temperature coefficient of thin film resistor Subtracting equation (3) from equation (2) gives d v=v 1-V2=RoXIXα(T,-T2)
・------・(4) Substituting equation (1) into equation (4), dv=Ro x engineering x α x rxi (H-h)...
・(6) From equation (6), the differential voltage aV is determined by the position of the liquid level (H-h
) is proportional to As (H-h) increases and T increases, the flow of heat from the heating element is not only caused by heat conduction through the insulating substrate, but also by heat radiation from the top of the insulating substrate, which is ignored compared to heat conduction. become unable. In this case, the apparent thermal resistance becomes smaller, so the width of the insulating board is made thicker at the upper end.
By narrowing toward the lower end, the linear proportional relationship of equation (6) can be maintained while keeping r constant.

発明の効果 本発明により、従来例の機械的構成と可変抵抗とを廃止
し、全てを電気的な構成で置き換えることができる。従
って液体レベル検出の精度、信頼性、再現性の向上に著
しい改善が可能となる。本発明によれば、磁器基板の上
端部と下端部に小さい抵抗体を配置するだけでよく、こ
れ等2個の抵抗体はR8とαが同じであればよい。Ro
のばらつきは定電流工を調整することにより、αのばら
つきは演算増幅器の周辺抵抗値を調整することにより、
それぞれ補正することができる。
Effects of the Invention According to the present invention, the mechanical structure and variable resistance of the conventional example can be abolished and all replaced with an electrical structure. Therefore, it is possible to significantly improve the accuracy, reliability, and reproducibility of liquid level detection. According to the present invention, it is only necessary to arrange small resistors at the upper and lower ends of the ceramic substrate, and it is sufficient that these two resistors have the same R8 and α. Ro
The variation in α can be reduced by adjusting the constant current regulator, and the variation in α can be reduced by adjusting the peripheral resistance of the operational amplifier.
Each can be corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の液体レベル検出装置の構成
図、第2図は本発明の一実施例の磁器基板の構成図、第
3図は本発明を生み出すステップとなった考案の磁器基
板の構成図である。 1・・・・・・磁器基板、2・・・・・・上端部抵抗体
、3・・・・・・下端部抵抗体、4・・・・・・発熱体
、5・・・・・・定電流源。 6・・・・・・演算増幅器。
Fig. 1 is a block diagram of a liquid level detection device according to an embodiment of the present invention, Fig. 2 is a block diagram of a ceramic substrate according to an embodiment of the present invention, and Fig. 3 is a diagram of the invention that led to the creation of the present invention. It is a block diagram of a ceramic board. DESCRIPTION OF SYMBOLS 1... Ceramic substrate, 2... Upper end resistor, 3... Lower end resistor, 4... Heating element, 5...・Constant current source. 6... Operational amplifier.

Claims (4)

【特許請求の範囲】[Claims] (1)液体槽内に配置される熱伝導性絶縁基板の上端部
と下端部に白金系薄膜抵抗体を配設し、さらに絶縁基板
の上端部の白金系薄膜抵抗体に発熱体を配設し、前記白
金系薄膜抵抗体のそれぞれを定電流源に接続するととも
に、それぞれの抵抗体の端子電圧の差を検出する演算増
幅器を設けたことを特徴とする液体レベル検出装置。
(1) Platinum-based thin film resistors are placed on the upper and lower ends of a thermally conductive insulating substrate placed in the liquid tank, and a heating element is placed on the platinum-based thin film resistor on the upper end of the insulating substrate. A liquid level detection device characterized in that each of the platinum-based thin film resistors is connected to a constant current source, and an operational amplifier is provided for detecting a difference in terminal voltage of each resistor.
(2)熱伝導性絶縁基板として磁器基板を使用したこと
を特徴とする請求項1記載の液体レベル検出装置。
(2) The liquid level detection device according to claim 1, wherein a ceramic substrate is used as the thermally conductive insulating substrate.
(3)発熱体のある磁器基板の上端部を太くし、下端部
へ行くに従って徐々に細くしたことを特徴とする請求項
1または2記載の液体レベル検出装置。
(3) The liquid level detection device according to claim 1 or 2, wherein the ceramic substrate on which the heating element is located is thick at the upper end and gradually becomes thinner toward the lower end.
(4)白金系薄膜抵抗体のかわりに、白金系以外の測温
抵抗体を用いた請求項1記載の液体レベル検出装置。
(4) The liquid level detection device according to claim 1, wherein a temperature measuring resistor other than platinum-based is used in place of the platinum-based thin film resistor.
JP27417489A 1989-10-20 1989-10-20 Liquid level detecting device Pending JPH03135733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27417489A JPH03135733A (en) 1989-10-20 1989-10-20 Liquid level detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27417489A JPH03135733A (en) 1989-10-20 1989-10-20 Liquid level detecting device

Publications (1)

Publication Number Publication Date
JPH03135733A true JPH03135733A (en) 1991-06-10

Family

ID=17538066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27417489A Pending JPH03135733A (en) 1989-10-20 1989-10-20 Liquid level detecting device

Country Status (1)

Country Link
JP (1) JPH03135733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282660B2 (en) * 2005-04-01 2007-10-16 Fanuc Ltd Machining fluid level detection device for wire cut electrical discharge machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282660B2 (en) * 2005-04-01 2007-10-16 Fanuc Ltd Machining fluid level detection device for wire cut electrical discharge machines

Similar Documents

Publication Publication Date Title
US4320655A (en) Quantity of flow meter
US4299126A (en) Device for measuring the level of a liquid in a container
EP0724151A1 (en) Thermal conductivity measuring device
US4298855A (en) Conductive polymer film humidity sensor
CN88101718A (en) Determine the sensor of the method and the measurement temperature conductivity of each gas concentration in the combination gas
JPH0476412B2 (en)
US6318171B1 (en) Flow rate sensor implementing a plurality of inner tubes located within a sensor tube
US5022263A (en) Thermal fuel level detector
JP3460749B2 (en) Detector
US3787764A (en) Solid dielectric capacitance gauge for measuring fluid pressure having temperature compensation and guard electrode
US3696294A (en) Rms voltage or current sensor
JPH03135733A (en) Liquid level detecting device
CN208206329U (en) A kind of self-calibration film thermocouple
JPS6351253B2 (en)
US2375892A (en) Thermometer
JPH01209322A (en) Fuel liquid level detecting device
JPH01199124A (en) Apparatus for detecting liquid level of fuel
JPH0434430Y2 (en)
Anderson et al. High precision, semimicro, hydrostatic calorimeter for heats of mixing of liquids
KR910004713Y1 (en) Potenitio meter
JPH05107099A (en) Liquid level meter
JPH03176623A (en) Temperature controller for semiconductor element and temperature sensor used for the same
US5361634A (en) Heat-sensitive flow rate sensor
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
JPH0521019Y2 (en)