JPH05107099A - Liquid level meter - Google Patents

Liquid level meter

Info

Publication number
JPH05107099A
JPH05107099A JP29984491A JP29984491A JPH05107099A JP H05107099 A JPH05107099 A JP H05107099A JP 29984491 A JP29984491 A JP 29984491A JP 29984491 A JP29984491 A JP 29984491A JP H05107099 A JPH05107099 A JP H05107099A
Authority
JP
Japan
Prior art keywords
liquid level
liquid
heating element
heat
level meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29984491A
Other languages
Japanese (ja)
Inventor
Yasuhiro Watabe
安広 渡部
Yutaka Toshida
豊 土信田
Kenji Shimizu
賢司 清水
Ryozo Akihama
良三 秋濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP29984491A priority Critical patent/JPH05107099A/en
Publication of JPH05107099A publication Critical patent/JPH05107099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of element heating and make response speed rapid and exact on a liquid level meter for detecting the liquid level of liquid gas and the like. CONSTITUTION:A heating element 11 is provided on a ceramic board of finely divided chips and the upper face of the heating element is covered with an insulator. A heat-sensitive body 12 is laminated on the upper face of the insulator and the upper face of the heat-sensitive body is covered with a protection film to form unit chip elements, and then specified number of the unit chip elements are connected each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体窒素等の液化ガスの
液面を検知するために利用される液面レベル計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level meter used for detecting the liquid level of liquefied gas such as liquid nitrogen.

【0002】[0002]

【従来の技術】従来、液体窒素等の液化ガスの液面を検
出する手段としては、種々の方法が提案され又実用化さ
れている。先ず第1の方式としては例えば特開昭59−
132315号に示されるように、感熱素子をヒーター
で巻いたもの、第2の方式としては例えば特開昭60−
64220号及び特開昭62−255822号に示され
るように、抵抗体として白金抵抗体やカーボン抵抗体を
用いたものがある。
2. Description of the Related Art Conventionally, various methods have been proposed and put into practical use as means for detecting the liquid level of liquefied gas such as liquid nitrogen. First, the first method is, for example, Japanese Patent Laid-Open No. 59-
As disclosed in Japanese Patent No. 132315, a thermosensitive element is wound with a heater, and the second method is, for example, JP-A-60-
As disclosed in Japanese Unexamined Patent Publication No. 64220 and Japanese Unexamined Patent Publication No. 62-255822, there are resistors using a platinum resistor or a carbon resistor as a resistor.

【0003】[0003]

【発明が解決しようとする課題】上記した第1の方式の
ものは感熱素子の加熱を外部に巻いたヒーターで行なう
ため、同時に熱が液体中にも流出してしまい、素子加熱
の熱効率が悪く、検知する液体の無駄な蒸発を生じさせ
る。又、第2の方式のものは抵抗体の自己発熱を利用
し、液体中と気体中での熱放散係数の違いによる抵抗体
の抵抗値の増加又は減少を検出することにより、液体の
有無を検知している。このため大きな容量を要する加熱
用電源と、安定性及び正確性が要求される測定用定電流
電源とが同一となり、定電流電源としては電圧可変の幅
が大きく、かつ、電流値の変動が殆どない安定した電源
が必要とされる。特に、液面の位置を多くの測定点で検
知するために、多数の電源が必要とされる場合や、抵抗
体を直列に接続して配列する場合等では重要な問題とな
る。更に、抵抗体を直列に接続した場合には、液中と液
外とでの抵抗値の変化が起こる発熱量の変動、それによ
る液体の損失量の変動及び素子感度の変化が引起こされ
る。本発明は上記事情に鑑みてなされたものであり、液
面レベル計素子の加熱部と液面検知部とを分離すること
により加熱用電源及び測定用電源を簡易にし、かつ、素
子加熱の熱効率が良く、液体の損失が少なく、しかも応
答速度が速い正確な液面レベル計を提供することを目的
としている。
In the first method described above, since the heat sensitive element is heated by the heater wound outside, heat also flows into the liquid at the same time, and the thermal efficiency of element heating is poor. , Causing unnecessary evaporation of the liquid to be detected. The second method utilizes self-heating of the resistor to detect the presence or absence of liquid by detecting an increase or decrease in the resistance value of the resistor due to the difference in heat dissipation coefficient between liquid and gas. It is detecting. For this reason, the heating power supply that requires a large capacity and the measurement constant-current power supply that requires stability and accuracy are the same, and as a constant-current power supply, the range of voltage variation is large and the fluctuation of the current value is almost zero. Not a stable power supply is needed. In particular, in order to detect the position of the liquid surface at many measurement points, a large number of power sources are required, or when resistors are connected in series and arranged, this is an important problem. Further, when the resistors are connected in series, a change in the amount of heat that causes a change in resistance between the inside and outside the liquid, a change in the amount of loss of the liquid, and a change in element sensitivity are caused. The present invention has been made in view of the above circumstances, and simplifies the heating power supply and the measurement power supply by separating the heating unit and the liquid level detection unit of the liquid level meter element, and the thermal efficiency of element heating. It is an object of the present invention to provide an accurate liquid level meter which is good, has little liquid loss, and has a fast response speed.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明は細分されたチップ状のセラミックス基板上
に発熱体を設け、その発熱体の上面を覆って絶縁膜を形
成し、その絶縁膜の上面に感熱体厚膜を積層すると共
に、前記感熱体厚膜上面を保護膜で覆って単位チップ素
子を形成し、前記単位チップ素子を所定個数連結した液
面検知部とした。又、チップ状のセラミックス基板の同
一面上に、発熱抵抗体と感熱体厚膜とを互いに電気的絶
縁を保って並列に形成し、更にチップ素子内の温度分布
を少なくする機能も兼ねた保護膜で覆って単位チップ素
子とするか、又はチップ状のセラミックス基板の片面上
に発熱抵抗を設け、更にその上面を断熱的な機能を持っ
た保護膜で覆い、他方の片面上に感熱体厚膜を形成して
保護膜で覆うことによって単位チップ素子とし、これら
単位チップ素子を所定個数連結して液面検知部とした。
上記単位チップ素子では、発熱体として、液面を検知す
る温度範囲で殆ど抵抗値が変化しない、酸化ルテニウム
系セラミックス,ニクロム合金,マンガニン合金等の材
質が用いられる。かつ、感熱体としては、検知する液体
の沸点近傍の温度で、その抵抗値が温度上昇に伴なって
小さくなる負の温度係数を有する銅,マンガン,ニッケ
ル,鉄,コバルト等を含む酸化物からなるセラミック
ス、その抵抗値が温度上昇に伴なって大きくなる正の温
度係数を有する白金,ニッケル,タングステン,モリブ
デン等の材質、又は検知する液体の沸点近傍の温度での
感熱体として調整された各種材質が用いられる。単位チ
ップ素子相互の連結及び電源との接続は、素子の発熱体
の連結は直列、並列又は抵抗値に合せたそれらの組合わ
せにより行ない、比較的安定した定電圧又は定電流電源
に接続する。感熱体は、直列に接続した小さい容量の非
常に安定した測定用定電流電源に接続する。その両端か
らは検知用出力の端子を取る。
In order to achieve the above-mentioned object, the present invention provides a heating element on a subdivided chip-shaped ceramic substrate, forms an insulating film covering the upper surface of the heating element, A thermosensitive thick film was laminated on the upper surface of the film, and the upper surface of the thermosensitive thick film was covered with a protective film to form a unit chip element, and a predetermined number of the unit chip elements were connected to form a liquid level detection unit. In addition, a heat-generating resistor and a heat-sensitive thick film are formed in parallel on the same surface of a chip-shaped ceramic substrate while maintaining electrical insulation from each other, and protection that also functions to reduce the temperature distribution in the chip element is provided. Cover with a film to make a unit chip element, or provide a heating resistor on one side of a chip-shaped ceramic substrate, and further cover the upper surface with a protective film with an adiabatic function, and heat-sensitive material thickness on the other side. A unit chip element was formed by forming a film and covering it with a protective film, and a predetermined number of these unit chip elements were connected to form a liquid level detection unit.
In the above-mentioned unit chip element, a material such as ruthenium oxide-based ceramics, a nichrome alloy, a manganin alloy, or the like, whose resistance value hardly changes in the temperature range in which the liquid surface is detected is used as the heating element. In addition, the heat sensitive material is made of an oxide containing copper, manganese, nickel, iron, cobalt, etc., which has a negative temperature coefficient whose resistance value decreases with increasing temperature at a temperature near the boiling point of the liquid to be detected. Ceramics, materials such as platinum, nickel, tungsten, molybdenum, etc. having a positive temperature coefficient whose resistance value increases with increasing temperature, or various types of materials adjusted as heat sensitive bodies at temperatures near the boiling point of the liquid to be detected. The material is used. The unit chip elements are connected to each other and connected to a power source by connecting the heating elements of the elements in series, in parallel, or by a combination thereof in accordance with the resistance value, and connecting to a relatively stable constant voltage or constant current power source. The heat sensitive body is connected to a very stable measuring constant current power source with small capacity connected in series. The detection output terminals are connected from both ends.

【0005】単位チップ素子の連結の個数は、液体窒素
等の液化ガスの容器に合せるか、又は検知したい液面位
置の数により任意に選択することができる。この場合、
大きい容量を必要とする発熱体用の電源にはそれ程の安
定性が要求されず、又、発熱体の抵抗値は液中でも液外
でも殆ど変化しないため定電流電源でも定電圧電源でも
良く、回路の設計及び接続等が容易となる。又、感熱体
用の電源は、精度,安定性,信頼性等が非常に要求され
るが、小さい容量の定電流電源で十分となり、回路設計
等においても有利となる。更には、温度による発熱体の
抵抗値変化が殆どないため、液中と液外とでの温度差か
ら生じる不必要な発熱量の変動が起こらない。又、素子
はセラミックス基板上の発熱体及び感熱体の膜構成とし
ているため、素子加熱の効率が良く、そのため、液体の
無駄な損失が防止される。
The number of unit chip elements to be connected can be selected according to the number of liquid surface positions to be detected, or to match the liquid gas container such as liquid nitrogen. in this case,
A power source for a heating element that requires a large capacity is not required to have such stability, and since the resistance value of the heating element hardly changes between liquid and outside the liquid, either a constant current power source or a constant voltage power source may be used. It is easy to design and connect. Further, a power source for a heat sensitive body is required to have high accuracy, stability, reliability, etc., but a constant current power source having a small capacity is sufficient, which is advantageous in circuit design and the like. Furthermore, since there is almost no change in the resistance value of the heating element due to temperature, unnecessary fluctuations in the amount of heat generated due to the temperature difference between inside and outside the liquid do not occur. Further, since the element has the film structure of the heat generating element and the heat sensitive element on the ceramic substrate, the element heating efficiency is high, and therefore, the wasteful loss of the liquid is prevented.

【0006】[0006]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による液面レベル計を拡大して示した原理図で
ある。図において、単位チップ素子1は夫々同一構造を
有し、必要個数が接続される。なお、単位チップ素子1
の構造については後述するが、所定個数連結した単位チ
ップ素子1部分が液面の検知部となる。単位チップ素子
の内部にある発熱体11に発熱体用電源2が接続される。
そして発熱体は液面の検知部が液体容器内へ挿入された
状態において、液体中と液体外との温度勾配を明確にす
るためのものである。又、単位チップ内には感熱体厚膜
12を設け、液面測定用定電流電源3が接続される。ここ
で、液面の検出原理としては、発熱体11に対して発熱体
用電源2から一定の電力を供給しておき、一方、感熱体
厚膜12にも液面測定用定電流電源3から一定電流を電流
計5で測定しつつ流し、この際、各電圧計4で検出され
る電圧値から液面レベルを測定するものである。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 3 is an enlarged principle view showing a liquid level meter according to the present invention. In the figure, the unit chip elements 1 have the same structure, and a required number of them are connected. The unit chip element 1
Although the structure will be described later, a unit chip element 1 portion connected by a predetermined number serves as a liquid level detection unit. The heating element power source 2 is connected to the heating element 11 inside the unit chip element.
The heating element is for clarifying the temperature gradient between the inside of the liquid and the outside of the liquid in the state where the liquid level detecting portion is inserted into the liquid container. In addition, the heat sensitive thick film is
12 is provided and the constant current power supply 3 for liquid level measurement is connected. Here, as a liquid level detection principle, a constant power is supplied from the heating element power source 2 to the heating element 11, and the constant temperature power source 3 for measuring the liquid level is also applied to the heat sensitive body thick film 12. A constant current is supplied while being measured by the ammeter 5, and at this time, the liquid level is measured from the voltage value detected by each voltmeter 4.

【0007】図2〜図5は液面レベル計を構成する単位
チップの構造を説明する分解図の例である。先ず、図2
ではセラミックス基板13上に発熱体11を折曲して形成
し、その上面には図3に示されるように、絶縁体膜14を
形成する。次いでその上部には、図4に示されるよう
に、感熱体厚膜12を折曲して形成し、その上には、図5
に示されるように、保護膜15を形成した。要するにセラ
ミックス基板上に発熱抵抗体,絶縁体,感熱体を順に形
成し、最後に上面を保護膜によって被覆する積層構成と
した。なお、実際の単位チップ素子では、セラミックス
基板として、10mm角で厚さ0.5 〜0.7 mmのアルミナ基板
及びイットリア安定化ジルコニア基板を用いた。又、発
熱抵抗体,絶縁体,感熱体及び保護膜の各膜は、各々以
下の素子の作製例のように形成した。
2 to 5 are examples of exploded views for explaining the structure of a unit chip constituting a liquid level meter. First, FIG.
Then, the heating element 11 is bent and formed on the ceramic substrate 13, and the insulating film 14 is formed on the upper surface thereof as shown in FIG. Next, as shown in FIG. 4, a heat-sensitive material thick film 12 is bent and formed on the upper portion thereof.
The protective film 15 was formed as shown in FIG. In short, the heating resistor, the insulator, and the heat-sensitive body are sequentially formed on the ceramic substrate, and finally the upper surface is covered with the protective film to form a laminated structure. In the actual unit chip element, an alumina substrate and a yttria-stabilized zirconia substrate having a 10 mm square and a thickness of 0.5 to 0.7 mm were used as the ceramic substrate. Further, each film of the heat generating resistor, the insulator, the heat sensitive member and the protective film was formed as in the following example of manufacturing the element.

【0008】作製例1 発熱抵抗体は、市販の酸化ルテニウム系抵抗体用ペース
トを用いてスクリーン印刷法により、図2のようにセラ
ミックス基板13上に厚さ約20μm,幅1mmで折曲して形
成し、抵抗値を約100 Ωとした。絶縁体膜14は、アルミ
ナを添加したガラスのペーストを用い、図3のように発
熱抵抗体の接続用の取出し端子の部分を除いて全面に30
〜40μmの厚さで形成した。又、感熱体膜としては、白
金厚膜用ペーストを用いて、図4のように幅200 μm,
厚さ10μmで折曲して、室温で抵抗値が約20Ωとなるよ
うに形成した。更に、保護膜は、絶縁体膜と同様なペー
ストを用いて、図5のように発熱抵抗体及び感熱体の接
続用の取出し端子の部分を除いて全面に約20μmの厚さ
で形成した。なお、膜の焼成は、焼成温度850〜930 ℃
で行なった。図6はこの素子作製に用いた発熱抵抗体用
酸化ルテニウム系抵抗体膜の、抵抗値と温度変化を示し
ている。図6において、横軸は温度Kを示し、縦軸は抵
抗値Rを示す。図7は感熱体用白金膜の抵抗値の温度変
化を示し、前記同様、横軸は温度K、縦軸は抵抗値Rを
示す。図8は本作製例による素子1個での液面検出感度
を測定するため、素子を液体窒素の液中から液外へ取出
した場合での、時間と出力電圧との関係を測定したもの
である。ここでは、発熱抵抗体に約250 mWの電力を供給
し、感熱体用白金膜に5mAの一定電流を流し、その両端
の出力電圧の時間変化を測定した。図に示されるように
約60秒で、出力電圧の値は2倍となり、液面位置を上部
な感度で検出することができた。なお、横軸は時間
(秒)を、縦軸は出力電圧(V)を示す。
Preparation Example 1 A heating resistor was bent on a ceramic substrate 13 with a thickness of about 20 μm and a width of 1 mm by a screen printing method using a commercially available paste for ruthenium oxide type resistors as shown in FIG. And the resistance value was set to about 100 Ω. The insulator film 14 is made of a glass paste containing alumina and is formed on the entire surface of the insulator film 14 except for the lead terminals for connecting the heating resistors as shown in FIG.
It was formed to a thickness of -40 μm. As the heat sensitive film, a platinum thick film paste was used, and the width was 200 μm as shown in FIG.
It was bent to a thickness of 10 μm and formed so that the resistance value was about 20Ω at room temperature. Further, the protective film was formed with a thickness of about 20 μm on the entire surface using a paste similar to that of the insulating film, except for the lead-out terminals for connecting the heating resistor and the heat-sensitive body as shown in FIG. The film is baked at a baking temperature of 850 to 930 ° C.
I did it in. FIG. 6 shows the resistance value and the temperature change of the ruthenium oxide-based resistor film for a heating resistor used for manufacturing this element. In FIG. 6, the horizontal axis represents the temperature K and the vertical axis represents the resistance value R. FIG. 7 shows the temperature change of the resistance value of the platinum film for a heat sensitive body, and similarly to the above, the horizontal axis shows the temperature K and the vertical axis shows the resistance value R. FIG. 8 shows the relationship between the time and the output voltage when the device is taken out of the liquid nitrogen liquid out of the liquid in order to measure the liquid level detection sensitivity with one device according to the present production example. is there. Here, about 250 mW of electric power was supplied to the heating resistor, a constant current of 5 mA was passed through the platinum film for the heat sensitive element, and the time change of the output voltage across the platinum film was measured. As shown in the figure, the value of the output voltage doubled in about 60 seconds, and the liquid surface position could be detected with the upper sensitivity. The horizontal axis represents time (seconds) and the vertical axis represents output voltage (V).

【0009】作製例2 発熱抵抗体及び感熱体は、夫々作製例1と同じ形成方法
により、図9(a) のようにセラミックス基板13の片面
(前面)上に発熱抵抗体膜11を設け、図9(b) に示す他
方の片面(裏面)上に感熱体膜12を設ける。更に、その
両面夫々に保護膜として、作製例1と同様にアルミナを
添加したガラスペーストを用いて、その接続用の取出し
端子の部分を除いて発熱抵抗体膜上には50〜100 μm、
感熱体膜上には約20μmの厚さでセラミックス膜を形成
した。なお、焼成は、作製例1と同様夫々850 〜930 ℃
で行なった。本作製例による素子1個での液面検出感度
を、作製例1(図8)と同一条件で測定した。結果は作
製例1とほぼ同じく約80秒で、出力電圧の値が2倍とな
った。
Manufacturing Example 2 A heating resistor film and a heat-sensitive element are respectively formed by the same forming method as in Manufacturing Example 1 by providing a heating resistor film 11 on one surface (front surface) of a ceramic substrate 13 as shown in FIG. 9 (a). The heat-sensitive film 12 is provided on the other surface (back surface) shown in FIG. 9 (b). Further, a glass paste containing alumina was used as a protective film on each of the both surfaces in the same manner as in Preparation Example 1, and 50 to 100 μm was formed on the heating resistor film except for the lead terminals for connection.
A ceramic film having a thickness of about 20 μm was formed on the heat sensitive film. The firing was performed at the temperature of 850 to 930 ° C, similar to the production example 1.
I did it in. The liquid level detection sensitivity of one element according to this Preparation Example was measured under the same conditions as in Preparation Example 1 (FIG. 8). The result was about 80 seconds, which was almost the same as in Preparation Example 1, and the value of the output voltage doubled.

【0010】作製例3 本作製例では発熱抵抗体及び感熱体共に図10のように、
セラミックス基板13の同一面上に互いに電気的絶縁を保
って折曲して形成した。発熱抵抗体11は、作製例1と同
じペーストを用いて、厚さ約20μm,幅500 μmで折曲
して形成し、その抵抗値を約100 Ωとした。感熱体12
は、作製例1と同じペーストを用いて、厚さ約10μm,
幅200 μmで折曲して形成し、その室温での抵抗値を約
10Ωとした。更に、保護膜は、作製例1の場合と同じ方
法により、夫々の接続用の取出し端子の部分を除いて全
面に約20μmの厚さで形成した。本作製例による素子1
個での液面検出感度を、作製例1(図8)及び2と同一
条件で測定した。結果は作製例1及び2とほぼ同じく約
60〜80秒で、出力電圧の値が2倍となった。
Manufacturing Example 3 In this manufacturing example, as shown in FIG.
It was formed on the same surface of the ceramic substrate 13 by bending while maintaining electrical insulation from each other. The heating resistor 11 was formed by bending the same paste as in Preparation Example 1 with a thickness of about 20 μm and a width of 500 μm, and its resistance value was about 100 Ω. Heat sensitive body 12
Using the same paste as in Preparation Example 1 and having a thickness of about 10 μm,
It is formed by bending with a width of 200 μm, and its resistance value at room temperature is about
It was set to 10Ω. Further, the protective film was formed in a thickness of about 20 μm on the entire surface by the same method as in the case of Preparation Example 1 except for the lead terminals for connection. Element 1 according to this fabrication example
The liquid level detection sensitivity for each piece was measured under the same conditions as in Preparation Example 1 (FIG. 8) and 2. The result is about the same as in Preparation Examples 1 and 2.
The output voltage doubled in 60 to 80 seconds.

【0011】本作製例では、発熱抵抗体の形成に用いる
スクリーン印刷用ペーストを、ガラス粉末を約20%混合
したニクロム合金粉末に有機ビークルを加えることによ
り作製した。図11はこのニクロム合金ペーストを用いて
形成された発熱抵抗体膜の抵抗値の温度変化を示してい
る。素子の作製での各膜の形成は、発熱抵抗体膜を除い
て、絶縁体膜,感熱体膜及び保護膜共に、夫々作製例
1,2及び3と同様の方法・条件で行なった。発熱抵抗
体膜は、作製例1及び2の方法で素子を作製する場合
は、セラミックス基板上に厚さ約15μm,幅500 μmで
折曲して形成し、抵抗値を約10Ωとした。又、作製例3
の方法で素子を作製する場合は、厚さ約15μm,幅300
μmで折曲して形成し、その抵抗値を約10Ωとした。な
お、焼成は、前記作製例と同じ条件で行なった。本作製
例による素子1個での液面検出感度を、作製例1(図
8),2及び3と同一条件で測定した。結果は作製例
1,2及び3とほぼ同じく約60〜80秒で、出力電圧の値
が2倍となった。次に、以上の方法で作製した素子か
ら、作製方法及び各抵抗値の同じもの(下記の測定には
作製例1の素子を用いた)を選びだし、図12のような5
個の素子からなる液面レベル計を作製した。素子はガラ
ス・エポキシの強化プラスチック板17上に5cm間隔で固
定され、下から順に16a ,16b ,16c ,16d ,16e と表
示した。又、夫々の発熱抵抗体及び感熱体は直列に接続
し、更に感熱体の両端からは液面測定用の電圧出力端子
を取付けた。
In this preparation example, a screen printing paste used for forming a heating resistor was prepared by adding an organic vehicle to a nichrome alloy powder in which about 20% of glass powder was mixed. FIG. 11 shows the temperature change of the resistance value of the heating resistor film formed using this nichrome alloy paste. The formation of each film in the production of the element was carried out by the same method and conditions as in Production Examples 1, 2 and 3 for the insulating film, the heat sensitive film and the protective film except for the heating resistor film. In the case of manufacturing the element by the methods of Preparation Examples 1 and 2, the heating resistor film was formed by bending the ceramic substrate with a thickness of about 15 μm and a width of 500 μm, and the resistance value was about 10Ω. Also, Production Example 3
When the device is manufactured by the method of, the thickness is about 15 μm and the width is 300
The resistance value was set to about 10 Ω by bending with a thickness of μm. The firing was performed under the same conditions as in the above-mentioned preparation example. The liquid level detection sensitivity of one element according to this preparation example was measured under the same conditions as in preparation examples 1 (FIG. 8), 2 and 3. The result was about 60 to 80 seconds, which was almost the same as in Production Examples 1, 2 and 3, and the value of the output voltage doubled. Next, from the elements manufactured by the above method, those having the same manufacturing method and respective resistance values (the element of Manufacturing Example 1 was used for the following measurement) were selected, and as shown in FIG.
A liquid level meter composed of individual elements was produced. The elements were fixed on a glass / epoxy reinforced plastic plate 17 at intervals of 5 cm, and were labeled as 16a, 16b, 16c, 16d, 16e from the bottom. Further, the respective heating resistors and heat-sensitive bodies were connected in series, and voltage output terminals for liquid level measurement were attached from both ends of the heat-sensitive body.

【0012】図13は図12の液面レベル計の測定結果を示
している。測定方法は、容器内での温度分布の差があま
り大きくない液体窒素容器を用い、先ず、液面レベル計
全体を液体容器内に設置した状態で、素子16a ,16b ,
16c を液中に浸し、液面レベルを素子16c と16d との中
間位置にする。次に、液面レベル計を約5cm上方に引出
し(素子16c を液外に取出す)、液面レベルを素子16b
と16c との中間位置とした。又、その120 秒後、再び液
面レベル計を約5cm上方に引出し(素子16b を液外に取
出す)、液面レベルを素子16a と16b との中間位置とし
た。更に120 秒後には、再び液面レベル計を約10cm下方
に戻し、液面レベルを元の素子16c と16d との中間位置
とした。この時、各素子の両端の出力電圧の変化を液面
レベル計を引出してからの時間と共に記録したものが図
13である。素子16b 及び16c の両端の出力電圧は、液面
レベル計の上方への引出しでは上記の各作製例での測定
結果と同様、夫々の素子の液外への取出し後約60秒で2
倍となり、240 秒後の下方への戻しでは約1〜2秒以内
で元の値となった。素子16d 及び16e の出力電圧は、こ
の操作での素子16b 及び16c のそれに伴なって若干変化
したが(主に、容器内の温度分布等が影響)、素子16a
のそれには変化が見られなかった。又、この測定中、各
素子の発熱抵抗体には約250 mW(全体で約1250 mW )の
電力が供給されたが、定電圧電源を用いても、定電流電
源を用いても測定操作中での変動は約2%以内に止ま
り、液面検出時間への影響は殆ど見られなかった。な
お、感熱体には5mAの一定電流が流された。
FIG. 13 shows the measurement result of the liquid level meter of FIG. The measurement method uses a liquid nitrogen container in which the difference in temperature distribution in the container is not so large. First, with the entire liquid level gauge installed in the liquid container, the elements 16a, 16b,
16c is immersed in the liquid, and the liquid level is set to the intermediate position between the elements 16c and 16d. Next, pull out the liquid level meter about 5 cm upward (take out the element 16c to the outside of the liquid) and set the liquid level to the element 16b.
16c and the intermediate position. 120 seconds later, the liquid level gauge was pulled out again about 5 cm upward (element 16b was taken out of the liquid), and the liquid level was set to an intermediate position between elements 16a and 16b. After a further 120 seconds, the liquid level meter was returned downward by about 10 cm, and the liquid level was set to the intermediate position between the original elements 16c and 16d. At this time, the change in the output voltage across each element is recorded with the time since the liquid level meter was pulled out.
13 The output voltage across the devices 16b and 16c is about 60 seconds after the device is taken out of the liquid when the device is pulled out of the liquid level meter, as in the measurement results of each of the above production examples.
It doubled and returned to the original value within about 1 to 2 seconds after returning to the lower position after 240 seconds. Although the output voltage of the elements 16d and 16e changed slightly with the operation of the elements 16b and 16c in this operation (mainly the temperature distribution in the container affected), the element 16a
No change was seen in it. During this measurement, the heating resistor of each element was supplied with about 250 mW (about 1250 mW in total), but the measurement operation was performed with either a constant voltage power supply or a constant current power supply. The fluctuations within 2% stopped within about 2%, and there was almost no effect on the liquid level detection time. A constant current of 5 mA was applied to the heat sensitive body.

【0013】以上のように、本発明により十分な液面検
出感度を持ち、かつ、測定系の電源等が簡単な液面レベ
ル計を得ることができた。本実施例では、発熱抵抗体と
して酸化ルテニウム系セラミックス及びニクロム合金を
用いたが、液面を検知する温度範囲で抵抗値が殆ど変化
しない抵抗体、例えばマンガニン合金等の合金抵抗体、
及びセラミックス抵抗体等を用いても良い。又、感熱体
としても白金の他、その抵抗値が温度上昇に伴なって大
きくなる正の温度係数を持つニッケル,タングステ
ン,、モリブデン等の材質、その抵抗値が温度上昇に伴
なって小さくなる負の温度係数を持つ銅,マンガン,ニ
ッケル,鉄,コバルト等を含む酸化物からなるセラミッ
クス、及び検知する液体の沸点近傍の温度での感熱体と
して調整された各種材質を用いても良いことは明らかで
ある。
As described above, the present invention has made it possible to obtain a liquid level meter having sufficient liquid level detection sensitivity and having a simple power supply for the measurement system. In this embodiment, the ruthenium oxide ceramics and the nichrome alloy were used as the heating resistor, but the resistor whose resistance value hardly changes in the temperature range for detecting the liquid surface, for example, an alloy resistor such as a manganin alloy,
Alternatively, a ceramic resistor or the like may be used. In addition to platinum as the heat sensitive material, materials such as nickel, tungsten, molybdenum, etc. having a positive temperature coefficient whose resistance value increases with increasing temperature, and its resistance value decreases with increasing temperature. Ceramics made of oxides having a negative temperature coefficient such as copper, manganese, nickel, iron, cobalt, etc., and various materials adjusted as a heat sensitive body at a temperature near the boiling point of the liquid to be detected may be used. it is obvious.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば細
分されたチップ状のセラミックス基板上に発熱抵抗体及
び感熱体、又は場合によっては絶縁体を膜構成として設
けると共に、保護膜で覆って単位チップ素子を形成し、
これら単位チップ素子を所定個数連結して液面検知部と
する構成としたので、以下に列挙する効果を奏する。 素子加熱の効率が良く、液面検知が速く、液体の無
駄な損失が防止される。 液面検知部の部分的な故障は、単位チップ素子の交
換により容易に修理することができる。 容器の様々な形状、大きさ及び検知したい液面位置
に対して、素子の連結作業のみで対応できる。 単位チップ素子の連結によって液面検知部としてい
るため、生産する装置も1種類でよく、経済的であって
大量生産に適している。 又、単位チップ素子自体の作製も、厚膜の一体形成
のため、経済的であって大量生産に適している。 発熱抵抗体と液面検知用感熱体とを、電気的に分離
することにより、大きい容量を必要とする加熱用電源と
安定性及び正確性が要求される測定用定電流電源とを分
けることができ、電気的な構成が容易になった。特に、
安定性及び正確性が要求される測定用定電流電源部は小
さな容量でも可能となり、安価となった。 更に、発熱抵抗体として、液面を検知する温度範囲
で殆ど抵抗値が変化しない材質を用いることにより、大
きい容量を必要とする加熱用電源は定電流電源でも定電
圧電源でも良く、回路の設計及び接続等が容易になっ
た。又、液中と液外とでの抵抗変化による発熱量の変
化、検知速度の変化及び液体の蒸発量の変化等が生じな
い。
As described above, according to the present invention, a heating resistor and a heat sensitive body, or an insulator in some cases, is provided as a film structure on a chip-shaped ceramic substrate which is subdivided, and is covered with a protective film. To form a unit chip element,
Since a predetermined number of these unit chip elements are connected to each other to form the liquid level detection unit, the following effects are achieved. The element heating efficiency is high, the liquid level is detected quickly, and unnecessary loss of liquid is prevented. A partial failure of the liquid level detection unit can be easily repaired by replacing the unit chip element. It is possible to deal with various shapes and sizes of the container and the liquid surface position to be detected only by connecting the elements. Since the liquid level detection unit is formed by connecting the unit chip elements, only one type of device needs to be produced, which is economical and suitable for mass production. Also, the unit chip element itself is economical because it is integrally formed with a thick film, and is suitable for mass production. By electrically separating the heating resistor and the liquid level detecting heat sensitive body, it is possible to separate the heating power source that requires a large capacity from the constant current source for measurement that requires stability and accuracy. This made it possible to easily make an electrical structure. In particular,
The constant current power supply unit for measurement, which requires stability and accuracy, can be manufactured with a small capacity and is inexpensive. Further, by using a material whose resistance value hardly changes in the temperature range for detecting the liquid surface as the heating resistor, the heating power supply requiring a large capacity may be a constant current power supply or a constant voltage power supply, and the circuit design And the connection is easier. Further, a change in the amount of heat generated due to a resistance change between inside and outside the liquid, a change in the detection speed, a change in the evaporation amount of the liquid, etc. do not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明での液面レベル計を拡大して示した原理
図。
FIG. 1 is an enlarged principle view showing a liquid level meter according to the present invention.

【図2】一実施例でのセラミックス基板上に発熱抵抗体
を設けた図。
FIG. 2 is a diagram showing a heating resistor provided on a ceramic substrate according to an embodiment.

【図3】一実施例での発熱抵抗体の上面に絶縁体を設け
た図。
FIG. 3 is a diagram in which an insulator is provided on an upper surface of a heating resistor according to an embodiment.

【図4】一実施例での絶縁体の上面に感熱体を設けた
図。
FIG. 4 is a diagram in which a heat sensitive body is provided on an upper surface of an insulator in one embodiment.

【図5】一実施例での感熱体の上面を保護膜で覆った
図。
FIG. 5 is a diagram in which the upper surface of the heat sensitive body in one example is covered with a protective film.

【図6】本実施例で発熱抵抗体として用いた酸化ルテニ
ウム系セラミックスの抵抗値の温度による変化を示した
図。
FIG. 6 is a diagram showing a change in resistance value of ruthenium oxide-based ceramics used as a heating resistor in this example with temperature.

【図7】本実施例で感熱体として用いた白金の抵抗値の
温度による変化を示した図。
FIG. 7 is a diagram showing changes in resistance value of platinum used as a heat-sensitive body in this example with temperature.

【図8】一実施例で作製した単位チップ素子の液面検出
感度を示した図。
FIG. 8 is a diagram showing liquid level detection sensitivity of a unit chip element manufactured in one example.

【図9】他の実施例での単位チップ素子の構成を示した
図。
FIG. 9 is a diagram showing a configuration of a unit chip element in another embodiment.

【図10】更に他の実施例での単位チップ素子の構成を示
した図。
FIG. 10 is a diagram showing a configuration of a unit chip element in still another embodiment.

【図11】本実施例で発熱抵抗体として用いたニクロム合
金の抵抗値の温度による変化を示した図。
FIG. 11 is a diagram showing changes in the resistance value of the nichrome alloy used as the heating resistor in this example with temperature.

【図12】本実施例に作製した5個の単位チップ素子から
なる液面レベル計を示した図。
FIG. 12 is a diagram showing a liquid level meter including five unit chip elements manufactured in this example.

【図13】本実施例で作製した液面レベル計の液面検出感
度を示した図。
FIG. 13 is a diagram showing the liquid level detection sensitivity of the liquid level meter manufactured in this example.

【符号の説明】[Explanation of symbols]

1 単位チップ素子 2 加熱用電源 3 液面測定用電源 4 電圧計 5 電流計 11 発熱抵抗体 12 感熱体 13 セラミックス基板 14 絶縁体 15 保護膜 16 検知部 17 素子固定用板 1 unit Chip element 2 Heating power supply 3 Liquid level measuring power supply 4 Voltmeter 5 Ammeter 11 Heating resistor 12 Heat sensitive body 13 Ceramics substrate 14 Insulator 15 Protective film 16 Detecting part 17 Element fixing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 賢司 埼玉県熊谷市大字三ケ尻5310番地 秩父セ メント株式会社内フアインセラミツクス本 部内 (72)発明者 秋濱 良三 埼玉県熊谷市大字三ケ尻5310番地 秩父セ メント株式会社内フアインセラミツクス本 部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Shimizu Kenji Shimizu 5310, Sangejiri, Kumagaya, Saitama Prefecture Chichibu Cement Corporation Huain Ceramics Division (72) Ryozo Akihama 5310 Mikkaji, Kumagaya, Saitama Prefecture Chichibu Huain Ceramics Division, Cement Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 細分されたチップ状のセラミックス基板
上に発熱体を設け、その発熱体の上面を覆って絶縁体を
形成し、その絶縁体の上面に感熱体を積層すると共に、
その感熱体上面を保護膜で覆って単位チップ素子を形成
し、その単位チップ素子を所定個数連結して液面検知部
としたことを特徴とする液面レベル計。
1. A heating element is provided on a chip-shaped ceramic substrate that has been subdivided, an insulator is formed to cover the upper surface of the heating element, and a heat-sensitive element is laminated on the upper surface of the insulator.
A liquid level meter, wherein the upper surface of the heat sensitive body is covered with a protective film to form a unit chip element, and a predetermined number of the unit chip elements are connected to form a liquid level detection unit.
【請求項2】 単位チップ素子を、細分されたチップ状
のセラミックス基板の同一上面に発熱体と感熱体とを互
いに接触しないように配置し、更にその上面を保護膜で
覆って構成したことを特徴とする請求項1記載の液面レ
ベル計。
2. A unit chip element is formed by disposing a heating element and a heat sensitive element on the same upper surface of a subdivided chip-shaped ceramic substrate so as not to contact each other, and further covering the upper surface with a protective film. The liquid level gauge according to claim 1, which is characterized in that.
【請求項3】 単位チップ素子を、細分されたチップ状
のセラミックス基板の片面上に発熱体を設け、更にその
上面を断熱的な機能を持った保護膜で覆うと共に、他の
片面上に感熱体を配置し、その上面を保護膜で覆って構
成したことを特徴とする請求項1記載の液面レベル計。
3. A unit chip element is provided with a heating element on one surface of a subdivided chip-shaped ceramic substrate, the upper surface of which is covered with a protective film having an adiabatic function, and the other surface is heat-sensitive. The liquid level meter according to claim 1, wherein the body is arranged and the upper surface thereof is covered with a protective film.
【請求項4】 発熱体として液面を検知する温度範囲で
殆ど抵抗値が変化しない材質を用い、感熱体として検知
する液体の沸点近傍の温度で抵抗値の変化が大きい材質
を用いたことを特徴とする請求項1又は請求項2又は請
求項3記載の液面レベル計。
4. The heating element is made of a material whose resistance value hardly changes in the temperature range in which the liquid level is detected, and the heating element is made of a material whose resistance value changes largely at a temperature near the boiling point of the liquid. The liquid level meter according to claim 1 or 2 or 3.
【請求項5】 発熱体として、液面を検知する温度範囲
で殆ど抵抗値が変化しない、酸化ルテニウム系セラミッ
クス,ニクロム合金,マンガニン合金等の材質を用いた
ことを特徴とする請求項1又は請求項2又は請求項3又
は請求項4記載の液面レベル計。
5. The heating element is made of a material such as ruthenium oxide ceramics, a nichrome alloy, a manganin alloy, etc., whose resistance value hardly changes in the temperature range for detecting the liquid surface. The liquid level meter according to claim 2 or claim 3 or claim 4.
JP29984491A 1991-10-18 1991-10-18 Liquid level meter Pending JPH05107099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29984491A JPH05107099A (en) 1991-10-18 1991-10-18 Liquid level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29984491A JPH05107099A (en) 1991-10-18 1991-10-18 Liquid level meter

Publications (1)

Publication Number Publication Date
JPH05107099A true JPH05107099A (en) 1993-04-27

Family

ID=17877618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29984491A Pending JPH05107099A (en) 1991-10-18 1991-10-18 Liquid level meter

Country Status (1)

Country Link
JP (1) JPH05107099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156036A (en) * 2012-01-26 2013-08-15 Toshiba Corp Liquid level detecting device and method
JP2018531394A (en) * 2015-10-28 2018-10-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Liquid level display
JP2021047209A (en) * 2020-12-21 2021-03-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Display of liquid level

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156036A (en) * 2012-01-26 2013-08-15 Toshiba Corp Liquid level detecting device and method
JP2018531394A (en) * 2015-10-28 2018-10-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Liquid level display
US10739181B2 (en) 2015-10-28 2020-08-11 Hewlett-Packard Development Company, L.P. Liquid level indicating
US11366000B2 (en) 2015-10-28 2022-06-21 Hewlett-Packard Development Company, L.P. Fluid sensing
JP2021047209A (en) * 2020-12-21 2021-03-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Display of liquid level

Similar Documents

Publication Publication Date Title
EP0022366B1 (en) A sensor circuit including a sensing device
US6190039B1 (en) Heated type sensor with auxiliary heater in bridge circuit for maintaining constant sensor temperature
US4396899A (en) Platinum thin film resistance element and production method therefor
US4649364A (en) Bifunctional environment sensor
EP0640831A2 (en) Method for measurement of relative humidity, in particular in radiosondes, and humidity detectors that make use of the method
JPH04500269A (en) Flowing air flow measuring device
Charitidou et al. A computer-controlled instrument for the measurement of the thermal conductivity of liquids
Thomas Precision resistors and their measurement
US5010315A (en) Thermal radiation sensor
US3696294A (en) Rms voltage or current sensor
JPH05107099A (en) Liquid level meter
US5681111A (en) High-temperature thermistor device and method
Andretta et al. Simple heat flux meter
US3007333A (en) Gas analyzer apparatus
US3569602A (en) Temperature programming apparatus with a heating sensing arrangement
JP2567441B2 (en) Measuring method of thermal conductivity, measuring device and thermistor
Katzmann et al. Thin-film AC-DC converter with thermoresistive sensing
JPH01204383A (en) Composite thermal element
WO1990013042A1 (en) Method and device for accelerated determining of ageing of one or more elements with an electromagnetic ageing parameter
JPS6242368Y2 (en)
KR940002192B1 (en) Liquid level meter
CN220252039U (en) Current detection assembly
JPH0712771A (en) Gas detector
US3992667A (en) Electro-thermal readout coulometer
JP3282048B2 (en) Heat removal atmosphere detection device and atmosphere sensor for heat removal atmosphere detection device