JPH03134536A - Measuring apparatus of frequency characteristic - Google Patents

Measuring apparatus of frequency characteristic

Info

Publication number
JPH03134536A
JPH03134536A JP27220589A JP27220589A JPH03134536A JP H03134536 A JPH03134536 A JP H03134536A JP 27220589 A JP27220589 A JP 27220589A JP 27220589 A JP27220589 A JP 27220589A JP H03134536 A JPH03134536 A JP H03134536A
Authority
JP
Japan
Prior art keywords
frequency
output
photodetector
light source
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27220589A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP27220589A priority Critical patent/JPH03134536A/en
Publication of JPH03134536A publication Critical patent/JPH03134536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the frequency characteristic of a photodetector in a wide frequency band by making it unnecessary to measure a beat frequency electrically with using a frequency stabilizing laser of a known frequency and a variable frequency laser. CONSTITUTION:Lights output from a frequency stabilizing laser 11 and a variable frequency laser source 12 are, through an optical fiber, combined by a coupler 3. The combined light is incident upon a photodetector 4 to be measured through an optical fiber. The photodetector 4 detects the beat signal and the electric power of the beat signal is measured by a power meter 6. Then, the frequency characteristic of the light detected by the photodetector 4 is displayed by a frequency characteristic display 7, for example, with an output of the power meter 6 being shown on an axis of ordinate and a sweep output of a signal generator 8 being indicated on an axis of abscissa. The frequency of the beat signal output from the photodetector 4 is corresponding to the output of the signal generator 8. Therefore, if the power of the output from the photodetector is measured by the power meter 6, the frequency characteristic of the photodetector 4 can be detected in a wide band.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、光検出器等の光周波数応答特性を測定する装
置の特性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improving the characteristics of a device for measuring optical frequency response characteristics such as a photodetector.

〈従来の技術〉 第8図は従来の周波数特性測定装置を示す構成ブロック
図である。レーザ光源1および2から出射される波長の
ごく近い2つの光はカプラ3で合成され、そのビート信
号が被測定光検出器4で検出される。レーザ光源1.2
の電流や温度を制御してその発振周波数を変化させれば
、ビート周波数を広帯域に掃引することができる。光検
出器4の出力をスペクトラムアナライザ5で測定するこ
とにより、光検出器4として用いられる各種受光素子や
受光回路の周波数特性を比較的広帯域に測定することが
できる。
<Prior Art> FIG. 8 is a configuration block diagram showing a conventional frequency characteristic measuring device. Two lights having very similar wavelengths emitted from laser light sources 1 and 2 are combined by a coupler 3, and the beat signal thereof is detected by a photodetector to be measured 4. Laser light source 1.2
By controlling the current and temperature of the oscillation frequency and changing its oscillation frequency, it is possible to sweep the beat frequency over a wide band. By measuring the output of the photodetector 4 with the spectrum analyzer 5, the frequency characteristics of various light receiving elements and light receiving circuits used as the photodetector 4 can be measured over a relatively wide band.

〈発明が解決しようとする課題〉 しかしながら、上記のような構成の周波数特性測定装置
では、2つのレーザ光のビート周波数とレベルを測定し
なければならない。スペクトラムアナライザで周波数を
測定する場合、通常、ビート周波数の発振器が必要であ
り、レベルを測定する場合にダイオードで検波するので
、測定出来る周波数の範囲が例えば100GHzに制限
されてしまうという問題がある。
<Problems to be Solved by the Invention> However, in the frequency characteristic measuring device configured as described above, the beat frequency and level of two laser beams must be measured. When measuring frequency with a spectrum analyzer, a beat frequency oscillator is usually required, and when measuring the level, detection is performed with a diode, so there is a problem that the measurable frequency range is limited to, for example, 100 GHz.

本発明はこのような課題を解決するためになされたもの
で、光検出器の周波数特性を広帯域で検出できる周波数
特性測定装置を実現することを目的とする。
The present invention has been made to solve such problems, and an object of the present invention is to realize a frequency characteristic measuring device that can detect the frequency characteristics of a photodetector over a wide band.

く課題を解決するための手段〉 本発明に係る周波数特性測定装置は標準物質の吸収スペ
クトル線に半導体レーザの周波数を制御して周波数を安
定化する安定化レーザ光源と、標準物質の吸収スペクト
ル線に半導体レーザの周波数を制御した後その周波数を
変化することのできる可変周波数レーザ光源と、この可
変周波数レーザ光源の周波数を掃引する信号発生器と、
前記安定化レーザ光源の出力光と前記可変周波数レーザ
光源の出力光を合波する合波手段と、この合波手段の出
力光を入射する被測定光検出器から出力されるビート信
号のパワーを測定するパワーメータと、このパワーメー
タの出力と前記信号発生器の出力を入力して前記光検出
器の周波数特性を表示する表示器とを備えたことを特徴
とする。
Means for Solving the Problems> The frequency characteristic measuring device according to the present invention includes a stabilized laser light source that stabilizes the frequency by controlling the frequency of a semiconductor laser according to the absorption spectrum line of the standard material, and a variable frequency laser light source that can control the frequency of a semiconductor laser and then change the frequency; a signal generator that sweeps the frequency of the variable frequency laser light source;
A combining means for combining the output light of the stabilized laser light source and the output light of the variable frequency laser light source, and a power of a beat signal output from a photodetector to be measured into which the output light of the combining means is incident. The photodetector is characterized in that it includes a power meter for measurement, and a display that inputs the output of the power meter and the output of the signal generator to display the frequency characteristics of the photodetector.

く作用〉 光検出器から出力されるビート信号の周波数は信号発生
器の出力と対応するので、パワーメータで光検出器出力
のパワーを測定すれば、表示器で周波数特性を簡単に表
示することができる。
Effect> The frequency of the beat signal output from the photodetector corresponds to the output of the signal generator, so if you measure the power of the photodetector output with a power meter, you can easily display the frequency characteristics on the display. Can be done.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係る光周波数特性装置の一実維例を示
す構成ブロック図である。第8図と同じ部分は同一の記
号を付しである。11は標準物質の吸収スペクトル線に
半導体レーザの周波数を制御して周波数を安定化する周
波数安定化レーザ光源、12は標準物質の吸収スペクト
ル線に半導体レーザの周波数を制御した後その周波数を
変化することのできる可変周波数レーザ光源、8は可変
周波数レーザ光源12の周波数を鋸歯状波等で掃引する
信号発生器、3は安定化レーザ光源11の出力光と可変
周波数レーザ光源12の出力光を合波する合波手段を構
成し、両光源11.12の出力光を漏波面を合せて合波
する偏波面保存ファイバカプラ、4はカプラ3の出力光
を入射するフォトダイオード等の被測定光検出器、6は
光検出器4から出力される電気信号パワーを測定する交
流パワーメータ、7はパワーメータ6の出力と信号発生
器8の出力を入力して前記光検出器4の周波数特性を表
示する表示器である。
FIG. 1 is a configuration block diagram showing an example of an optical frequency characteristic device according to the present invention. The same parts as in FIG. 8 are given the same symbols. 11 is a frequency-stabilized laser light source that stabilizes the frequency of a semiconductor laser by controlling the frequency of the semiconductor laser according to the absorption spectrum line of the standard substance; 12 is a frequency-stabilized laser light source that controls the frequency of the semiconductor laser according to the absorption spectrum line of the standard substance and then changes the frequency; 8 is a signal generator that sweeps the frequency of the variable frequency laser light source 12 with a sawtooth wave or the like; 3 is a signal generator that combines the output light of the stabilized laser light source 11 and the output light of the variable frequency laser light source 12; A polarization-maintaining fiber coupler constitutes a wave combining means and combines the output lights of both light sources 11 and 12 by aligning their leakage planes, and 4 is a light detection device to be measured such as a photodiode into which the output light of the coupler 3 is input. 6 is an AC power meter that measures the electrical signal power output from the photodetector 4; 7 is an AC power meter that inputs the output of the power meter 6 and the output of the signal generator 8 to display the frequency characteristics of the photodetector 4; This is an indicator that displays

第2図は第1図の安定化レーザ光源11を示す構成ブロ
ック図である。LDIは半導体レーザ、’I’ S 1
はこの半導体レーザLDIの温度を測定する温度センサ
、PEIはこの半導体レーザLDIを冷却または加熱す
るベルチェ素子、CTIは温度センサTSIの出力に基
づき前記ベルチェ素子PEを駆動して前記半導体レーザ
LDIの温度を一定に制御する温度制御手段、TBIは
これらを格納して温度変動を減少させる恒温槽である。
FIG. 2 is a structural block diagram showing the stabilized laser light source 11 of FIG. 1. LDI is a semiconductor laser, 'I' S1
is a temperature sensor that measures the temperature of this semiconductor laser LDI, PEI is a Bertier element that cools or heats this semiconductor laser LDI, and CTI is a temperature sensor that drives the Bertier element PE based on the output of the temperature sensor TSI to measure the temperature of the semiconductor laser LDI. TBI is a constant temperature bath that stores these and reduces temperature fluctuations.

BSlは前記半導体レーザの出力光を2方向に分離する
ビームスプリッタ、UMIはこのビームスプリッタBS
Iの一方の出射光を入射し変調手段を構成する音響光学
変調器、CLIはこの音響光学変調器UMIの回折光出
力を入射し特定の波長の光を吸収する標準物質(ここで
はC2H2)を封入した吸収セル、PDIはこの吸収セ
ルCLIの透過光を入射する光検出器、A1はこの光検
出器PCIの出力電気信号を入力する増幅器、LAIは
この増幅器A1の電気出力を入力するロックインアンプ
、Cr2はこのロックインアンプLAIの出力を入力し
前記半導体レーザLDIの電流を制御する制御手段を構
成するPIDコントローラ、SWIは前記音響光学変調
器UMIにその一端が接続するスイッチ、SGIはその
出力の一方がロックインアンプLAIの参照信号となる
とともにその出力の他方で前記スイッチSWIが周波数
f重(例えば2kHz)でオンオフする信号発生器、S
G2は前記スイッチSWIの他端に接続する周波数fo
  (例えば80MHz)の第2の信号発生器である。
BSl is a beam splitter that separates the output light of the semiconductor laser into two directions, and UMI is this beam splitter BS.
The acousto-optic modulator CLI receives the output light from one side of the acousto-optic modulator UMI and constitutes a modulation means. The enclosed absorption cell, PDI, is a photodetector that receives the transmitted light of this absorption cell CLI, A1 is an amplifier that inputs the output electrical signal of this photodetector PCI, and LAI is a lock-in that inputs the electrical output of this amplifier A1. An amplifier, Cr2, is a PID controller that inputs the output of this lock-in amplifier LAI and constitutes a control means for controlling the current of the semiconductor laser LDI, SWI is a switch whose one end is connected to the acousto-optic modulator UMI, and SGI is a switch thereof. a signal generator S, one of whose outputs serves as a reference signal for a lock-in amplifier LAI, and whose other output turns on and off the switch SWI at a frequency f (for example, 2 kHz);
G2 is the frequency fo connected to the other end of the switch SWI.
(e.g. 80 MHz).

第5図は第1図の可変周波数レーザ光源12を示ず構成
ブロック図である。第2図と異なる部分のみを説明する
と、SW2はPIDコントローラCT2の出力とレーザ
LDIの入力の間に挿入されるモード切換スイッチ、S
W3は信号発生器8の出力と一端が接続するモード切換
スイッチ、S81はこの切換スイッチSW3の他端から
の出力と温度ゼンサTSIの出力を入力してその差を温
度制御手段CTIの入力に接続する引算回路である。
FIG. 5 is a configuration block diagram without showing the variable frequency laser light source 12 of FIG. 1. To explain only the parts that are different from FIG. 2, SW2 is a mode changeover switch inserted between the output of the PID controller CT2 and the input of the laser LDI.
W3 is a mode changeover switch whose one end is connected to the output of the signal generator 8, and S81 is a mode changeover switch that inputs the output from the other end of this changeover switch SW3 and the output of the temperature sensor TSI, and connects the difference to the input of the temperature control means CTI. This is a subtraction circuit.

第6図は第1図の電気のパワーメータ6を示す構成ブロ
ック図である。Cは光検出器4出力の直流成分をカット
するキャパシタ、RはキャパシタCの出力電流を熱に変
換する抵抗、61.62は抵抗Rの発熱量を測定するそ
れぞれ熱電対およびその変換器である。
FIG. 6 is a block diagram showing the electrical power meter 6 of FIG. 1. As shown in FIG. C is a capacitor that cuts the DC component of the photodetector 4 output, R is a resistor that converts the output current of capacitor C into heat, and 61.62 is a thermocouple and its converter that measure the amount of heat generated by resistor R. .

上記のような構成の周波数特性測定装置の動作を以下に
詳しく説明する。
The operation of the frequency characteristic measuring device configured as described above will be explained in detail below.

第1図において、周波数安定化レーザ11および可変周
波数レーザ光源12の出力光は光ファイバを介してカプ
ラ3で合波され、その合波光が光ファイバを介して被測
定光検出器4に入射する。
In FIG. 1, output lights from a frequency stabilized laser 11 and a variable frequency laser light source 12 are combined by a coupler 3 via an optical fiber, and the combined light enters a photodetector under test 4 via an optical fiber. .

ここで周波数安定化レーザ11が周波数f1で発振して
いると、このときの出力光電界振幅は次式%式%) (1) また可変周波数レーザ光源12が周波数f2で発振して
いると、出力光電界振幅は次式で表される。
Here, if the frequency stabilized laser 11 is oscillating at a frequency f1, the output optical electric field amplitude at this time is expressed by the following formula (%) (1) Also, if the variable frequency laser light source 12 is oscillating at a frequency f2, The output optical electric field amplitude is expressed by the following equation.

E  =e  sin (2πf2を十θ2)2 (2) ただしθ1.θ2は位相ノイズである。(1)。E = e sin (2πf2 + θ2) 2 (2) However, θ1. θ2 is phase noise. (1).

(2)式で表される2つの光をカプラ3で合波すると合
波光の電界振幅は次式で表される。
When the two lights expressed by equation (2) are combined by the coupler 3, the electric field amplitude of the combined light is expressed by the following equation.

E  十E =e  sin(2gf1t+θ1)+1
 2 1 e  5in(2πf  t+θ )   ・ (3)
2      2  2 合波光を入射する光検出器4は電界の2乗に比例した出
力を発生するので、その出力I  は次式%式% )) ) ) ] (4) (4)式で[]内の最後の項は2つの光の発振周波数の
差f  −f2の成分がそれぞれの電界振幅の積に比例
したレベルで出力されることを示している。光検出器4
はこのビート信号を検出し、その電気パワーをパワーメ
ータ6で測定する0例えば可変周波数レーザ光源12の
発振周波数をflから掃引し、f1+Δfのところで電
気のパワーメータ6の出力が3dBダウンしたとき、こ
の光検出器4の3dB:IP!4衰周波数周波数となる
E 1E = e sin (2gf1t+θ1)+1
2 1 e 5in (2πft+θ) ・ (3)
2 2 2 The photodetector 4 into which the combined light is incident generates an output proportional to the square of the electric field, so its output I can be calculated using the following formula % )) ) ) ] (4) In equation (4), [] The last term in the equation indicates that the component of the difference f - f2 between the oscillation frequencies of the two lights is output at a level proportional to the product of the respective electric field amplitudes. Photodetector 4
detects this beat signal and measures its electric power with the power meter 6.0For example, when the oscillation frequency of the variable frequency laser light source 12 is swept from fl and the output of the electric power meter 6 drops by 3 dB at f1+Δf, 3dB of this photodetector 4: IP! This becomes the 4-attenuation frequency.

次に第2図の周波数安定化レーザの動作を説明する。半
導体レーザLDIは恒温槽TBI内で温度検出信号を入
力する制御手段C’T’lによりベルチェ素子PEIを
介して一定温度に制御されている。半導体レーザLDI
の出力光はビームスプリッタBSIで2方向に分離され
、反射光は外部への出力光となり透過光は音響光学変調
器UMIに入射する。スイッチSWIがオンの時音響光
学変調器UMIは信号発生器SG2の周波数f、の出力
で駆動されるので、周波数ν。の入射光の大部分は回折
して周波数(ドツプラ)シフトを受け、1次回折光とし
て周波数ν。−トf、の光が吸収セルCL 1に入射す
る。スイッチSWIがオフのときは入射光は全て0次回
折光として周波数し◇で吸収セルCLIに入射する。ス
イッチSWIは信号発生器SGIの周波数1重のタロツ
クで駆動されるので、吸収セルCLIに入射する光は変
調周波数f 11 +変調源さfoの周波数変調を受け
ることになる。吸収セルCLIに音響光学変か1器UM
1で変調された光が入射すると、第3図の動作説明図に
示すように吸収信号の箇所でのみ透過光量が変調を受け
て出力に信号が現れる。この信号を光検出器PDIで電
気信号に変換し増幅器A1を介してロックインアンプL
A1において周波数flで同期!1流すれば、第4図の
周波数特性曲線図に示すような1次微分波形が得られる
。PIDコントローラCT2により半導体レーザLDI
の電流を制御して、ロックインアンプLAIの出力を前
記1次微分波形の中心に制御すれば半導体レーザLDI
の出力光はνsfo/2にロックされた安定な周波数と
なる。
Next, the operation of the frequency stabilized laser shown in FIG. 2 will be explained. The semiconductor laser LDI is controlled to a constant temperature via the Vertier element PEI by a control means C'T'l which inputs a temperature detection signal in the constant temperature bath TBI. semiconductor laser LDI
The output light is separated into two directions by the beam splitter BSI, the reflected light becomes output light to the outside, and the transmitted light enters the acousto-optic modulator UMI. When the switch SWI is on, the acousto-optic modulator UMI is driven by the output of the signal generator SG2 at the frequency f, so the frequency ν. Most of the incident light is diffracted and undergoes a frequency (Doppler) shift, and the first-order diffracted light has a frequency ν. -f, light enters the absorption cell CL1. When the switch SWI is off, all incident light has a frequency of 0th order diffracted light and enters the absorption cell CLI at ◇. Since the switch SWI is driven by the single frequency tarok of the signal generator SGI, the light incident on the absorption cell CLI is subjected to frequency modulation of the modulation frequency f 11 +modulation source fo. Absorption cell CLI with one acousto-optic transformer UM
When light modulated by 1 is incident, the amount of transmitted light is modulated only at the absorption signal location, and a signal appears at the output, as shown in the operation explanatory diagram of FIG. This signal is converted into an electrical signal by the photodetector PDI and then sent to the lock-in amplifier L via the amplifier A1.
Synchronize with frequency fl on A1! If one flow is applied, a first-order differential waveform as shown in the frequency characteristic curve diagram of FIG. 4 is obtained. Semiconductor laser LDI by PID controller CT2
If the output of the lock-in amplifier LAI is controlled to the center of the first-order differential waveform by controlling the current of the semiconductor laser LDI
The output light has a stable frequency locked to νsfo/2.

このような構成の周波数特性測定装置はレーザの発振周
波数が変調されていないので、出力が瞬時的にも非常に
安定である。
In a frequency characteristic measuring device having such a configuration, the oscillation frequency of the laser is not modulated, so the output is very stable even momentarily.

次に第5図の可変周波数レーザ光源の動作について説明
する。制御モードでは切換スイッチSW2がオン、SW
3がオフで、動作は上述の第2図の場合と同じとなり、
半導体レーザLDIの出力周波数は標準物質の吸収周波
数にロックされる。
Next, the operation of the variable frequency laser light source shown in FIG. 5 will be explained. In control mode, selector switch SW2 is on, SW
3 is off, the operation is the same as in Figure 2 above,
The output frequency of the semiconductor laser LDI is locked to the absorption frequency of the standard material.

掃引モードでは切換スイッチSW2をオフとして周波数
制御ループを切り、このときのレーザ注入電流を保持し
た後、SW3をオンとして信号発生器8の出力でレーザ
LDIの温度を掃引し、その発振周波数を掃引する。こ
の場合、温度1℃変化させると半導体レーザLDIの発
振周波数は約lOG HZ変化する。
In the sweep mode, changeover switch SW2 is turned off to cut off the frequency control loop, and after holding the laser injection current at this time, SW3 is turned on and the output of signal generator 8 is used to sweep the temperature of the laser LDI and its oscillation frequency. do. In this case, when the temperature changes by 1° C., the oscillation frequency of the semiconductor laser LDI changes by about 1 OG HZ.

次に第6図のパワーメータ6の動作について説明する。Next, the operation of the power meter 6 shown in FIG. 6 will be explained.

光検出器4出力の直流成分はキャパシタCでカッ!・さ
れ、ビート成分のみを含む光出力電流I  を抵抗Rで
熱Wに変換する。ここでea t W=I    R・・・(5) ea t である、この発熱量Wを熱電対61および変換器62を
用いて測定する。
The DC component of the photodetector 4 output is connected to capacitor C!・The optical output current I containing only the beat component is converted into heat W by the resistor R. Here, eat W=I R (5) This calorific value W, which is eat , is measured using the thermocouple 61 and the converter 62.

周波数特性表示器7は例えばパワーメータ6の出力を縦
軸入力とし、信号発生器8の掃引出力を横軸入力とする
ことにより、光検出器4の光周波数特性を画面に表示す
る。
The frequency characteristic display 7 displays the optical frequency characteristic of the photodetector 4 on the screen by using, for example, the output of the power meter 6 as a vertical axis input and the sweep output of the signal generator 8 as a horizontal axis input.

このような構成の周波数特性測定装置によれば、周波数
が既知の周波数安定化レーザと可変周波数レーザ光源を
用いているので、と−1〜周波数を電気的に測定する必
要がなく、高価なスペクトラムアナライザが不要となる
According to the frequency characteristic measuring device with such a configuration, since it uses a frequency stabilized laser whose frequency is known and a variable frequency laser light source, there is no need to electrically measure the frequency from Analyzer is not required.

またビート信号のパワーを熱で検出しており、パワーメ
ータの抵抗Rが熱に変換できる周波数迄光検出器4の周
波数特性を測定することができるので、スペクトラムア
ナライザのように電気的に検出する場合に比べ、はるか
に広帯域で測定することができる。例えばレーザの温度
を60℃変化させると、600GHz付近まで測定する
ことができる。
In addition, the power of the beat signal is detected by heat, and the frequency characteristics of the photodetector 4 can be measured up to a frequency that can be converted into heat by the resistance R of the power meter, so it can be detected electrically like a spectrum analyzer. Measurements can be made over a much wider band than in the conventional case. For example, if the temperature of the laser is changed by 60° C., it is possible to measure up to around 600 GHz.

またスペクトラムアナライザが不要なので、簡羊な構成
で光検出器の周波数特性を測定することができる。
Furthermore, since a spectrum analyzer is not required, the frequency characteristics of the photodetector can be measured with a simple configuration.

なお上記の実施例において、可変周波数レーザ光源とし
て、ファブリ・ベロー・エタロンの透過波長を前述第2
図のような安定化レーザ光源の出力光の波長に制御し、
ファブリ・ベロー・エタロンの透過波長の1つに半導体
レーザの出力波長を制御した後前記半導体レーザの電流
または温度を変えて出力波長をステップ的に変化させる
ものを用いれば、周波数安定化レーザ光源との周波数差
が正確に把握できるので、測定が容易となる。
In the above embodiment, as a variable frequency laser light source, the transmission wavelength of the Fabry-Bérot etalon is set to the second wavelength.
Control the output light wavelength of the stabilized laser light source as shown in the figure,
By controlling the output wavelength of a semiconductor laser to one of the transmission wavelengths of the Fabry-Bello etalon, and then changing the output wavelength stepwise by changing the current or temperature of the semiconductor laser, it is possible to obtain a frequency-stabilized laser light source. Since the frequency difference can be accurately determined, measurement becomes easy.

また吸収セルCLIの標準物質を変えることにより、下
記の例のようにいろいろな波長帯の光検出器の周波数特
性を測定することができる。
Furthermore, by changing the standard material of the absorption cell CLI, it is possible to measure the frequency characteristics of the photodetector in various wavelength bands as shown in the example below.

また上記の実施例において、測定帯域が数10G Hz
程度と低い場合は、第1図のパワーメータ6にダイオー
ドの検波器を使用してもよい。
Furthermore, in the above embodiment, the measurement band is several tens of GHz.
In cases where the damage is relatively low, a diode detector may be used as the power meter 6 shown in FIG.

また被測定光検出器に限らず、光検出回路の周波数特性
を測定することもできる。
Moreover, it is also possible to measure the frequency characteristics of not only the photodetector under test but also a photodetection circuit.

また光検出器4に入射する光パワーを一定にして測定し
たい場合には第7図のように可変減衰器9をカプラ3と
光検出器4の間に挿入すればよい。
Furthermore, if it is desired to make measurements while keeping the optical power incident on the photodetector 4 constant, a variable attenuator 9 may be inserted between the coupler 3 and the photodetector 4 as shown in FIG.

ここではカプラ3の第2の合波出力を低速の光検出器1
0で検出し、その出力に対応して制御器11が可変減衰
器9の減衰量を制御する。
Here, the second combined output of the coupler 3 is transmitted to the low-speed photodetector 1.
0, and the controller 11 controls the attenuation amount of the variable attenuator 9 in accordance with the output.

〈発明の効果〉 以上述べたように本発明によれば、光検出器の周波数特
性を広帯域で検出できる周波数特性測定装置を簡″単な
構成で実現することができる。
<Effects of the Invention> As described above, according to the present invention, a frequency characteristic measuring device capable of detecting the frequency characteristics of a photodetector over a wide band can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光周波数特性装置の一実施例を示
す構成ブロック図、第2図は第1図の周波数安定化レー
ザ光源11を示す部分構成ブロック図、第3図は第2図
装置の動作を説明するための動作説明図、第4図は第2
図装置の動作を説明するための特性曲線図、第5図は第
1図の可変周波数レーザ光源12を示す部分構成ブロッ
ク図、第6図は第1図のパワーメータ6を示す部分構成
ブロック図、第7図は本発明に係る光周波数特性装置の
変型例を示す構成ブロック図、第8図は従来の周波数特
性測定装置を示す構成ブロック図である。 3・・・合波手段、4・・・被測定光検出器、6・・・
パワーメータ、7・・・表示器、8・・・信号発生器、
11・・・安定化レーザ光源、12・・・可変周波数レ
ーザ光源、LDI・・・半導体レーザ。 賃 図 第 図 ( 図 2 周7数1+・1・生表示携、7.−。
FIG. 1 is a block diagram showing an embodiment of the optical frequency characteristic device according to the present invention, FIG. 2 is a partial block diagram showing the frequency-stabilized laser light source 11 of FIG. 1, and FIG. An operation explanatory diagram for explaining the operation of the device, Fig. 4 is the second
Figure 5 is a partial block diagram showing the variable frequency laser light source 12 in Figure 1; Figure 6 is a partial block diagram showing the power meter 6 in Figure 1. , FIG. 7 is a block diagram showing a modification of the optical frequency characteristic device according to the present invention, and FIG. 8 is a block diagram showing a conventional frequency characteristic measuring device. 3... Multiplexing means, 4... Photodetector to be measured, 6...
Power meter, 7...Display device, 8...Signal generator,
11... Stabilized laser light source, 12... Variable frequency laser light source, LDI... Semiconductor laser. Figure 2 (Figure 2 Round 7 number 1+, 1, live display handheld, 7.-.

Claims (1)

【特許請求の範囲】[Claims] 標準物質の吸収スペクトル線に半導体レーザの周波数を
制御して周波数を安定化する安定化レーザ光源と、標準
物質の吸収スペクトル線に半導体レーザの周波数を制御
した後その周波数を変化することのできる可変周波数レ
ーザ光源と、この可変周波数レーザ光源の周波数を掃引
する信号発生器と、前記安定化レーザ光源の出力光と前
記可変周波数レーザ光源の出力光を合波する合波手段と
、この合波手段の出力光を入射する被測定光検出器から
出力されるビート信号のパワーを測定するパワーメータ
と、このパワーメータの出力と前記信号発生器の出力を
入力して前記光検出器の周波数特性を表示する表示器と
を備えたことを特徴とする周波数特性測定装置。
A stabilized laser light source that stabilizes the frequency by controlling the frequency of a semiconductor laser according to the absorption spectrum line of the standard material, and a variable source that can change the frequency after controlling the frequency of the semiconductor laser according to the absorption spectrum line of the standard material. a frequency laser light source, a signal generator for sweeping the frequency of the variable frequency laser light source, a combining means for combining the output light of the stabilized laser light source and the output light of the variable frequency laser light source, and the combining means a power meter for measuring the power of a beat signal output from a photodetector to be measured that receives output light from the photodetector; A frequency characteristic measuring device characterized by comprising a display device for displaying information.
JP27220589A 1989-10-19 1989-10-19 Measuring apparatus of frequency characteristic Pending JPH03134536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27220589A JPH03134536A (en) 1989-10-19 1989-10-19 Measuring apparatus of frequency characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27220589A JPH03134536A (en) 1989-10-19 1989-10-19 Measuring apparatus of frequency characteristic

Publications (1)

Publication Number Publication Date
JPH03134536A true JPH03134536A (en) 1991-06-07

Family

ID=17510571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27220589A Pending JPH03134536A (en) 1989-10-19 1989-10-19 Measuring apparatus of frequency characteristic

Country Status (1)

Country Link
JP (1) JPH03134536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823175A (en) * 2014-01-10 2014-05-28 上海波汇通信科技有限公司 Photoelectric detection circuit frequency response characteristic test method based on OTDR
JP2015004536A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Frequency characteristic measurement method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004536A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Frequency characteristic measurement method and system
CN103823175A (en) * 2014-01-10 2014-05-28 上海波汇通信科技有限公司 Photoelectric detection circuit frequency response characteristic test method based on OTDR

Similar Documents

Publication Publication Date Title
US6057919A (en) Apparatus and method for measuring characteristics of optical pulses
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
JPH03134536A (en) Measuring apparatus of frequency characteristic
JPH0812246B2 (en) Electrical / optical distance measuring device
US5666062A (en) Voltage measuring using electro-optic material&#39;s change in refractive index
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JPS62159928A (en) Frequency response measuring instrument for optical reception system
JPH07103828A (en) Estimation unit for variable frequency characteristics
JP3984170B2 (en) Method for examining control state of laser device with stabilized frequency and laser device with stabilized frequency
JPS60253953A (en) Measurement system for gas concentration
JPH06207847A (en) Measuring device for optical fm modulation characteristic
JPH0716982Y2 (en) Optical frequency change measuring device
JP3354630B2 (en) Optical transmission characteristics measurement device
JPH11271179A (en) Measuring device of wavelength dispersion of optical fiber
Schnatz et al. Iodine-stabilized frequency-doubled Nd: YAG lasers at lambda= 532 nm: design and performance
JPH03123828A (en) Instrument and method for measuring characteristic of optical phase modulator
JPH02284045A (en) Detection of concentration and pressure of gas with tunable etalon utilized therefor
JPH0477641A (en) Temperature measuring method using optical fiber
JP5219023B2 (en) Measuring probe for electric field, voltage or magnetic field
JPH0264433A (en) Measuring method of frequency characteristic of light modulator and measuring apparatus therefor
JPH03135086A (en) Variable frequency light source
JPH04302158A (en) Semiconductor laser modulation characteristic measuring device
JPH08211131A (en) Voltage measuring apparatus