JPH03135609A - Precise stop method for omnidirectional mobile vehicle - Google Patents

Precise stop method for omnidirectional mobile vehicle

Info

Publication number
JPH03135609A
JPH03135609A JP1208748A JP20874889A JPH03135609A JP H03135609 A JPH03135609 A JP H03135609A JP 1208748 A JP1208748 A JP 1208748A JP 20874889 A JP20874889 A JP 20874889A JP H03135609 A JPH03135609 A JP H03135609A
Authority
JP
Japan
Prior art keywords
vehicle
omnidirectional
stop position
error
stopping position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1208748A
Other languages
Japanese (ja)
Other versions
JP2741411B2 (en
Inventor
Ikuya Katanaya
郁也 刀谷
Shigeru Hirooka
広岡 茂
Shinobu Tanaka
忍 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP1208748A priority Critical patent/JP2741411B2/en
Publication of JPH03135609A publication Critical patent/JPH03135609A/en
Application granted granted Critical
Publication of JP2741411B2 publication Critical patent/JP2741411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To precisely stop an omnidirectional mobile vehicle at the stations, etc., by starting newly an auxiliary program to calculate an error between a target stop position and an actual stop position and to correct the error. CONSTITUTION:The distance measuring devices X1 - X8 are provided at the front and back parts and at both sides of a body 1A of an ominidirectional mobile vehicle 1. When it is regarded that the vehicle 1 reached its target stop position, an error between the target stop position and an actual stop position is calculated via the devices X1 - X8. At the same time, a 2nd auxiliary program is newly started for correction of the error. Thus it is possible to precisely and quickly stop the vehicle 1 at the stations, etc., even if an accurate distance actually traveled is not obtained owing to a mechanical error and a manufacturing error caused by the wear of wheels, etc., or the inferior resolution of each detector.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガイドレスで自動操舵を行う全方向移動車で
あって、あらかじめ定められた走行路からのずれを更正
して精密にステーション等へ停止させるときの精密停止
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is an omnidirectional moving vehicle that performs automatic steering without a guide, and which corrects deviations from a predetermined traveling route to accurately move to a station or the like. This invention relates to a precision stopping method when stopping the machine.

(従来の技術) 全方向移動車は、その車体に搭載した中央処理装置に予
定走行経路を記憶させるとともに、その車輪の回転数等
から実走行距離を計測し、車体内部に備えたプログラム
に基づいて、前記予定走行経路に沿って車体を誘導する
ごとく制御を行っている。
(Prior art) An omnidirectional vehicle stores a planned travel route in a central processing unit installed in the vehicle body, measures the actual travel distance based on the number of rotations of its wheels, etc., and calculates the actual travel distance based on a program stored inside the vehicle body. Then, control is performed to guide the vehicle along the planned travel route.

例えば、全方向移動車を直進走行させる場合。For example, when an omnidirectional vehicle is driven straight ahead.

走行開始位置から目標停止位置までの距離を車体に搭載
した中央処理装置に記憶させ、車輪の回転数等から演算
した実走行距離が前記距離と一敗したときに全方向移動
車が停止するようにプログラム制御を行っている。
The distance from the travel start position to the target stop position is stored in a central processing unit installed in the vehicle body, and the omnidirectional vehicle will stop when the actual travel distance calculated from the number of rotations of the wheels, etc. falls short of the distance. is under program control.

(発明が解決しようとする課題) このような構成のものでは、車輪の摩耗等による機械的
誤差、あるいは製作誤差によって正確な実走行距離を得
ることができず、ステーション等へ精密に停止させるこ
とができきないという課題があった。
(Problem to be Solved by the Invention) With such a configuration, it is not possible to obtain an accurate actual travel distance due to mechanical errors due to wheel wear, etc., or manufacturing errors, and it is difficult to precisely stop the vehicle at a station, etc. The problem was that it was not possible to do so.

(問題を解決するための手段) 本発明は、車体内部に設けた中央処理装置にて予め決定
される走行路を第1の主プログラムに基づいて走行する
全方向移動車であって、該全方向移動車の車輪の回転数
を検知する回転数検知器と。
(Means for Solving the Problem) The present invention is an omnidirectional vehicle that travels on a travel route predetermined by a central processing unit provided inside the vehicle body based on a first main program. A rotation speed detector that detects the rotation speed of the wheels of a directional vehicle.

操舵輪の操舵角を検知する操舵角検知器とを設け。A steering angle detector is installed to detect the steering angle of the steering wheels.

前記走行路からのずれを更正して前記走行路を走行する
全方向移動車において。
In an omnidirectional vehicle that travels on the traveling path by correcting deviation from the traveling path.

該全方向移動車の車体前後部及び両側部に測距装置をそ
れぞれ配設し。
Distance measuring devices are installed at the front, rear, and both sides of the omnidirectional vehicle.

該全方向移動車が目標停止位置に到達したとみなされた
際に目標停止位置と現実の停止位置とのずれを演算し、
該ずれを更正するよう新たに開始される第2の補助プロ
グラムを備えた構成を基本とし、全方向移動車をステー
ション等に精密に停止させることを目的とする。
When the omnidirectional vehicle is deemed to have reached the target stop position, calculate the deviation between the target stop position and the actual stop position,
The present invention is based on a configuration including a second auxiliary program that is newly started to correct the deviation, and is intended to precisely stop an omnidirectional vehicle at a station or the like.

(実施例及び作用) 以下1本発明の作用及び一実施例を図面に基づき説明す
る。
(Example and operation) The operation and one embodiment of the present invention will be explained below based on the drawings.

第1図は、全方向移動車の概略構成を例示し。FIG. 1 illustrates a schematic configuration of an omnidirectional vehicle.

1はワークの搬送をする全方向移動車、IAは該全方向
移動車の車体、DPI、DF2.DF3゜DF4はそれ
ぞれ操舵自在な操舵輪であり、操舵用電動機4・・・が
それぞれ配設されている。
1 is an omnidirectional vehicle that transports the workpiece, IA is the body of the omnidirectional vehicle, DPI, DF2. DF3 and DF4 are steerable wheels, and steering electric motors 4, . . . are respectively provided.

該操舵輪DPI、DF2.DF3.DF4のうちDPI
及びDF4は駆動輪を兼ねており、走行用電動機5.5
が配設されている。
The steered wheel DPI, DF2. DF3. DPI of DF4
and DF4 also serves as the driving wheel, and the driving electric motor 5.5
is installed.

又各車輪には1回転数を検知するための回転数検知器2
及び操舵角を検知する操舵角検知器3がそれぞれ付設さ
れている。
Also, each wheel has a rotation speed detector 2 to detect the rotation speed.
and a steering angle detector 3 for detecting the steering angle.

Xl−X8は車体IAの前後部及び両側部に各2個ずつ
配設された測距装置を示し1本実施例では周知の光学式
測距装置を使用しているが、これに限るものではなく1
例えば橙音波等の測距装置を用いることもできる。又、
後述のように前部と側部、若しくは後部と側部で合計3
個の測距装置が測定することができれば他の5個の測距
装置は不要となるので、全方向移動車の使用環境によっ
て測距装置の取付位置を種々変形することが可能である
Xl-X8 indicates distance measuring devices disposed two each on the front, rear, and both sides of the vehicle body IA. In this embodiment, a well-known optical distance measuring device is used, but the present invention is not limited to this. Not 1
For example, a distance measuring device such as an orange sound wave can also be used. or,
As described below, the front and sides, or the rear and sides, total 3
If one range finder can perform measurements, the other five range finders become unnecessary, so it is possible to change the mounting position of the range finder in various ways depending on the usage environment of the omnidirectional vehicle.

6は制御装置であり、内部に中央処理装置(図示せず)
を備えると共に、前記回転数検知器2゜操舵角検知器3
.及び測距装置X1〜X8からのデータを入力信号とし
、このデータに基づいて予め内部メモリ(図示せず)に
記憶されている第1の主プログラム、及び後述する第2
の補助プログラムを実行し、前記走行用電動機5.操舵
用電動機4を制御する。
6 is a control device, which includes a central processing device (not shown).
and the rotation speed detector 2° and the steering angle detector 3.
.. and the data from the distance measuring devices X1 to X8 as input signals, and based on this data, a first main program stored in advance in an internal memory (not shown), and a second program to be described later.
Execute the auxiliary program of 5. Controls the steering electric motor 4.

次に本発明の作用を第5図のフローチャートにて処理手
順を説明する。
Next, the operation of the present invention will be explained with reference to the flowchart of FIG. 5.

まず、全方向移動車lが走行指令を受けたかどうかを判
断しく5TEPI)、該走行指令があれば(STEPI
でY)第1の主プログラムを実行して(STEP2)、
予め定められた走行路を走行する(STEP3)。
First, it is determined whether the omnidirectional vehicle l has received a travel command (5TEPI), and if there is a travel command (STEPI
Y) Execute the first main program (STEP 2),
The vehicle travels on a predetermined travel route (STEP 3).

次に全方向移動車1が予め定められた目標停止位置M1
に到達したとみなされて第1の主プログラムが終了した
か否かを判断しく5TEP4)。
Next, the omnidirectional vehicle 1 moves to a predetermined target stop position M1.
5TEP4).

第1の主プログラムが終了していれば(STEP4でY
)、第2の補助プログラムを実行して(STEP5)、
目標停止位置と実際の停止位置とのずれを補正する(S
TEP6)。
If the first main program has finished (Y in STEP 4)
), execute the second auxiliary program (STEP 5),
Correct the deviation between the target stop position and the actual stop position (S
TEP6).

明する。I will clarify.

第2図は測距装置X1〜X8の使用方法を説明するため
の図、第3図は目標停止位置M1が互いに直交する壁面
7,8の一角である場合をマクロ的に例示した平面図、
第4図は第2の補助プログラムの処理手順を示すフロー
チャートであり、第3図において、任意に定めた車体I
Aを代表する座標軸の原点を現実の停止位置Qlとし、
座標系の縦軸をX軸、横軸をY軸、又、停止すべき位置
である目標停止位置をMlとしている。
FIG. 2 is a diagram for explaining how to use the distance measuring devices X1 to X8, and FIG. 3 is a plan view macroscopically illustrating the case where the target stopping position M1 is one corner of the wall surfaces 7 and 8 orthogonal to each other.
FIG. 4 is a flowchart showing the processing procedure of the second auxiliary program.
Let the origin of the coordinate axis representing A be the actual stopping position Ql,
The vertical axis of the coordinate system is the X axis, the horizontal axis is the Y axis, and the target stopping position, which is the position where the motor should stop, is Ml.

まず、目標停止位置からずれをもった現実の停止位置Q
1の状態で第3図のごとく測距装置X2゜X3.X4の
3箇所を用いて壁面7,8との距離DI、D2.D3を
それぞれ測定しく5TEP51)、この測距データから
現実の停止位置Q1と。
First, the actual stopping position Q with a deviation from the target stopping position
1, the distance measuring device X2°X3. Distances DI, D2. D3 respectively (5TEP51), and from this distance measurement data, determine the actual stop position Q1.

予め制御装置に記憶されている停止すべき目標停止位置
Mlとのずれを周知の三角測量方式で演算する(STE
P52)。尚、最終的には距IDI。
The deviation from the target stopping position Ml, which is stored in advance in the control device, is calculated using a well-known triangulation method (STE
P52). In addition, the final value is distance IDI.

) D、2.D3をそれぞれTI、T2.T3となった「 Hソ、精密停止が完了する。) D.2. D3 is TI, T2. It became T3. H So, precision stop is completed.

また、第3図において、上記X−Y座標においては目標
停止位置Mlは現実の停止位置Q1から(x、y)、角
度ずれθとなり、以後、該ずれを(x、y、  θ)と
表すこととする。又、この状態で車体の位置を補正する
旋回中心点をC,Ql・Mlの距離をm、Ql−Mlの
中点をE、QiCの距離をn、Ql・C−Eで作られる
角度をZa、X軸と線分Q1・Mlで作られる角をzb
とする。
In addition, in Fig. 3, in the above X-Y coordinates, the target stopping position Ml is (x, y) from the actual stopping position Q1, resulting in an angular deviation θ, and hereinafter, this deviation will be expressed as (x, y, θ). That's it. Also, in this state, the turning center point for correcting the vehicle body position is C, the distance between Ql and Ml is m, the midpoint of Ql-Ml is E, the distance of QiC is n, and the angle created by Ql and C-E is Za, the angle made by the X axis and the line segment Q1・Ml is zb
shall be.

次に目標停止位置M1と現実の停止位置Q1とを直線で
結んだ距離mを求める。
Next, a distance m connecting the target stop position M1 and the actual stop position Q1 with a straight line is determined.

(STEP53) m=J171覆7 さらにQl・C−Eで作られる角度laを求る(STE
P54)。
(STEP 53) m = J171 7 Furthermore, find the angle la created by Ql・C−E (STE
P54).

la=θ/2 zbを求める(STEP55〜59)。la=θ/2 Find zb (STEPs 55-59).

ここで m=o  のとき b=。here When m=o b=.

m=o  以外のとき、かつ y≧0 のとき b=c o s−’ (x/m)y<
0  のとき b=−c o s−’ (x/m)とな
る。
When other than m=o and when y≧0, b=co s-'(x/m)y<
0, b=-cos-' (x/m).

次に各車輪の操舵、走行を代表する仮想の操舵輪を車体
の任意の位置に設定する。この仮想操舵輪とは車体代表
点から長さlを持ったアーム9と該アーム9の先端位置
に回動自在に操舵輪10を配置(仮想)している。従っ
て、車体代表点を中心に360度アーム9(仮想)を旋
回させることができると共に、操舵輪10(仮想)自体
も前記アーム9から独立して360度操舵することがで
きるものである。従って、あらゆる位置に車体の旋回中
心を位置させることができる。上記アーム9は、車体を
旋回させる旋回中心点Cと車体代表点Q1とを結ぶ直線
nと常に垂直に位置すると共に 操舵輪10は上記旋回
中心点Cとアーム9の一端9Aとを結ぶ直線nAと常に
直交するように操舵輪10の角度で、以下単に仮想操舵
角αと(、zう)が決まれば、これに基づいて各車輪の
操舵。
Next, virtual steering wheels representing the steering and running of each wheel are set at arbitrary positions on the vehicle body. This virtual steering wheel is an arm 9 having a length l from a representative point of the vehicle body, and a steering wheel 10 rotatably arranged (virtually) at the tip of the arm 9. Therefore, the arm 9 (imaginary) can be rotated 360 degrees around the representative point of the vehicle body, and the steering wheel 10 (imaginary) itself can also be steered 360 degrees independently of the arm 9. Therefore, the turning center of the vehicle body can be located at any position. The arm 9 is always positioned perpendicular to the straight line n connecting the turning center point C for turning the vehicle body and the vehicle body representative point Q1, and the steering wheel 10 is positioned perpendicularly to the straight line nA connecting the turning center point C and one end 9A of the arm 9. Once the virtual steering angle α and (, z) are determined, each wheel is steered based on this.

走行を決定することができる。You can decide to run.

その処理として、仮想進行角βを求める。As a process, a virtual advancing angle β is determined.

ここでβはX軸を基準とし2反時計回りを正とする。Here, β is positive when rotating 2 counterclockwise with the X axis as a reference.

(STEP60) β=−(b+a) 線分nの距離を求める。(STEP 60) β=-(b+a) Find the distance of line segment n.

(STEP61〜63) θ=0 のとき n=0 θ≠Oのとき n=m/2sin2θ 次に、仮想操舵角αを求める(STEP64〜68)。(STEP61~63) When θ=0 n=0 When θ≠O n=m/2sin2θ Next, a virtual steering angle α is determined (STEPs 64 to 68).

m=o  のとき、かつ θ=0 のとき α=0 θ〈0 のとき α=π/2 θ〉0 のとき α=−π/2 上記条件以外のとき(n≠0) α−む an−’(1/n) 仮想操舵輪の移動距離γを求める。When m=o, and When θ=0 α=0 When θ〈0  α=π/2 When θ〉0 α=-π/2 When other than the above conditions (n≠0) α-mu an-’ (1/n) Find the moving distance γ of the virtual steering wheel.

(STEP69) r=lθXf/sinα ここで、上記演算にて求めた仮想進行角βと仮想操舵角
αを使って各車輪の操舵角の演算を行いこれを各車輪の
操舵用電動機4へ出力しく5TEP70〜71)、各操
舵用電動機4は操舵を行う(STEP72)。
(STEP 69) r=lθXf/sinα Here, calculate the steering angle of each wheel using the virtual traveling angle β and virtual steering angle α obtained by the above calculation, and output this to the steering electric motor 4 of each wheel. 5TEP70-71), each steering electric motor 4 performs steering (STEP72).

ここで、各車輪の操舵角が5TEP70で得られた計算
値と近似かどうかチエツクしく5TEP73)、近似値
であれば(STEP73でy) −定の駆動力を出力し
く5TEP74)、近似でなければ、5TEP51の処
理へ手順を戻す。
Here, check whether the steering angle of each wheel is approximate to the calculated value obtained in 5TEP70 (5TEP73), if it is an approximate value (y in STEP73) - output a constant driving force (5TEP74), if not , 5 returns the procedure to the processing of TEP51.

しく5TEP75)、  γ=微少量許容値であれば(
STEP75でY)、操舵角及び駆動力の出力を停止す
る(STEP76)。Tが微少量許容値でない場合には
(STEP75でN)、5TEP51の処理へ手順を戻
す。
5TEP75), and if γ = very small amount tolerance (
(Y in STEP 75), the output of the steering angle and driving force is stopped (STEP 76). If T is not a very small amount permissible value (N in STEP 75), the procedure returns to the process in 5TEP 51.

また、上記実施例においては目標停止位置が直交する壁
の近傍であったが、全方向移動車の走行エリアの例えば
、中央部に目標停止位置が設定されている場合等におい
ては、第6図、第7図に例示するように、精密停止専用
の壁部材Wをその目標停止位置の外沿に設ける事もでき
る。すなわち。
In addition, in the above embodiment, the target stopping position was near the perpendicular wall, but in the case where the target stopping position is set, for example, in the center of the traveling area of the omnidirectional vehicle, as shown in FIG. As illustrated in FIG. 7, a wall member W exclusively for precision stopping may be provided along the outer edge of the target stopping position. Namely.

この壁部材Wは前記全方向移動車の測距装置が測定可能
な大きさであればよく、直角に交差するもの、或は予め
定められた任意の角度で交差しているもの等2種々変形
することができる。
This wall member W may have a size that can be measured by the distance measuring device of the omnidirectional moving vehicle, and may be modified in two ways, such as those that intersect at right angles, or those that intersect at any predetermined angle. can do.

(発明の効果) 本発明は、全方向移動車が目標停止位置に到達したとみ
なされた際に目標停止位置と現実の停止位置とのずれを
測距装置を用いて演算し、該ずれを更正するように新た
に開始される第2の補助プログラムを備えた構成として
いるから、車輪の摩耗等による機械的誤差、製作誤差、
あるいは各検知器の分解能力等によって正確な実走行距
離を得ることができない場合であっても、ステーション
等へ精密にかつ迅速に停止させることができる。
(Effects of the Invention) The present invention calculates the deviation between the target stopping position and the actual stopping position using a distance measuring device when it is assumed that the omnidirectional vehicle has reached the target stopping position, and calculates the deviation between the target stopping position and the actual stopping position. Since the configuration includes a second auxiliary program that is newly started for correction, mechanical errors due to wheel wear, manufacturing errors, etc.
Alternatively, even if it is not possible to obtain an accurate actual travel distance due to the decomposition ability of each detector, etc., it is possible to accurately and quickly stop the vehicle at a station or the like.

特に無人倉庫或はクリーンルームといった停止位置に精
度を要する環境では、その効果は著しいものとなる。
This effect is particularly significant in environments such as unmanned warehouses or clean rooms that require precision in stopping positions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略構成を示す平面図、第2図は測距
装置の使用を説明するための平面図、第3図は目標停止
位置が互いに直交する壁面の一角である場合をマクロ的
に例示した平面図、第4図は第2の補助プログラムの処
理手順を示すフローチャート、第5図は本発明の全方向
移動車の走行メインルーチンを説明するためのフローチ
ャート。 第6図及び第7図は他の実施例を示す平面図である。 1−−−−全方向移動車  4− 操舵用電動機IA−
車 体    5− 走行用電動機2− 回転数検知器
  6− 制御装置第 2 y 第5 図 第
Fig. 1 is a plan view showing the schematic configuration of the present invention, Fig. 2 is a plan view illustrating the use of the distance measuring device, and Fig. 3 is a macroscopic view showing the case where the target stopping position is one corner of a mutually orthogonal wall surface. FIG. 4 is a flowchart showing the processing procedure of the second auxiliary program, and FIG. 5 is a flowchart for explaining the main routine for driving the omnidirectional vehicle of the present invention. FIGS. 6 and 7 are plan views showing other embodiments. 1----Omnidirectional vehicle 4- Steering electric motor IA-
Vehicle body 5- Travel electric motor 2- Rotation speed detector 6- Control device No. 2 y Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)車体内部に設けた中央処理装置にて予め決定され
る走行路を第1の主プログラムに基づいて走行する全方
向移動車であって、該全方向移動車の車輪の回転数を検
知する回転数検知器と、操舵輪の操舵角を検知する操舵
角検知器とを設け、前記走行路からのずれを更正して前
記走行路を走行する全方向移動車において、 該全方向移動車の車体前後部及び両側部に測距装置をそ
れぞれ配設し、 該全方向移動車が目標停止位置に到達したとみなされた
際に目標停止位置と現実の停止位置とのずれを演算し、
該ずれを更正するように新たに開始される第2の補助プ
ログラムを備えたことを特徴とする全方向移動車の精密
停止方法。
(1) An omnidirectional vehicle that travels on a travel path predetermined by a central processing unit installed inside the vehicle body based on a first main program, and the rotation speed of the wheels of the omnidirectional vehicle is detected. An omnidirectional vehicle that is provided with a rotation speed detector that detects a steering angle of a steered wheel, and a steering angle detector that detects a steering angle of a steered wheel, and that travels on the traveling path while correcting a deviation from the traveling path. Distance measuring devices are installed in the front, rear, and both sides of the vehicle body, and when the omnidirectional moving vehicle is deemed to have reached the target stopping position, the deviation between the target stopping position and the actual stopping position is calculated,
A method for precisely stopping an omnidirectional vehicle, comprising: a second auxiliary program that is newly started to correct the deviation.
(2)上記請求項(1)において、前記走行路の全方向
移動車の目標停止位置の外沿に基準となる互いに直交す
る2面を有した任意の壁部材を設けたことを特徴とする
全方向移動車の精密停止方法。
(2) In the above claim (1), an arbitrary wall member having two mutually orthogonal surfaces serving as a reference is provided along the outer edge of the target stopping position of the omnidirectional moving vehicle on the traveling path. Precise stopping method for omnidirectional moving vehicles.
(3)上記請求項(2)において、互いに直交する2面
を有した任意の壁部材が、あらかじめ定められた任意の
角度で交差していることを特徴とする全方向移動車の精
密停止方法。
(3) A precision stopping method for an omnidirectional vehicle according to claim (2), characterized in that arbitrary wall members having two mutually orthogonal surfaces intersect at an arbitrary predetermined angle. .
JP1208748A 1989-08-12 1989-08-12 Precise stopping method for omnidirectional vehicles Expired - Lifetime JP2741411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208748A JP2741411B2 (en) 1989-08-12 1989-08-12 Precise stopping method for omnidirectional vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208748A JP2741411B2 (en) 1989-08-12 1989-08-12 Precise stopping method for omnidirectional vehicles

Publications (2)

Publication Number Publication Date
JPH03135609A true JPH03135609A (en) 1991-06-10
JP2741411B2 JP2741411B2 (en) 1998-04-15

Family

ID=16561429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208748A Expired - Lifetime JP2741411B2 (en) 1989-08-12 1989-08-12 Precise stopping method for omnidirectional vehicles

Country Status (1)

Country Link
JP (1) JP2741411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022749A (en) * 2007-06-20 2009-02-05 Nobuko Ikoma Multifunctional sieve basket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121408A (en) * 1982-12-24 1984-07-13 Honda Motor Co Ltd Controller of mobile robot
JPS61235220A (en) * 1985-04-10 1986-10-20 Casio Comput Co Ltd All-directional mobile car
JPS6431208A (en) * 1987-07-28 1989-02-01 Toshiba Corp Fixed position stop controller for carrier truck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121408A (en) * 1982-12-24 1984-07-13 Honda Motor Co Ltd Controller of mobile robot
JPS61235220A (en) * 1985-04-10 1986-10-20 Casio Comput Co Ltd All-directional mobile car
JPS6431208A (en) * 1987-07-28 1989-02-01 Toshiba Corp Fixed position stop controller for carrier truck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022749A (en) * 2007-06-20 2009-02-05 Nobuko Ikoma Multifunctional sieve basket

Also Published As

Publication number Publication date
JP2741411B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US6256560B1 (en) Method for correcting position of automated-guided vehicle and apparatus therefor
WO1995004944A1 (en) Apparatus and method for identifying scanned reflective anonymous targets
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
JPH01287415A (en) Position controller for self-running vehicle
CN116061194A (en) Calibration method and system for steering wheel installation position of mobile robot and storage medium
CN110989596B (en) Pile alignment control method and device, intelligent robot and storage medium
JP4121720B2 (en) Two-dimensional map creation method and apparatus
JPH03135609A (en) Precise stop method for omnidirectional mobile vehicle
JP2011002880A (en) Mobile robot
CA2177852A1 (en) Apparatus for determining position of moving body
JPH10105234A (en) Unmanned carriage
JP2000132229A (en) Travel controlling method for movable body
JPH10222225A (en) Unmanned travel body and its travel method
JPH03189805A (en) Method and device for automatic steering vehicle
JPS6227406B2 (en)
JP2840943B2 (en) Mobile robot guidance device
CN116974290B (en) Method and device for calibrating steering wheel angle of double-steering-wheel AGV
JP2013065342A (en) Mobile robot
JPS63104111A (en) Unmanned traveling device
JPS62254212A (en) Self-traveling robot
JPH03154904A (en) Position controller for self-traveling vehicle
JP3046718B2 (en) Beam light guiding device for work vehicles
JP2889257B2 (en) Moving object position detection device
JP3804142B2 (en) Unmanned vehicle steering control method
JPH06147911A (en) Device for correcting direction of moving robot