JP2889257B2 - Moving object position detection device - Google Patents

Moving object position detection device

Info

Publication number
JP2889257B2
JP2889257B2 JP63315173A JP31517388A JP2889257B2 JP 2889257 B2 JP2889257 B2 JP 2889257B2 JP 63315173 A JP63315173 A JP 63315173A JP 31517388 A JP31517388 A JP 31517388A JP 2889257 B2 JP2889257 B2 JP 2889257B2
Authority
JP
Japan
Prior art keywords
light
moving
moving body
detecting
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63315173A
Other languages
Japanese (ja)
Other versions
JPH02161374A (en
Inventor
博文 望月
隆司 溝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP63315173A priority Critical patent/JP2889257B2/en
Publication of JPH02161374A publication Critical patent/JPH02161374A/en
Application granted granted Critical
Publication of JP2889257B2 publication Critical patent/JP2889257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、位置が既知な多数の光反射手段のうちの3
つと移動体との角度を検出して移動体の位置を検知する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a light-reflecting device having a known position.
The present invention relates to an apparatus for detecting the position of a moving body by detecting the angle between the moving body and the moving body.

(発明の背景) 移動体の位置を検知する手段として、車輪の回転から
移動量と移動方向とを計測して加算してゆくことが考え
られるが、この方法では誤差が累積して不正確になる問
題がある。
(Background of the Invention) As means for detecting the position of a moving body, it is conceivable to measure and add a moving amount and a moving direction from the rotation of a wheel, but this method accumulates errors and causes inaccuracy. There is a problem.

そこで相対位置が既知な3つのリフレクタを用い、移
動体から2つのリフレクタの挟角を検知して移動体の位
置を求める方法が提案された(特開昭59−67476号参
照)。すなわちこれは2つのリフレクタをつなぐ距離が
既知の一辺を弦とし、この弦を挟む前記挟角の軌跡によ
って決まる2つの円を求め、2つの円の交点として移動
体の位置を決めるものである。しかしこの方法は3つの
リフレクタの反射光を同時に検知して2つの挟角を同時
に知ることを前提とするものであり、2つの挟角の同時
検出ができない場合には不可能であったり不正確になる
という不都合があった。
Therefore, a method has been proposed in which three reflectors whose relative positions are known are used to detect the included angle of the two reflectors from the moving body to determine the position of the moving body (see JP-A-59-67476). In other words, in this method, one side having a known distance connecting two reflectors is a chord, and two circles determined by the trajectory of the included angle sandwiching the chord are obtained, and the position of the moving body is determined as an intersection of the two circles. However, this method is based on the premise that the reflected light from the three reflectors is simultaneously detected and the two included angles are known at the same time. If the two included angles cannot be simultaneously detected, it is impossible or inaccurate. There was an inconvenience of becoming.

そこで位置が既知の3つの光反射手段の方位を3つの
位置で検出し、その間の移動体の移動量と移動方向とを
検出することにより位置を正確に検出する方法が同一出
願人により提案された(同日出願の特許願(1))。
Therefore, a method of accurately detecting a position by detecting the azimuths of three light reflecting means whose positions are known at three positions and detecting the moving amount and moving direction of the moving body between the three positions has been proposed by the same applicant. (Patent application (1) filed on the same day).

しかし実際には3つの光反射手段の全てが常に正しく
反射するとは限らない。例えば1つが汚れなどで反射し
にくくなったり、障害物があったり、また用いる3つの
光反射手段の組合せが走行中に変わったりする時に一時
的に反射光を受光できないことが起り得る。このような
時には移動体の位置検知が一時的に不可能になるという
問題が生じ得る。
However, actually, not all three light reflecting means always reflect correctly. For example, when one of them becomes difficult to reflect due to dirt or the like, there is an obstacle, or the combination of the three light reflecting means used changes during traveling, it may happen that the reflected light cannot be received temporarily. In such a case, there may be a problem that the position detection of the moving body becomes temporarily impossible.

(発明の目的) 本発明はこのような事情に鑑みなされたものであり、
位置が既知の3つの光反射手段からの反射光を用いて移
動体の位置を検知する場合に、いずれかの光反射手段が
投受光しにくいといったことがあったり、移動体の移動
に伴って用いる3つの光反射手段の組合せが変っても不
都合が生じることがなく、高精度に反射光を捕えること
が可能になる移動体の位置検知装置を提供することを目
的とする。
(Object of the Invention) The present invention has been made in view of such circumstances,
When detecting the position of the moving body using the reflected light from the three light reflecting means whose positions are known, there is a case where it is difficult for any of the light reflecting means to project and receive the light, or with the movement of the moving body. It is an object of the present invention to provide a position detecting device for a moving object that can capture reflected light with high precision without causing any inconvenience even if the combination of the three light reflecting means used changes.

(発明の構成) 本発明によればこの目的は、位置が既知の多数の光反
射手段のうち3個により、移動体からの射出光を移動体
方向へ反射して移動体の位置を検出する装置において、
移動体に設けた複数の投受光器と、各投受光器の追尾方
向管理手段と、各光反射手段からの受光方向を検出し受
光方位ベクトルを求める角度検出手段と、移動体の移動
量を求める移動量検出手段と、移動体の移動方向を検出
し移動方位ベクトルを求める移動方向検出手段と、演算
手段とを備え、前記追尾方向管理手段は1個の投受光器
を除いて他の投受光器を位置検出用の3つの光反射手段
に追尾させ、前記演算手段は、前記他の投受光器が移動
体の3位置でそれぞれ検出した位置検出用の3つの光反
射手段の方向に対応する受光方位ベクトルと、前記移動
方向検出手段が移動体の前記3位置で求めた移動方位ベ
クトルと、3位置間の移動量とを用いて、前記移動方位
ベクトルと受光方位ベクトルとの内積による連立方程式
を解いて移動体の位置を演算することを特徴とする移動
体の位置検知装置、により達成される。
(Constitution of the Invention) According to the present invention, an object of the present invention is to detect the position of a moving body by reflecting light emitted from the moving body in the direction of the moving body by three of a large number of light reflecting means having known positions. In the device,
A plurality of light emitting and receiving devices provided on the moving body, a tracking direction managing means for each light emitting and receiving device, an angle detecting means for detecting a light receiving direction from each light reflecting means to obtain a light receiving azimuth vector, and a moving amount of the moving body. A moving direction detecting means for detecting a moving direction of the moving object to obtain a moving azimuth vector, and a calculating means. The light receiver tracks the three light reflecting means for position detection, and the calculating means corresponds to the directions of the three light reflecting means for position detection detected by the other light emitting and receiving devices at three positions of the moving body, respectively. Using the light receiving direction vector, the moving direction vector obtained by the moving direction detecting means at the three positions of the moving object, and the amount of movement between the three positions, the inner product of the moving direction vector and the light receiving direction vector Solve the equation Position detecting apparatus for a mobile body and calculates the location is accomplished by.

ここに追尾方向管理手段は、1個の投受光器を位置検
出に用いている3個の光反射手段のうち最も遠い光反射
手段に向けたり、次に用いる予定の光反射手段に向けた
り、受光失敗回数が一定数以上になった光反射手段に向
けるように管理することができる。
Here, the tracking direction management means directs one light emitter / receiver to the farthest light reflection means of the three light reflection means used for position detection, or to the light reflection means to be used next, It can be managed so as to direct the light to the light reflecting means for which the number of light reception failures has reached a certain number or more.

(原理) この構成により前記目的が達成できることを第5図に
基づき説明する。
(Principle) A description will be given, based on FIG. 5, that the above object can be achieved by this configuration.

この図においてP0は移動体の現在位置、P1、P2はそれ
ぞれ或る時間前における移動体の位置である。座標系x
−yを図のようにとり、各位置の座標を次のように決め
る。
In this figure, P 0 is the current position of the moving object, and P 1 and P 2 are the positions of the moving object at a certain time before. Coordinate system x
−y is taken as shown in the figure, and the coordinates of each position are determined as follows.

P0(x,y) P1(x−Δx1,y−Δy1) P2(x−Δx2,y−Δy2) ここにx、yが求めようとする座標であり、Δx1,Δx
2,Δy1,Δy2は移動体の移動量と移動方向とを監視する
ことにより求めることができる。
P 0 (x, y) P 1 (x−Δx 1 , y−Δy 1 ) P 2 (x−Δx 2 , y−Δy 2 ) Here, x and y are coordinates to be obtained, and Δx 1 , Δx
2 , Δy 1 and Δy 2 can be obtained by monitoring the moving amount and moving direction of the moving body.

また移動体の位置P0におけるx軸方向に対する移動方
向を、θと仮定すれば、位置P1、P2における移動方向は
θ−Δθ、θ−Δθとして求められる。ここにΔθ
、Δθは、移動中の移動方向の変化量であるから移
動中監視し続けることにより求められる。
Also the direction of movement with respect to the x-axis direction at the position P 0 of the moving body, assuming theta, movement direction at the position P 1, P 2 is determined as θ-Δθ 1, θ-Δθ 2. Where Δθ
1 , Δθ 2 is the amount of change in the moving direction during movement, and thus can be obtained by continuously monitoring during movement.

R1、R2、R3はコーナーキューブなどで作られた光反射
手段としてのリフレクタであり、これらの座標は図に示
すように既知である。位置P0、P1、P2における移動方向
とリフレクタR1、R2、R3による受光方向とのなす角(受
光角)をα、β、γとすれば、この受光角も検出可能で
ある。
R 1 , R 2 , R 3 are reflectors as light reflecting means made of a corner cube or the like, and their coordinates are known as shown in the figure. If the angles (light receiving angles) between the moving directions at the positions P 0 , P 1 , and P 2 and the light receiving directions by the reflectors R 1 , R 2 , and R 3 are α, β, and γ, the light receiving angles can also be detected. is there.

位置P0、P1、P2における移動方向を示す方位ベクトル
)を次のように定義する。
An azimuth vector ( 0 , 1 , 2 ) indicating a moving direction at the positions P 0 , P 1 , and P 2 is defined as follows.

=(cosθ,sinθ) =(cos(θ−Δθ),sin(θ−Δθ)) =(cos(θ−Δθ),sin(θ−Δθ)) またリフレクタRに対する方位と距離を示す受光ベク
トル、、を次式で定義する。
0 = (cos θ, sin θ) 1 = (cos (θ−Δθ 1 ), sin (θ−Δθ 1 )) 2 = (cos (θ−Δθ 2 ), sin (θ−Δθ 2 )) And the light receiving vector indicating the distance are defined by the following equation.

=(xr1−x,yr1−y) =(xr2−x+Δx1,yr2−y+Δy1) =(xr3−x+Δx2,yr3−y+Δy2) 従って内積(スカラー積)の定義から、 ・=(xr1−x)cosθ+(yr1−y)sinθ =||・|0|cosα …(1) ・=||・|1|cosβ …(2) ・=||・|2|cosγ …(3) (1)、(2)、(3)の連立方程式の解としてx、
y、θを求めることができる。すなわち本発明は、現在
の位置P0および過去の位置P1、P2における方位ベクトル
)と、受光ベクトル、、
と、P2、P1、P0間の移動量とを検出し、現在位置P0の座
標(x、y)と移動方向θとを連立方程式の解として求
めるものである。
= (X r1 −x, y r1 −y) = (x r2 −x + Δx 1 , y r2 −y + Δy 1 ) = (x r3 −x + Δx 2 , y r3 −y + Δy 2 ) Therefore, from the definition of the inner product (scalar product), · 0 = (x r1 -x) cosθ + (y r1 -y) sinθ = || · | 0 | cosα ... (1) · 1 = || · | 1 | cosβ ... (2) · 2 = || · | 2 | cosγ ... (3) As the solution of the simultaneous equations of (1), (2) and (3), x,
y and θ can be obtained. That is, the present invention provides an azimuth vector ( 0 , 1 , 2 ) at the current position P 0 and the past positions P 1 and P 2 , a light receiving vector,
And the movement amount between P 2 , P 1 , and P 0 are detected, and the coordinates (x, y) of the current position P 0 and the movement direction θ are obtained as solutions of simultaneous equations.

(実施例) 第1図は本発明の構成を示す機能ブロック図、第2図
は移動体の制御系を示すブロック図、第3図は移動体と
してのゴルフカートの側面図、第4図は動作説明図であ
る。
(Embodiment) FIG. 1 is a functional block diagram showing a configuration of the present invention, FIG. 2 is a block diagram showing a control system of a moving body, FIG. 3 is a side view of a golf cart as a moving body, and FIG. It is operation | movement explanatory drawing.

第3図において符号10は車体フレーム、12(12a、12
b)は左右一対の後輪、14は1個の操向前輪である。車
体フレーム10は後輪12間から上方へ起立し上端が前方へ
水平にのびる上部フレーム10aを有する。後輪12には電
動走行モータ16の回転がチェーン18、20、差動装置22を
介して伝えられる。左右の後輪12a、12bの回転量は左右
一対のエンコーダ24(24a、24b)により別々に検出され
る。前輪14は操向軸筒26に保持された操向軸28の下端に
取付けられている。この操向軸28の上端にはクラッチ30
を介して操舵用モータ32が接続される一方、リンク34に
よってハンドル軸36の回転が伝えられるようになってい
る。すなわちクラッチ30の断続により、モータ32かハン
ドル38かのいずれかによって前輪14の操舵が行われるよ
うになっている。
In FIG. 3, reference numeral 10 denotes a body frame, 12 (12a, 12
b) is a pair of left and right rear wheels, and 14 is one steering front wheel. The body frame 10 has an upper frame 10a which rises upward from between the rear wheels 12 and has an upper end extending horizontally forward. The rotation of the electric traveling motor 16 is transmitted to the rear wheels 12 via the chains 18, 20 and the differential device 22. The rotation amounts of the left and right rear wheels 12a, 12b are separately detected by a pair of left and right encoders 24 (24a, 24b). The front wheel 14 is attached to a lower end of a steering shaft 28 held by a steering shaft tube 26. A clutch 30 is provided at the upper end of the steering shaft 28.
, The steering motor 32 is connected, and the link 34 transmits the rotation of the handle shaft 36. That is, the front wheel 14 is steered by either the motor 32 or the steering wheel 38 due to the connection / disconnection of the clutch 30.

40はコントローラであり、走行用と操舵用の各モータ
16、32の電力制御を行う回路や、インターフェース等を
有するものである。42は車体中央付近の下部に搭載され
た鉛蓄電池である。車体フレーム10の後部には運転者が
立てるようにステップ46が突設されている。運転者は必
要に応じてこのステップ46に立ち、入力装置48、メイン
スイッチ50、ハンドル38等を操作できるようになってい
る。
40 is a controller, each motor for traveling and steering
It has a circuit for performing power control of 16, 32, an interface, and the like. Reference numeral 42 denotes a lead storage battery mounted at a lower portion near the center of the vehicle body. A step 46 is provided at the rear of the body frame 10 so that the driver stands. The driver can operate the input device 48, the main switch 50, the steering wheel 38, and the like, if necessary, at the step 46.

52(52a〜d)はレーザー投受光器であり、上フレー
ム10aの前端に取付けられている。これらの投受光器52
は、水平な軸回りに高速回転するポリゴナルミラーによ
ってレーザーをほぼ垂直方向に主走査しつつ、全体を垂
直な軸回りに回転させて周囲方向にそれぞれ独立に副走
査される。モータ54(54a〜d)はこの副走査方向へ投
受光器52を回転させる一方、この回転角度はエンコーダ
56(56a〜d)により検出される。またこれらの投受光
器52には射出したレーザーのリフレクタによる反射光を
検出する受光素子が取付けられ、レーザー光が前記第5
図で説明したリフレクタRで反射されて戻る光を検出す
る。
Reference numerals 52 (52a to 52d) denote laser emitters and receivers, which are attached to the front end of the upper frame 10a. These emitters and receivers 52
The laser beam is rotated in a substantially vertical direction by a polygonal mirror that rotates at a high speed about a horizontal axis, and the laser beam is rotated about the vertical axis and independently scanned in the circumferential direction. The motor 54 (54a-d) rotates the light emitter / receiver 52 in this sub-scanning direction, while the rotation angle is
56 (56a-d). Further, a light receiving element for detecting the reflected light of the emitted laser by the reflector is attached to these light emitting and receiving devices 52, and the laser light is transmitted to the fifth light emitting device.
The light reflected by the reflector R described in the drawing and returned is detected.

次にCPU装置60を説明する。この装置60はデジタルコ
ンピュータからなるCPU62、半導体メモリ(記憶装置)6
4、パルスカウンタ66(66a、66b)、68(68a〜d)等を
有する。両パルスカウンタ66は左右後輪12の回転に伴っ
てエンコーダ24が出力するパルスを別々にカウントす
る。4つのパルスカウンタ68はそれぞれの投受光器52の
回転に伴ってエンコーダ56が出力するパルスを別々にカ
ウントする。これらカウンタ66、68のカウント値はコン
トローラ40に設けたインターフェース(図示せず)を介
してCPU62に読込まれる。メモリ64にはCPU62の動作プロ
グラムの他に、光反射手段としてのリフレクタR(第5
図参照)の座標、走行所定ルート等のデータが記憶され
ている。
Next, the CPU device 60 will be described. This device 60 includes a CPU 62 composed of a digital computer, a semiconductor memory (storage device) 6
4. It has a pulse counter 66 (66a, 66b), 68 (68a-d) and the like. Both pulse counters 66 separately count pulses output by the encoder 24 as the left and right rear wheels 12 rotate. The four pulse counters 68 separately count the pulses output by the encoder 56 with the rotation of each of the light emitting and receiving devices 52. The count values of these counters 66 and 68 are read into the CPU 62 via an interface (not shown) provided in the controller 40. In the memory 64, in addition to the operation program of the CPU 62, a reflector R (fifth
(See the figure), and data such as a predetermined traveling route.

CPU62は第1図に示す機能の演算を、メモリ64に記憶
したプログラムに従って順次繰り返し行う。CPU62は、
まずメモリ64に記憶した走行予定ルートに従って操舵用
モータ32と走行用モータ16とを駆動する信号をコントロ
ーラ40に送る。この結果前輪14が操舵され後輪12が駆動
されて、走行予定ルートにほぼ沿って自走する。CPU62
の追尾方向管理手段62Aは走行中に投受光器52を作動さ
せ、レーザーを上下方向に主走査させつつ垂直軸回りに
副走査させる。この時方向管理手段62Aは、メモリ64か
ら検出したリフレクタの位置が第4図に示すように最も
近い3つのr1、r2、r3を選び、それぞれに別々の投受光
器52を向ける。例えば第4図でP2の位置では投受光器52
bをr3に、52cをr2に、52dをr1に向けて適宜の角度範囲
内で副走査させて追尾する。この場合副走査の角度範囲
は、移動体と光反射手段rとの距離が遠いほど小さく近
いほど大きくする。
The CPU 62 repeatedly performs the operations of the functions shown in FIG. 1 in accordance with the program stored in the memory 64. CPU62
First, a signal for driving the steering motor 32 and the traveling motor 16 is sent to the controller 40 according to the scheduled traveling route stored in the memory 64. As a result, the front wheels 14 are steered and the rear wheels 12 are driven, and the vehicle runs substantially along the scheduled traveling route. CPU62
The tracking direction management means 62A operates the light emitter / receiver 52 during traveling, and makes the laser perform sub scanning about the vertical axis while performing main scanning in the vertical direction. At this time, the direction managing means 62A selects the three closest r 1 , r 2 , and r 3 where the position of the reflector detected from the memory 64 is as shown in FIG. 4, and directs the separate light emitting and receiving devices 52 to each. For example emitter and receiver 52 at the position of the P 2 in FIG. 4
The b to r 3, and 52c to r 2, 52 d to be tracked by the sub-scanning in the appropriate angular range toward the r 1. In this case, the angle range of the sub-scanning is made larger as the distance between the moving body and the light reflecting means r is smaller and smaller.

また投受光器52aは補助的に使われ、受光失敗回数が
所定時間内に一定回数以上になったリフレクタ例えばr3
に向けられる。またさらに大きい一定回数以上になった
場合には、そのリフレクタは機能していないものと判断
し、投受光器52aは別のリフレクタを探すことに用いら
れる。レーザーがリフレクタr1で反射して投受光器52d
に戻るとこの反射光が受光素子で検出され、この時の受
光信号に基づいてパルスカウンタ68dのカウント値nがC
PU62に読み込まれる。CPU62の角度検出手段62Bはこのカ
ウント値nに基づき車輛走行方向に対するリフレクタr1
の角度γを求める。CPU62はこの時の車輛の位置を P2(x−Δx2,y−Δy2) としてメモリ64に記憶する一方、この位置P2における走
行方向を示す方位ベクトルと、リフレクタr1による
受光方向ベクトルとを次式のように決める。
Further, the light emitter / receiver 52a is used as an auxiliary, and a reflector such as r 3 in which the number of light reception failures exceeds a certain number within a predetermined time.
Turned to If the number of times exceeds a certain value, it is determined that the reflector is not functioning, and the light emitter / receiver 52a is used to search for another reflector. Laser is reflected by reflector r 1 and emitter and receiver 52d
The reflected light is detected by the light receiving element, and the count value n of the pulse counter 68d is set to C based on the light receiving signal at this time.
Read by PU62. Based on the count value n, the angle detection means 62B of the CPU 62 uses the reflector r 1 for the vehicle traveling direction.
Is obtained. CPU62 whereas stores vehicle position at this time P 2 (x-Δx 2, y-Δy 2) memory 64 as a direction vector 2 showing the direction of travel at this position P 2, the light receiving direction of the reflector r 1 The vector is determined as follows.

=(cos(θ−Δθ),sin(θ−Δθ) =(xr3−x+Δx2,yr3−y+Δy2) CPU62はその後走行予定コースに従って車輛を走行さ
せ、投受光器52cがリフレクタr2からの反射光を受光す
ると、その時のリフレクタr2の角度βを求めると共に、
その位置をP1として P1=(x−Δx1,y−Δy1) としてメモリ64に記憶する。CPU62はまた方位ベクトル
と、受光方向ベクトルとを次のように決める。
2 = (cos (θ-Δθ 2), sin (θ-Δθ 2) = (x r3 -x + Δx 2, y r3 -y + Δy 2) CPU62 is allowed to run the vehicle in accordance with the then planned travel course, emitter and receiver 52c is a reflector When the reflected light from r 2 is received, the angle β of the reflector r 2 at that time is obtained, and
And stores the position in the P 1 = (x-Δx 1 , y-Δy 1) memory 64 as a P 1. CPU62 also has an orientation vector
1 and the light receiving direction vector are determined as follows.

=(cos(θ−Δθ),sin(θ−Δθ)) =(xr2−x+Δx1,yr2−y+Δy1) さらにCPU62は走行して投受光器52bがリフレクタr3
らの反射光を受光すると、その時のリフレクタr3の角度
αを求めると共に、その位置をP0として P0(x,y) をメモリし、方位ベクトルと、受光方向ベクトル
とを次式により決める。
1 = (cos (θ-Δθ 1), sin (θ-Δθ 1)) = reflection from (x r2 -x + Δx 1, y r2 -y + Δy 1) emitter and receiver 52b is a reflector r 3 further CPU62 is traveling when receiving light, with determining the angle α of the reflector r 3 at that time, P 0 and (x, y) to the memory of the position as P 0, the azimuth vector 0, determines a light-receiving direction vector by the following equation.

=(cosθ,sinθ) =(xr1−x,yr1−y) ここに移動量Δx1、Δx2、Δy1、Δy2や移動方向Δθ
1,Δθは第1図における移動量検出手段62C、移動方
向検出手段62Dにおいて、左右の各後輪12の回転量の平
均値と、回転量の差とを用いてそれぞれ算出するもので
ある。
0 = (cos θ, sin θ) = (x r1 −x, y r1 −y) Here, the moving amounts Δx 1 , Δx 2 , Δy 1 , Δy 2 and the moving direction Δθ
1 and Δθ 2 are calculated by the movement amount detecting means 62C and the moving direction detecting means 62D in FIG. 1 using the average value of the rotation amounts of the left and right rear wheels 12 and the difference between the rotation amounts. .

CPU62は次にこれらの方位ベクトル
と、受光方位ベクトル、、と、角度α、β、γと
を用いて、前記(原理)で説明した(1)、(2)、
(3)の連立方程式を解く(演算手段62E)。
The CPU 62 then calculates these azimuth vectors 0 , 1 , 2
, The light receiving direction vector, and the angles α, β, γ, and (1), (2),
The simultaneous equations of (3) are solved (calculation means 62E).

このように異なる位置P2、P1、P0における異なるリフ
レクタr1、r2、r3の反射方向と、その間の車輛の移動
量、移動方向を自ら検出することにより、現在位置P0
座標(x、y)と走行方向θとを高精度に求めることが
できる。
By detecting the reflection directions of the different reflectors r 1 , r 2 , and r 3 at the different positions P 2 , P 1 , and P 0 , the movement amount and the movement direction of the vehicle therebetween, the current position P 0 The coordinates (x, y) and the traveling direction θ can be obtained with high accuracy.

このようにして位置を検出しながら移動してゆき、P0
の位置に来ると方向管理手段62Aは投受光器52aをリフレ
クタr3から次に用いるr4に向きを変え、このr4からの反
射光を用いて位置検知を行う準備をする。そして以後リ
フレクタr2、r3、r4を用いて位置検知を行いながら走行
する。そしてさらに位置P0に移る間に最も遠くなるリフ
レクタr1に向いていた投受光器52dを近いリフレクタr3
に向けて、r2、r3、r4による位置検知を行う。その時受
光器52bは次に用いる予定のリフレクタr5を追尾する。
このように1つの投受光器52を次に用いるリフレクタに
追尾することにより、実質的に連続な位置検知を円滑に
行うことが可能になる。
In this way, the robot moves while detecting the position, and P 0
Comes the direction management unit 62A to the position of changing the orientation r 4 using then the emitter and receiver 52a from the reflector r 3, to prepare for detecting the position by using reflected light from the r 4. Thereafter, the vehicle travels while performing position detection using the reflectors r 2 , r 3 , and r 4 . The emitter and receiver 52d closer reflector r 3 which was facing the reflector r 1 to farthest made while further moves to the position P 0
To perform position detection using r 2 , r 3 , and r 4 . Then the light receiver 52b is tracking a reflector r 5 scheduled to be used next.
In this manner, by tracking one light emitting / receiving device 52 to the reflector to be used next, substantially continuous position detection can be smoothly performed.

移動方向Δθは、この実施例では左右の後輪の回転量
の差から検出しているが、ジャイロスコープなどから検
出してもよいのは勿論である。
In this embodiment, the movement direction Δθ is detected from the difference between the rotation amounts of the left and right rear wheels, but may be detected from a gyroscope or the like.

また本実施例では4つの投受光器52a〜dで3つの光
反射手段の方向を検出しているが、1つの投受光器で3
つの光反射手段を順に時間差をもって追尾し、他の1つ
の投受光器で最も投受光しにくい光反射手段を追尾する
ようにしてもよい。
In this embodiment, the directions of the three light reflecting means are detected by the four light emitting and receiving devices 52a to 52d.
The two light reflecting means may be sequentially tracked with a time difference, and the light reflecting means which is least likely to emit and receive light by the other light emitting and receiving device may be tracked.

(発明の効果) 本発明は以上のように、座標が既知の複数のリフレク
タのうちの3個の方向を3つの位置で求め、3つの位置
での移動体の移動方向、さらにこれら3つの位置の間の
移動量を監視することにより、移動体の移動方位ベクト
ルと受光方位ベクトルとを求め、これらの内積による3
つの連立方程式から移動体の現在位置とその移動方向と
を常に1つの投受光器を除いた他の投受光器で位置検出
用の3つの光反射手段を追尾させるから、この除かれた
1つの投受光器を補助の投受光器として用いることによ
り、光反射手段を高精度に検出できる。例えばこの除い
た1つの投受光器を、3つの位置検出用の光反射手段の
うち最も追尾しにくいと思われる最も遠い光反射手段の
追尾に用いることにより、この光反射手段を一時的に2
つの投受光器を追尾させて検出精度を高めることが可能
になる(請求項2)。
(Effect of the Invention) As described above, according to the present invention, three directions of a plurality of reflectors whose coordinates are known are obtained at three positions, and the moving direction of the moving body at the three positions, and further, these three positions By monitoring the amount of movement during the period, the moving direction vector and the light receiving direction vector of the moving object are obtained, and 3
From the simultaneous equations, the current position of the moving object and its moving direction are always tracked by three light reflecting means for position detection by another light emitting and receiving device except for one light emitting and receiving device. By using the light emitting and receiving device as an auxiliary light emitting and receiving device, the light reflecting means can be detected with high accuracy. For example, this one light emitter / receiver is used for tracking the farthest light reflecting means, which is considered to be the most difficult to track, among the three position detecting light reflecting means, so that this light reflecting means is temporarily
It is possible to improve the detection accuracy by tracking the two light emitting and receiving devices (claim 2).

またこの補助の投受光器で次に用いる予定の光反射手
段を先行して追尾させれば、移動体の移動に伴って使用
する3つの光反射手段の組合せが変わる際に、位置検出
を連続して円滑に行うことが可能になる(請求項3)。
さらにこの補助の投受光器を用いて、受光失敗回数が一
定回数以上の光反射手段を追尾すれば、検出精度が向上
し信頼性の高い位置検出が可能になる(請求項4)。
In addition, if the auxiliary light emitter / receiver first tracks the light reflecting means to be used next, the position detection is continuously performed when the combination of the three light reflecting means to be used changes as the moving body moves. It can be performed smoothly (claim 3).
Further, if the auxiliary light emitter / receiver is used to track the light reflecting means in which the number of light reception failures is equal to or more than a certain number, the detection accuracy is improved and highly reliable position detection is possible (claim 4).

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の構成を示す機能ブロック図、第2図は
移動体の制御系を示すブロック図、第3図は移動体とし
てのゴルフカートの側面図、第4図は動作説明図、また
第5図は原理説明図である。 52a〜d……投受光器、 62……CPU、 62A……追尾方向管理手段、 62B……角度検出手段、 62C……移動量検出手段、 62D…………移動方向検出手段、 62E……演算手段、 R1R2R3、r1〜r5……光反射手段。
FIG. 1 is a functional block diagram showing a configuration of the present invention, FIG. 2 is a block diagram showing a control system of a moving body, FIG. 3 is a side view of a golf cart as a moving body, FIG. FIG. 5 is an explanatory view of the principle. 52a-d: Emitter / receiver 62, CPU, 62A: Tracking direction management means, 62B: Angle detection means, 62C: Movement amount detection means, 62D: Movement direction detection means, 62E ... Arithmetic means, R 1 R 2 R 3 , r 1 to r 5 ... Light reflection means.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G05D 1/02 G01S 5/00 - 5/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) G05D 1/02 G01S 5/00-5/30

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】位置が既知の多数の光反射手段のうち3個
により、移動体からの射出光を移動体方向へ反射して移
動体の位置を検出する装置において、 移動体に設けた複数の投受光器と、各投受光器の追尾方
向管理手段と、各光反射手段からの受光方向を検出し受
光方位ベクトルを求める角度検出手段と、移動体の移動
量を求める移動量検出手段と、移動体の移動方向を検出
し移動方位ベクトルを求める移動方向検出手段と、演算
手段とを備え、前記追尾方向管理手段は1個の投受光器
を除いて他の投受光器を位置検出用の3つの光反射手段
に追尾させ、前記演算手段は、前記他の投受光器が移動
体の3位置でそれぞれ検出した位置検出用の3つの光反
射手段の方向に対応する受光方位ベクトルと、前記移動
方向検出手段が移動体の前記3位置で求めた移動方位ベ
クトルと、3位置間の移動量とを用いて、前記移動方位
ベクトルと受光方位ベクトルとの内積による連立方程式
を解いて移動体の位置を演算することを特徴とする移動
体の位置検知装置。
An apparatus for detecting the position of a moving body by reflecting light emitted from the moving body in the direction of the moving body by three of a large number of light reflecting means having known positions. A light emitting and receiving device, a tracking direction managing means for each light emitting and receiving device, an angle detecting means for detecting a light receiving direction from each light reflecting means to obtain a light receiving azimuth vector, and a moving amount detecting means for obtaining a moving amount of the moving body. Moving direction detecting means for detecting a moving direction of a moving body to obtain a moving azimuth vector, and calculating means, wherein the tracking direction managing means is for detecting a position of another light emitting and receiving device except one light emitting and receiving device. The light receiving direction vectors corresponding to the directions of the three light reflecting means for position detection detected by the other light emitting and receiving devices at the three positions of the moving body, respectively, The moving direction detecting means is provided at the three positions of the moving body. Using the moving azimuth vector obtained in step (1) and the amount of movement between the three positions to solve a simultaneous equation based on an inner product of the moving azimuth vector and the light receiving azimuth vector to calculate the position of the moving body. Position detection device.
【請求項2】追尾方向管理手段は、1個の投受光器を位
置検出に用いる3つの光反射手段のうち最も遠い光反射
手段に向けることを特徴とする請求項(1)記載の移動
体の位置検知装置。
2. The moving body according to claim 1, wherein the tracking direction managing means directs one light emitting and receiving device to the farthest light reflecting means among the three light reflecting means used for position detection. Position detection device.
【請求項3】追尾方向管理手段は、1個の投受光器を次
に用いる3つの光反射手段として新たに加わる光反射手
段に向けることを特徴とする請求項(1)記載の移動体
の位置検知装置。
3. The moving object according to claim 1, wherein the tracking direction managing means directs one light emitting and receiving device to light reflecting means newly added as three light reflecting means to be used next. Position detection device.
【請求項4】追尾方向管理手段は、1個の投受光器を位
置検出用の3つの光反射手段のうち受光失敗回数が一定
数以上になった光反射手段に向けることを特徴とする請
求項(1)記載の移動体の位置検知装置。
4. The tracking direction management means directs one light emitter / receiver to one of the three light reflection means for position detection, the light reflection means having a predetermined number or more of failed light receptions. Item (1).
JP63315173A 1988-12-15 1988-12-15 Moving object position detection device Expired - Fee Related JP2889257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315173A JP2889257B2 (en) 1988-12-15 1988-12-15 Moving object position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315173A JP2889257B2 (en) 1988-12-15 1988-12-15 Moving object position detection device

Publications (2)

Publication Number Publication Date
JPH02161374A JPH02161374A (en) 1990-06-21
JP2889257B2 true JP2889257B2 (en) 1999-05-10

Family

ID=18062298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315173A Expired - Fee Related JP2889257B2 (en) 1988-12-15 1988-12-15 Moving object position detection device

Country Status (1)

Country Link
JP (1) JP2889257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2490092T3 (en) * 2011-02-16 2014-02-28 Siemens Ag Method for autonomous localisation of a driver-less motorised vehicle

Also Published As

Publication number Publication date
JPH02161374A (en) 1990-06-21

Similar Documents

Publication Publication Date Title
JP2717800B2 (en) Steering control device for self-propelled vehicles
JP3079186B2 (en) Structure measurement system
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
JP2000056006A (en) Position recognizing device for mobile
US20230305575A1 (en) Environment boundary construction method based on remote sensor and mobile robot
JPH0690042B2 (en) Position control device for self-propelled vehicle
JP2007101492A (en) Device for detecting distance, and position of mobile robot
JPH0833769B2 (en) Self-propelled vehicle steering position detection device
JP2889257B2 (en) Moving object position detection device
JPH0991039A (en) Guide controller for working vehicle
JP2868847B2 (en) Steering control device for self-propelled vehicles
JP3149661B2 (en) Automatic guided vehicle position identification method
JP2889256B2 (en) Moving body position detection method and apparatus
JP2950933B2 (en) Moving object position detection device
JPH10222225A (en) Unmanned travel body and its travel method
JP2941103B2 (en) Moving object position detection device
JP2769904B2 (en) Steering control device for self-propelled vehicles
JP2802522B2 (en) Position control device for self-propelled vehicles
JP3564201B2 (en) Self-position detection device for autonomous traveling work vehicles
JP2802506B2 (en) Self-propelled vehicle position detection device
JP2602064B2 (en) Travel position control device for self-propelled vehicles
JP2602065B2 (en) Travel position control device for self-propelled vehicles
WO2024014367A1 (en) Moving body and moving body system
JPH04107709A (en) Position detector for traveling object
JP2862562B2 (en) Traveling course and condition input device for moving objects

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees