JPH03134402A - Feed water flow controller for electric power plant - Google Patents

Feed water flow controller for electric power plant

Info

Publication number
JPH03134402A
JPH03134402A JP26804289A JP26804289A JPH03134402A JP H03134402 A JPH03134402 A JP H03134402A JP 26804289 A JP26804289 A JP 26804289A JP 26804289 A JP26804289 A JP 26804289A JP H03134402 A JPH03134402 A JP H03134402A
Authority
JP
Japan
Prior art keywords
flow rate
water supply
output
feed water
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26804289A
Other languages
Japanese (ja)
Inventor
Toshio Aoki
俊夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26804289A priority Critical patent/JPH03134402A/en
Publication of JPH03134402A publication Critical patent/JPH03134402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PURPOSE:To enable stable supply of feed water over a wide flow rate range, from lower to higher flow rates, by regulating the opening of a feed water control valve based on a value detected by a second flow rate detector when there is no output from a setter, and regulating the opening of the valve based on a value detected by a first flow rate detector when there is an output from the setter. CONSTITUTION:When a deviation value for a feed water flow rate equal to, for example, 40% of a maximum flow rate, a set value in a setter 31 is so selected that the setter 31 produces an output according to an input thereto, and an output from a switch 30 is so determined that transfer from a signal produced by an adder-subtracter 43 to a signal produced by an adder-subtracter 28 can be made when the setter 31 gives an output. When the feed water flow rate is not more than 40% of the maximum flow rate, the opening of a feed water flow control valve 10 is regulated based on a value detected by a flow rate detector 25 provided in a piping on the inlet side of a starting feed water pump 24 and a value detected by a temperature detector 26. When the feed water flow rate exceeds 40%, the opening of the valve 10 is regulated based on a value detected by a flow rate detector 25 provided in a pipe on the outlet side of the valve 10 and a value detected by the temperature detector 26. It is thereby possible to perform a stable feed water flow control.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、汽力を用いた発電プラントの給水流量制御装
置に係り、特に小流量運転時の制御特性を改善した発電
プラントの給水流量制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a water supply flow rate control device for a power generation plant using steam power, and in particular to a power generation plant with improved control characteristics during small flow operation. This invention relates to a water supply flow rate control device.

(従来の技術) 汽力発電プラントの蒸気発生装置への給水流量は、発電
機を駆動する蒸気タービンに付設された復水器で回収さ
れた水を、給水ポンプと給水調節弁が直列に介挿された
配管を経て例えば蒸発器等の蒸気発生手段へ環流させる
にあたり、給水ポンプを運転しながら給水調節弁の開度
を調節して制御している。この際給水ポンプは通常複数
台が並列に用いられ、発電プラントの出力が大きく給水
流量も多くを要するときには、例えばプラントの発生し
た蒸気を用いるタービン駆動ポンプを使用し、例えば発
電プラントの起動時などの蒸気発生量が少なく給水流量
も少ないときには、これに代えて電動機駆動のポンプを
用いるようにされている。
(Prior technology) The flow rate of water supplied to the steam generator of a steam power generation plant is determined by a system in which water is collected in a condenser attached to a steam turbine that drives a generator, and a water pump and a water regulating valve are inserted in series. When the water is returned to a steam generating means such as an evaporator through a pipe provided with the water, the opening degree of the water supply control valve is controlled while operating the water supply pump. In this case, multiple water supply pumps are usually used in parallel, and when the power generation plant has a large output and requires a large amount of water supply, for example, a turbine-driven pump that uses the steam generated by the plant is used, such as when starting up the power generation plant. When the amount of steam produced is small and the flow rate of water supply is low, an electric motor-driven pump is used instead.

このような小流量の給水流全制御時における水・蒸気系
配管とその制御系統の要部は、例えば高速増殖炉を用い
た原子力発電所の蒸気発生系についてみると、第4図に
示すように、図示を省略した復水ポンプから導かれた給
水配管33には給水加熱器8.起動用給水ポンプ24.
給水加熱器8.給水調節弁10および蒸発器5がこの順
に介挿されて気水分離器23に至っている。気水分離器
23からの蒸気成分は止め弁32を経て過熱器へ配管接
続され、同じく水分は復水器へ導かれるように配管接続
されている。給水調節弁10の出口側配管には主給水流
量の検出器25が、また蒸発器5の出口側配管には蒸気
温度の検出器26がそれぞれ設けられ、それらの出力信
号は給水流量制御装置42に入力されている。給水流量
制御装置42の出力信号は給水調節弁10に接続されて
いる。
The main parts of the water/steam system piping and its control system during full control of such a small flow rate of water supply are as shown in Figure 4, for example, in the steam generation system of a nuclear power plant using a fast breeder reactor. In addition, a feed water heater 8. Start-up water pump 24.
Feed water heater8. A water supply control valve 10 and an evaporator 5 are inserted in this order to reach a steam/water separator 23. Steam components from the steam separator 23 are piped to a superheater via a stop valve 32, and moisture is similarly piped to be led to a condenser. A main feed water flow rate detector 25 is provided on the outlet side pipe of the feed water control valve 10, and a steam temperature detector 26 is provided on the outlet side pipe of the evaporator 5, and their output signals are sent to the feed water flow rate control device 42. has been entered. The output signal of the water supply flow rate control device 42 is connected to the water supply control valve 10.

ここで小流量の給水制御を要する場合として、原子炉を
起動して例えば定格出力の40%まで出力上昇させると
きについて述べると、原子炉が核加熱を開始するまでは
給水流量は最大流量の10%程度の小流量に保たれ、そ
の後原子炉の核加熱が開始され、蒸発器5から蒸発発生
が行なわれる前に給水流量は10%から40%まで増大
される。
Here, we will talk about a case where small flow rate water supply control is required, when the reactor is started and the output is increased to, for example, 40% of the rated output.The water supply flow rate is 10% of the maximum flow rate until the reactor starts nuclear heating. %, and then nuclear heating of the reactor is started, and the feed water flow rate is increased from 10% to 40% before evaporation occurs from the evaporator 5.

この間の給水流量は、検出器25と検出器26の検出値
に基づいて給水調節弁10を調節して制御される。この
場合給水流量制御装置42の詳細は、第5図に示すよう
に、蒸気温度の検出器26の出力信号は、関数発生器2
7を通じて給水流210%から40%までに相当する設
定値に自動変更して加減演算器28に与えられ、主給水
流量の検出器25の出力信号との偏差がとられたのち、
これをPI演算器29を通して給水調節弁10の開閉信
号としている。
The water supply flow rate during this period is controlled by adjusting the water supply control valve 10 based on the detected values of the detectors 25 and 26. In this case, the details of the feed water flow rate control device 42 are as shown in FIG.
7 to automatically change the set value corresponding to the water supply flow rate from 210% to 40% and give it to the adjustment calculator 28, and after taking the deviation from the output signal of the main water supply flow rate detector 25,
This is passed through the PI calculator 29 and used as an opening/closing signal for the water supply control valve 10.

(発明が解決しようとする課題) 上述した給水流量制御装置では、主給水流量の検出器2
5は給水流量10%から40%までの低流量範囲から定
格流量までの広範囲に使用され、この場合特に低流量領
域での検出精度が悪化する傾向があり、これによって低
流量範囲における給水流全制御が不安定となることがあ
った。
(Problem to be Solved by the Invention) In the above-described water supply flow rate control device, the main water supply flow rate detector 2
5 is used in a wide range from the low flow rate range of 10% to 40% of the water supply flow rate up to the rated flow rate. Control sometimes became unstable.

本発明の目的は、給水流量の低流量域から高流量域まで
安定に制御することができる発電プラントの給水流量制
御装置を提供することにある。
An object of the present invention is to provide a water supply flow rate control device for a power plant that can stably control the water supply flow rate from a low flow rate range to a high flow rate range.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明では、給熱されて発電機駆動用タービンに蒸気を
供給する蒸発器への給水配管に給水ポンプと給水調節弁
が介挿され、給水配管に設けられた流量検出器の検出値
に基づいて給水調節弁の開度を調節する発電プラントの
給水流量制御装置において、これに比較的高流量時に専
用される給水ポンプと並列設置された比較的低流量時に
専用される給水ポンプの流路に設けられた第2の流量検
出器と、この第2の流量検出器と給水配管に設けられた
第1の流量検出器の検出値の偏差が定められた値以下に
なったとき出力する設定器と、この設定器の出力の有無
によって2入力のいづれかを選択出力する切替器とが設
けられ、設定器の出力が無いとき切替器を通じて第2の
流量検出器の検出値に基づいた信号によって給水調節弁
の開度が調節され、設定器の出力が有るとき切替器を通
じて第1の流量検出器の検出値に基づいた信号によって
給水調節弁の開度が調節されるようにした。
(Means for Solving the Problems) In the present invention, a water supply pump and a water supply control valve are inserted in a water supply pipe to an evaporator that is supplied with heat and supplies steam to a turbine for driving a generator. In a power plant water supply flow rate control device that adjusts the opening degree of a water supply control valve based on the detected value of a flow rate detector, the system is installed in parallel with a water supply pump dedicated for relatively high flow rates. A second flow rate detector provided in the flow path of the dedicated water supply pump, and a predetermined value for the deviation between the detected values of this second flow rate detector and the first flow rate detector provided in the water supply pipe. A setting device that outputs an output when the setting device outputs an output of The opening degree of the water supply control valve is adjusted by a signal based on the detected value of the first flow rate detector, and when there is an output from the setting device, the opening degree of the water supply control valve is adjusted by a signal based on the detection value of the first flow rate detector through the switch. I made it so that it would be done.

(作 用) 比較的低流量時には、第1の流量検出器と第2の流量検
出器の検出値の偏差が大きく設定器の出力が無いので、
給水調節弁の開度は第2の流量検出器の検出値に基づい
て制御され、給水流量が増加して第1の流量検出器と第
2の流量検出器の検出値の偏差が少なくなり、これが定
められた値以下となって設定器の出力が生じると、その
後は給水調節弁の開度が第1の流量検出器の検出値に基
づいて制御されるようになる。比較的低流量時には第2
の流量検出器の検出値の精度が良く、高流量になると第
1の流量検出器の検出値の精度も良くなるので、給水流
量の大小にかかわりなく常に高精度の給水流量制御が可
能となる。
(Function) When the flow rate is relatively low, the deviation between the detected values of the first flow rate detector and the second flow rate detector is large and there is no output from the setting device.
The opening degree of the water supply control valve is controlled based on the detected value of the second flow rate detector, the water supply flow rate increases and the deviation between the detected values of the first flow rate detector and the second flow rate detector decreases, When this becomes less than a predetermined value and the setting device outputs an output, the opening degree of the water supply control valve is thereafter controlled based on the detected value of the first flow rate detector. When the flow rate is relatively low, the second
The accuracy of the detection value of the first flow rate detector is good, and as the flow rate increases, the accuracy of the detection value of the first flow rate detector also improves, so it is possible to always control the water supply flow rate with high precision regardless of the size of the water supply flow rate. .

(実施例) 以下本発明の一実施例として、高速増殖炉(以下FBR
という)型原子力発電所の給水流口制御装置に適用した
ものを、第1図乃至第3図を参照して説明する。
(Example) As an example of the present invention, a fast breeder reactor (hereinafter FBR) will be described below.
1 to 3, a description will be given of an apparatus applied to a water supply flow port control device for a type nuclear power plant.

第3図はFBR型原子力発電所の制御系統図であり、第
3図において、原子炉容器1には中間熱交換器2と1次
主冷却系循環ポンプ3が介挿された1次主冷却系配管4
5が設けられ、液体ナトリウムからなる冷却材をこれに
循環させて原子炉容器1内で発生した熱を中間熱交換器
2に与えるようにされている。中間熱交換器2の2次側
には、過熱器4、蒸発器5および2次主冷却系循環ポン
プ6が介挿された2次主冷却系配管46が設けられ、同
じく液体ナトリウムからなる冷却材をこれに循環させて
、中間熱交換器2で交換された熱を蒸発器5と過熱器4
に与えるようにされている。
Fig. 3 is a control system diagram of an FBR type nuclear power plant. System piping 4
5 is provided, and a coolant made of liquid sodium is circulated through this to provide heat generated in the reactor vessel 1 to the intermediate heat exchanger 2. On the secondary side of the intermediate heat exchanger 2, a secondary main cooling system piping 46 in which a superheater 4, an evaporator 5, and a secondary main cooling system circulation pump 6 are inserted is provided, and a cooling system also made of liquid sodium is provided. The heat exchanged in the intermediate heat exchanger 2 is transferred to the evaporator 5 and the superheater 4.
It is intended to be given to

過熱器4と蒸発器5の2次側は直列とされ、これらは以
下に述べる水蒸気系の循環路の一部を構成している。す
なわち過熱器4の2次側は蒸気加減弁11を経て高圧タ
ービン13に配管接続され、蒸発器5の2次側で発生し
、過熱器4で過熱された過熱蒸気が高圧タービン13に
供給されるようになっている。高圧タービン13の排気
側は低圧タービン14を付勢するように接続され、これ
らのタービン13.14に軸結された発電機15を回転
させるようにされている。
The secondary sides of the superheater 4 and the evaporator 5 are connected in series, and these constitute a part of the circulation path of the steam system described below. That is, the secondary side of the superheater 4 is pipe-connected to the high-pressure turbine 13 via the steam control valve 11, and superheated steam generated on the secondary side of the evaporator 5 and superheated in the superheater 4 is supplied to the high-pressure turbine 13. It has become so. The exhaust side of the high-pressure turbine 13 is connected to energize the low-pressure turbine 14, which rotates a generator 15 that is coupled to these turbines 13,14.

低圧タービン14の排気側には復水器16が設けられ、
これに連結された給水配管33には復水ポンプ7、給水
加熱器8A、並列接続された主給水ポンプ9および起動
用給水ポンプ24.給水加熱器8B、給水調節弁10が
順次介挿されて蒸発器5の2次側に至っており、復水器
16で凝縮された水が蒸発器5に環流されるようになっ
ている。また蒸気加減弁11の人口側からは、タービン
バイパス弁12が介挿されて復水器16に至るバイパス
路が設けられている。
A condenser 16 is provided on the exhaust side of the low pressure turbine 14,
The water supply pipe 33 connected thereto includes a condensate pump 7, a feed water heater 8A, a main water pump 9 connected in parallel, and a starting water pump 24. A feed water heater 8B and a feed water control valve 10 are sequentially inserted to reach the secondary side of the evaporator 5, so that water condensed in the condenser 16 is circulated back to the evaporator 5. Further, from the artificial side of the steam control valve 11, a bypass path is provided which leads to a condenser 16 through which a turbine bypass valve 12 is inserted.

このような原子力発電装置に対する制御系として出力指
令装置17が設けられ、この出力指令装置エフの出力信
号は原子炉出力制御装置L8. 1次主冷却系流量制御
装置19,2次主冷却系流量制御装置20、給水流2制
御装置21にそれぞれ与えられるように接続されている
An output command device 17 is provided as a control system for such a nuclear power generation device, and the output signal of this power command device F is sent to the reactor power control device L8. It is connected to the primary main cooling system flow rate control device 19, the secondary main cooling system flow rate control device 20, and the feed water flow 2 control device 21, respectively.

原子炉出力制御装置18には、1次主冷却系配管45の
原子炉容器1からの出口に設けられた温度検出器34と
、原子炉容器1内に設けられた中性子検出器35の各検
出値が入力され、その出力は原子炉容器1内の原子炉出
力調整用の制御棒を制御するように接続されている。
The reactor power control device 18 includes a temperature detector 34 provided at the outlet of the primary main cooling system piping 45 from the reactor vessel 1 and a neutron detector 35 provided inside the reactor vessel 1. A value is input, and its output is connected to control a control rod for adjusting the reactor power in the reactor vessel 1.

1次主冷却系流量制御装置19には、1次主冷却系循環
ポンプ3の回転数検出器36と、1次主冷却系循環ポン
プ3の吐出側に設けられた流量検出器37の各検出値が
入力され、その出力は1次主冷却系循環ポンプ3の回転
数を制御するように接続されている。
The primary main cooling system flow control device 19 includes a rotation speed detector 36 of the primary main cooling system circulation pump 3 and a flow rate detector 37 provided on the discharge side of the primary main cooling system circulation pump 3. A value is input, and its output is connected to control the rotation speed of the primary main cooling system circulation pump 3.

2次主冷却系流量制御装置20には、2次主冷却系循環
ポンプ6の吐出側に設けられた流量検出器38の検出値
が入力され、その出力は2次主冷却系循環ポンプ6の回
転数を制御するように接続されている。
The detection value of the flow rate detector 38 provided on the discharge side of the secondary main cooling system circulation pump 6 is inputted to the secondary main cooling system flow rate control device 20, and the output thereof is input to the secondary main cooling system circulation pump 6. Connected to control the rotation speed.

給水流量制御装置21には、蒸発器5の2次側出口配管
に設けられた温度検出器26と、給水調節弁10の出口
側配管に設けられた流量検出器25と、給水調節弁10
の出入口間に設けられた差圧計39の各検出値が入力さ
れるとともに、これらに加えて起動用給水ポンプ24の
入口側配管に設けられた流量検出器40の検出値が入力
され、その出力は給水調節弁IOの弁開度を制御するも
のと、主給水ポンプ9の回転数を制御するものとが導出
されている。
The feed water flow rate control device 21 includes a temperature detector 26 provided on the secondary side outlet pipe of the evaporator 5, a flow rate detector 25 provided on the outlet side pipe of the feed water control valve 10, and a temperature detector 26 provided on the outlet side pipe of the feed water control valve 10.
The detected values of the differential pressure gauge 39 installed between the inlet and outlet of the starting water pump 24 are inputted, and in addition to these, the detected values of the flow rate detector 40 installed on the inlet side piping of the starting water supply pump 24 are inputted, and the output One for controlling the opening degree of the water supply control valve IO and the other for controlling the rotation speed of the main water supply pump 9 are derived.

またこれら各制御装置の他に主蒸気圧力制御装置22が
設けられ、これには蒸気加減弁11の入口側配管に設け
られた圧力検出器4■の検出値が入力されるとともに、
蒸気加減弁11とタービンバイパス弁12の開度をそれ
ぞれ制御する出力線が導出されている。
In addition to these control devices, a main steam pressure control device 22 is provided, to which the detected value of the pressure detector 4■ provided on the inlet side piping of the steam control valve 11 is inputted, and
Output lines are derived to control the opening degrees of the steam control valve 11 and the turbine bypass valve 12, respectively.

次にこれの作用について述べる。Next, the effect of this will be described.

比較的大きな例えば原子炉の定格出力の40%乃至10
0%の範囲における運転時には、出力指令装置17は、
所望するプラント出力に対応する設定値を与えられると
、これに応じたプラント出力指令信号を原子炉出力制御
装置18.1次主冷却系流量制御装置19,2次主冷却
系流量制御装置20および給水流量制御装置21にそれ
ぞれ伝達する。プラント出力の設定値が現在のプラント
出力から増減される場合には、プラント出力指令信号は
所定の変化率によって上述した各制御装置に伝達される
Relatively large power, for example 40% to 10% of the rated output of a nuclear reactor
During operation in the 0% range, the output command device 17
When a set value corresponding to a desired plant output is given, a corresponding plant output command signal is sent to the reactor power control device 18, the primary main cooling system flow control device 19, the secondary main cooling system flow control device 20, and The information is transmitted to the water supply flow rate control device 21, respectively. When the set value of the plant output is increased or decreased from the current plant output, the plant output command signal is transmitted to each of the above-mentioned control devices at a predetermined rate of change.

このとき原子炉出力制御装置18は、温度検出器34が
検出した原子炉容器1の出口のナトリウムの温度をこの
プラント出力指令信号と対比して炉心への制御棒(いづ
れも図示省略)の挿入量を加減し、原子炉出力がプラン
ト出力の設定値になるように制御する。このときナトリ
ウムの温度検出値の熱的な遅れを補うため、中性子検出
器35の出力信号を併用して制御の即応性と安定性を改
善している。
At this time, the reactor power control device 18 compares the temperature of sodium at the outlet of the reactor vessel 1 detected by the temperature detector 34 with this plant output command signal, and inserts control rods (all not shown) into the reactor core. The reactor output is controlled to match the set value of the plant output by adjusting the amount. At this time, in order to compensate for the thermal delay in the temperature detection value of sodium, the output signal of the neutron detector 35 is also used to improve the responsiveness and stability of the control.

同じく1次主冷却系流量制御装置19は、流量検出器3
7が検出した1次主冷却系の循環流量、および回転数検
出器36が検出した1次主冷却系循環ポンプ3の回転数
信号を、プラント出力指令信号と対比して1次主冷却系
循環ポンプ3の回転数を調整し、1次主冷却系の循環流
量がプラント出力の設定値に対応した値となるように制
御している。
Similarly, the primary main cooling system flow rate control device 19 includes a flow rate detector 3
The circulation flow rate of the primary main cooling system detected by 7 and the rotation speed signal of the primary main cooling system circulation pump 3 detected by the rotation speed detector 36 are compared with the plant output command signal to determine the circulation flow rate of the primary main cooling system. The rotation speed of the pump 3 is adjusted to control the circulation flow rate of the primary main cooling system to a value corresponding to the set value of the plant output.

同じく2次主冷却系流量制御装置20は、流量検出器3
8が検出した2次主冷却系の循環流量をプラント出力指
令信号と対比して2次主冷却系循環ポンプ6の回転数を
調整し、2次主冷却系の循環流量がプラント出力の設定
値に対応した値となるように制御している。
Similarly, the secondary main cooling system flow rate control device 20 includes a flow rate detector 3
The rotation speed of the secondary main cooling system circulation pump 6 is adjusted by comparing the detected circulation flow rate of the secondary main cooling system with the plant output command signal, and the circulation flow rate of the secondary main cooling system is adjusted to the set value of the plant output. It is controlled so that the value corresponds to .

同じく給水流量制御装置21は、温度検出器26が検出
した蒸発器5の出口の蒸気温度が定められた一定値に保
たれるように、給水調節弁10の開度を調節し、また差
圧計39が検出した給水調節弁10の出入口間の差圧が
一定値になるように、主給水ポンプ9の回転数を調節す
る制御を行なっている。
Similarly, the water supply flow rate control device 21 adjusts the opening degree of the water supply control valve 10 so that the steam temperature at the outlet of the evaporator 5 detected by the temperature sensor 26 is maintained at a predetermined constant value, and also controls the opening degree of the water supply control valve 10 using a differential pressure gauge. Control is performed to adjust the rotational speed of the main water supply pump 9 so that the differential pressure between the inlet and the outlet of the water supply control valve 10 detected by the main water supply control valve 39 becomes a constant value.

又プラント出力の設定値が現在のプラント出力から増減
された場合には、流量検出器25の検出値をプラント出
力指令信号と対比させて制御の応答性を改善している。
Furthermore, when the set value of the plant output is increased or decreased from the current plant output, the detected value of the flow rate detector 25 is compared with the plant output command signal to improve control responsiveness.

また主蒸気圧力制御装置22は、圧力検出器41が検出
した主蒸気圧力が一定値に保たれるように、蒸気加減弁
11の開度を調節する。なお主蒸気圧力が急上昇した場
合、タービンバイパス弁12を開くように制御を行なっ
ている。
The main steam pressure control device 22 also adjusts the opening degree of the steam control valve 11 so that the main steam pressure detected by the pressure detector 41 is maintained at a constant value. Note that control is performed to open the turbine bypass valve 12 when the main steam pressure increases rapidly.

このようにして主冷却系の流量がプラント出力指令信号
とほぼ比例するように制御され、同時に原子炉出力が調
整され、タービン発電機出力を原子炉出力に追従させて
いる。
In this way, the flow rate of the main cooling system is controlled to be substantially proportional to the plant output command signal, and at the same time, the reactor output is adjusted, making the turbine generator output follow the reactor output.

これに対し次に原子炉の起動時、例えば定格出力の40
%までに至る間の制御について述べる。
On the other hand, when the reactor is started up, for example, 40
We will discuss the control that takes place up to %.

この場合には原子炉出力制御装置18.1次主冷却系流
量制御装置19.2次主冷却系流量制御装置20および
給水流量制御装置21の各装置は出力指令装置17から
切離される。そうして1次主冷却系循環ポンプ3、およ
び2次主冷却系循環ポンプ6はそれぞれ1次主冷却系流
量制御装置19、および2次主冷却系流量制御装置20
によって各県の循環流量が一定になるように制御される
。また原子炉出力制御装置18では、一定の変化率で原
子炉の出力が上昇するように原子炉容器1内の制御棒(
図示省略)を操作する制御が行なわれる。
In this case, the reactor power control device 18 , the primary main cooling system flow rate control device 19 , the secondary main cooling system flow rate control device 20 , and the feed water flow rate control device 21 are separated from the output command device 17 . The primary main cooling system circulation pump 3 and the secondary main cooling system circulation pump 6 are then connected to the primary main cooling system flow control device 19 and the secondary main cooling system flow control device 20, respectively.
The circulating flow rate in each prefecture is controlled to be constant. In addition, the reactor power control device 18 controls the control rods (
(not shown) is controlled.

水蒸気系の給水配管33を含む給水系統では、主給水ポ
ンプ9は切離され起動用給水ポンプ24が使用される。
In a water supply system including a water vapor system water supply pipe 33, the main water supply pump 9 is separated and the starting water supply pump 24 is used.

この起動用給水ポンプ24を含む復水ポンプ7から過熱
器4に至る間の要部の詳細は、第2図に示すように、蒸
発器5の出口配管は気水分離器23に導入され、蒸気分
は止め弁32が介挿された配管を経て過熱器4に導かれ
、水分は復水器IGに導かれている。給水流量制御装置
21には流量検出器25、温度検出器26および流量検
出器40の各検出値が入力され、これらの各検出値に基
づいて給水調節弁10の弁開度が制御される。
The details of the main parts from the condensate pump 7 including the start-up water supply pump 24 to the superheater 4 are as shown in FIG. The steam is led to the superheater 4 through a pipe in which a stop valve 32 is inserted, and the moisture is led to the condenser IG. The detected values of the flow rate detector 25, the temperature sensor 26, and the flow rate detector 40 are input to the feed water flow rate control device 21, and the valve opening degree of the feed water regulating valve 10 is controlled based on these detected values.

ここで給水流量制御装置21の詳細構成は、第1図に示
すように、温度検出器26から入力される関数発生器2
7が設けられ、その出力が加減演算器28と43に接続
されている。加減演算rt28と43の他の入力には流
量検出器25および流量検出器40の各出力が接続され
ている。また流量検出器25および流量検出器40から
入力される加減演算器44が設けられ、その出力は設定
器31を経て切替器30の開閉を制御するように接続さ
れている。この切替器30には加減演算器28と43の
両出力が接続され、その出力はPI演算器29を経て給
水調節弁10に接続されている。
Here, the detailed configuration of the water supply flow rate control device 21 is as shown in FIG.
7 is provided, and its output is connected to addition/subtraction calculators 28 and 43. The other inputs of the addition/subtraction calculations rt28 and rt43 are connected to the respective outputs of the flow rate detector 25 and the flow rate detector 40. Further, an addition/subtraction calculator 44 which receives input from the flow rate detector 25 and the flow rate detector 40 is provided, and its output is connected to the setting device 31 so as to control opening/closing of the switch 30 . Both outputs of the addition/subtraction calculators 28 and 43 are connected to the switch 30, and the output thereof is connected to the water supply control valve 10 via the PI calculator 29.

ここで原子炉の起動時から通常の運転状態、すなわち例
えば定格出力の40%以上に移行するまでの作用につい
て述べる。
Here, the operation from the start of the nuclear reactor to the normal operating state, that is, for example, to 40% or more of the rated output, will be described.

原子炉出力制御装置18によって制御棒が引抜かれ原子
炉の核加熱が始まるまでは、給水流量は最大流量の10
%程度に保たれている。次いで制御棒の引抜きを始め原
子炉の核加熱が開始されるが、発熱量が増加し蒸発器5
の発生蒸気が十分確保されるまでの間、止め弁32は閉
じられ蒸発器5から出る水分蒸気は気水分離器23を経
て全量復水器16に環流されている。この間の環流量と
なる給水流量は最大流量の10%から40%まで順次増
大するように給水流量制御装置21によって制御される
Until the control rods are withdrawn by the reactor power control device 18 and nuclear heating of the reactor begins, the feed water flow rate is 10% of the maximum flow rate.
It is maintained at about %. Next, the control rods are withdrawn and nuclear heating of the reactor begins, but the amount of heat generated increases and the evaporator 5
Until sufficient generated steam is secured, the stop valve 32 is closed and the water vapor coming out of the evaporator 5 is recycled to the full amount condenser 16 via the steam separator 23. During this period, the water supply flow rate, which is the recirculation flow rate, is controlled by the water supply flow rate control device 21 so as to increase sequentially from 10% to 40% of the maximum flow rate.

給水流量制御装置21では、関数発生器27が蒸気温度
の検出器26の検出値に応じて給水流量の10%乃至4
0%に相当する流量値信号を出力し、この信号は加減演
算器28および加減演算器43においてそれぞれ流量検
出器25および流量検出器40の各検出信号と比較され
、各偏差値が切替器30の両入力に与えられてそれらの
内のいづれかが選択され、これがPI演算器29を経た
のち給水調節弁IOの開度が調節される。
In the feed water flow rate control device 21, a function generator 27 adjusts the feed water flow rate from 10% to 4% according to the detected value of the steam temperature detector 26.
A flow rate value signal corresponding to 0% is output, and this signal is compared with each detection signal of the flow rate detector 25 and the flow rate detector 40 in the addition/subtraction calculator 28 and the addition/subtraction calculator 43, respectively, and each deviation value is outputted to the switch 30. One of them is selected, and after passing through the PI calculator 29, the opening degree of the water supply control valve IO is adjusted.

一方加減演算器44にも入力されている流量検出器25
および流量検出器40の各検出信号は、給水流量が増加
するに従って流量検出器25の検出値誤差は減少するの
で流量検出器25と流量検出器40の検出値は接近し、
したがって両者の比較偏差値が減少してゆく。
On the other hand, the flow rate detector 25 is also input to the addition/subtraction calculator 44.
As for each detection signal of the flow rate detector 40, the detection value error of the flow rate detector 25 decreases as the water supply flow rate increases, so the detection values of the flow rate detector 25 and the flow rate detector 40 become close to each other.
Therefore, the comparison deviation value between the two decreases.

ここでこの偏差値が次第に減少して最大流量の40%の
給水流量時における偏差値に達したとき、その入力によ
って設定器3Iの出力が生じるように設定器31の設定
値を設定しておき、また切替器30の出力は、この設定
器31の出力が生じたとき加減演算器43の信号から加
減演算器28の信号に切替えられるように定めておけば
、最大流量の40%の給水流量までは起動用給水ポンプ
24の入口側配管に設けられた流量検出器40と、温度
検出器26の各検出値に基づいて給水調節弁10の開度
が調節され、給水流量が40%を超えると、前述したよ
うに給水調節弁10の出口側配管に設けられた流量検出
器25と、温度検出器26の各検出値に基づいて給水調
節弁10の開度が調節される。
Here, the setting value of the setting device 31 is set so that when this deviation value gradually decreases and reaches the deviation value at the time of water supply flow rate of 40% of the maximum flow rate, the output of the setting device 3I is generated by the input. In addition, if the output of the switch 30 is set so that the signal of the adder/subtractor 43 is switched to the signal of the adder/subtractor 28 when the output of the setting device 31 occurs, the water supply flow rate will be 40% of the maximum flow rate. Until then, the opening degree of the water supply control valve 10 is adjusted based on the detection values of the flow rate detector 40 provided on the inlet side piping of the starting water supply pump 24 and the temperature detector 26, and the water supply flow rate exceeds 40%. As described above, the opening degree of the water supply regulating valve 10 is adjusted based on the detection values of the flow rate detector 25 and the temperature detector 26 provided on the outlet side piping of the water supply regulating valve 10.

これによって、最大流量の4096の給水流量までは最
大定格が小さい流量検出器40を用いて制御されるので
流量検出精度が低下することがなく、給水流量が少ない
ときでも安定な給水流全制御を行なうことができる。
As a result, the water supply flow rate up to the maximum flow rate of 4096 is controlled using the flow rate detector 40 with a small maximum rating, so the flow rate detection accuracy does not decrease, and stable overall control of the water supply flow is possible even when the water supply flow rate is low. can be done.

[発明の効果] 本発明によれば、低流量域から高流量域まで安定な給水
を行なうことができる発電プラントの給水流量制御装置
を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a water supply flow rate control device for a power plant that can provide stable water supply from a low flow rate region to a high flow rate region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図の給水流量制御装置の詳細を示す回路図
、第2図は第3図の要部を取出して示した配管図、第3
図は本発明の一実施例が適用されるFBR型原子力発電
所の制御系統図、第4図は従来のFBR型原子力発電所
の蒸気発生系の要部を示す配管図、第5図は第4図の給
水流量制御装置を示す回路図である。 5・・・蒸発器      9・・・主給水ポンプlO
・・・給水調節弁    13・・・高圧タービン14
・・・低圧タービン   15・・・発電機( 24・・・起動用給水ポンプ 25.40・・・流量検
出器30・・・切替器      31・・・設定器3
3・・・給水配管
Figure 1 is a circuit diagram showing the details of the water supply flow rate control device in Figure 2, Figure 2 is a piping diagram showing the main parts of Figure 3, and Figure 3
The figure is a control system diagram of an FBR type nuclear power plant to which an embodiment of the present invention is applied, Figure 4 is a piping diagram showing the main parts of the steam generation system of a conventional FBR type nuclear power plant, and Figure 5 is a 5 is a circuit diagram showing the water supply flow rate control device of FIG. 4. FIG. 5...Evaporator 9...Main water supply pump lO
... Water supply control valve 13 ... High pressure turbine 14
... Low pressure turbine 15 ... Generator ( 24 ... Water supply pump for starting 25.40 ... Flow rate detector 30 ... Switching device 31 ... Setting device 3
3...Water supply piping

Claims (1)

【特許請求の範囲】[Claims] 1、給熱されて発電機駆動用タービンに蒸気を供給する
蒸発器への給水配管に給水ポンプと給水調節弁が介挿さ
れ、前記給水配管に設けられた流量検出器の検出値に基
づいて前記給水調節弁の開度を調節する発電プラントの
給水流量制御装置において、比較的高流量時に専用され
る前記給水ポンプと並列設置された比較的低流量時に専
用される前記給水ポンプの流路に設けられた第2の流量
検出器と、この第2の流量検出器と前記給水配管に設け
られた第1の前記流量検出器の検出値の偏差が定められ
た値以下になったとき出力する設定器と、この設定器の
出力の有無によって2入力のいづれかを選択出力する切
替器とが設けられ、前記設定器の出力が無いとき、前記
切替器を通じて前記第2の流量検出器の検出値に基づい
た信号によって前記給水調節弁の開度が調節され、前記
設定器の出力が有るとき前記切替器を通じて前記第1の
流量検出器の検出値に基づいた信号によって前記給水調
節弁の開度が調節されるようにされてなることを特徴と
する発電プラントの給水流量制御装置。
1. A water supply pump and a water supply control valve are inserted in the water supply pipe to the evaporator that receives heat and supplies steam to the turbine for driving the generator, and based on the detection value of the flow rate detector installed in the water supply pipe, In the water supply flow rate control device for a power generation plant that adjusts the opening degree of the water supply control valve, the water supply pump, which is installed in parallel with the water supply pump dedicated to relatively high flow rates, is installed in a flow path of the water supply pump, which is dedicated to relatively low flow rates. Output when the deviation between the detected values of the second flow rate detector provided and the second flow rate detector and the first flow rate detector provided in the water supply pipe becomes equal to or less than a predetermined value. A setting device and a switching device that selects and outputs one of two inputs depending on the presence or absence of an output from the setting device are provided, and when there is no output from the setting device, the detected value of the second flow rate sensor is changed through the switching device. The opening degree of the water supply control valve is adjusted by a signal based on the detection value of the first flow rate detector through the switching device when there is an output of the setting device. 1. A water supply flow rate control device for a power generation plant, characterized in that the water flow rate is adjusted.
JP26804289A 1989-10-17 1989-10-17 Feed water flow controller for electric power plant Pending JPH03134402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26804289A JPH03134402A (en) 1989-10-17 1989-10-17 Feed water flow controller for electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26804289A JPH03134402A (en) 1989-10-17 1989-10-17 Feed water flow controller for electric power plant

Publications (1)

Publication Number Publication Date
JPH03134402A true JPH03134402A (en) 1991-06-07

Family

ID=17453072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26804289A Pending JPH03134402A (en) 1989-10-17 1989-10-17 Feed water flow controller for electric power plant

Country Status (1)

Country Link
JP (1) JPH03134402A (en)

Similar Documents

Publication Publication Date Title
US4437313A (en) HRSG Damper control
US4104117A (en) Nuclear reactor power generation
US4424186A (en) Power generation
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
JPS6239648B2 (en)
US3247069A (en) Control of nuclear power plant
JPH03134402A (en) Feed water flow controller for electric power plant
JPS58197408A (en) Starting device for combined plant
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP3112579B2 (en) Pressure control device
JP2765637B2 (en) Steam turbine power generation equipment
JPS5819240B2 (en) Fast breeder reactor inlet sodium temperature control method and device
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPH01212802A (en) Steam temperature control device for boiler
JPS6032082B2 (en) Feed water temperature control device
JP2531755B2 (en) Water supply control device
JPS6239658B2 (en)
JPS5928802B2 (en) Nuclear plant steam temperature control device
JPS6150278B2 (en)
JPS63184098A (en) Generating output control method of boiling water type nuclear power plant
JPS6011282B2 (en) Method and device for controlling the amount of ventilation in the superheater of a sodium-heated steam generator
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH0861605A (en) Turbine bypass steam temperature controller
JPH10111392A (en) Controller for drain pump-up system