JPH03133536A - Manufacture of molding sand having magnetism - Google Patents

Manufacture of molding sand having magnetism

Info

Publication number
JPH03133536A
JPH03133536A JP27067789A JP27067789A JPH03133536A JP H03133536 A JPH03133536 A JP H03133536A JP 27067789 A JP27067789 A JP 27067789A JP 27067789 A JP27067789 A JP 27067789A JP H03133536 A JPH03133536 A JP H03133536A
Authority
JP
Japan
Prior art keywords
foundry sand
iron oxide
molding sand
magnetism
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27067789A
Other languages
Japanese (ja)
Inventor
Masafumi Nishida
雅文 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27067789A priority Critical patent/JPH03133536A/en
Publication of JPH03133536A publication Critical patent/JPH03133536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To separate molding sand through a magnetic separator and to make reuse easy by heating the molding sand with iron oxide stuck on the surface thereof at the specific temp. or higher under reducing atmosphere to make this iron oxide triiron tetroxide and making the molding sand having magnetism. CONSTITUTION:The molding sand 2 is charged into an alumina-made vessel 1 and set this in the heating furnace 4. Inside wall of this heating furnace 4, burners 3 are arranged and mixed gas of LPG and air is supplied in the burners 3, ignited and burnt. Temp. in the heating furnace 4 is held to >= 400 deg.C under the reducing atmosphere. Combustion is executed under condition of a little quantity of oxygen and exhaust gas is exhausted from an exhaust hole 5 and the inner part of furnace is held to the reducing atmosphere to make the iron oxide triiron tetroxide, and this is stuck to the surface of molding sand by burning. By this method, the molding sand having the magnetism can be separat ed by utilizing the magnetic separator and the reuse can be made easy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁選機による分別が可能な程度の磁性をもつ鋳
物砂の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing foundry sand having a degree of magnetism that allows separation by a magnetic separator.

[従来の技術] 従来、鋳物砂は鋳物用砂型の主要部を形成する主型砂と
空洞部を形成する中子砂として広く使用されている。ま
た経済性、省資源の点から鋳物砂は回収されて繰返し再
使用されている。鋳造上の要請により特性の異なる2種
の鋳物砂を使用して鋳物型を作る場合がある。この様な
時に品質や経済性の点から特性の異なる鋳物砂は、分別
して回収することが必要である。たとえば、主型に生砂
を使用し、中子型にシリカサンドをフェノール樹脂のよ
うな有機の結合剤で固めたシェル型を使用する場合は分
別回収が必要となる。この分別回収の方法として鋳物砂
の磁性の差を利用して分別する方法が知られている。ま
た磁性をもたない鋳物砂型材料に磁性を付与する方法と
して、生砂型の粘結材として使用されるベントナイトを
還元性雰囲気で400 ’C以上の温度に加熱してベン
トナイトに磁性を付与する方法(特開昭63−1302
39号公報)が知られている。この磁性をもつベントナ
イトを粘結剤に使用した鋳物砂型では、回収工程で磁性
を利用してベントナイトを分別回収することができる。
[Prior Art] Conventionally, foundry sand has been widely used as main sand forming the main part of a foundry sand mold and core sand forming the cavity. Also, from the point of view of economy and resource conservation, foundry sand is recovered and reused repeatedly. Depending on casting requirements, two types of foundry sand with different properties may be used to make a foundry mold. In such cases, it is necessary to separate and collect the foundry sands having different characteristics from the point of view of quality and economy. For example, if green sand is used for the main mold and a shell mold made of silica sand solidified with an organic binder such as phenolic resin is used for the core mold, separate collection is required. As a method for this sorting and recovery, a method is known in which the foundry sand is separated using differences in magnetism. Another method for imparting magnetism to non-magnetic foundry sand mold material is to heat bentonite, which is used as a caking agent for green sand molds, to a temperature of 400'C or higher in a reducing atmosphere to impart magnetism to the bentonite. (Unexamined Japanese Patent Publication No. 63-1302
No. 39) is known. In a foundry sand mold that uses this magnetic bentonite as a binder, the bentonite can be separated and recovered in the recovery process using magnetism.

[発明が解決しようとする課題] 上記の方法では、ベントナイトの特性を利用し、400
℃以上で加熱することによりベントナイトに必要な磁性
を付与することができた。しかし鋳物型の主材をなすシ
リカサンド等の鋳物砂は単に加熱しただけでは磁性を付
与することができない。
[Problem to be solved by the invention] In the above method, the characteristics of bentonite are used to
It was possible to impart the necessary magnetism to bentonite by heating it above ℃. However, foundry sand such as silica sand, which is the main material of the foundry mold, cannot be made magnetic simply by heating it.

本発明はかかる鋳物砂にする方法を提供することを目的
とする。
The object of the present invention is to provide a method for producing such foundry sand.

[課題を解決するための手段] 本発明の磁性を有する鋳物砂の製造方法は、鋳物砂の表
面に酸化鉄を付着させる付着工程と、該酸化鉄が付着し
た該鋳物砂を還元性雰囲気中で400°C以上の温度で
加熱して該酸化鉄を四三酸化鉄として該鋳物砂表面に焼
付ける加熱工程と、からなることを特徴とする。
[Means for Solving the Problems] The method for producing magnetic foundry sand of the present invention includes an adhesion step of adhering iron oxide to the surface of foundry sand, and placing the foundry sand to which the iron oxide has adhered in a reducing atmosphere. and a heating step of heating the iron oxide at a temperature of 400° C. or higher to convert the iron oxide into triiron tetroxide and baking it onto the surface of the foundry sand.

本発明の鋳物砂としては、たとえばジルコンサンド、シ
リカサンド、アルミナサンド、クロマイトサンドなどが
利用できる。この鋳物砂の粒径は270メツシユより大
きいものが好ましい。特に6〜270メツシユの範囲の
ものが取扱上好ましい。
As the foundry sand of the present invention, for example, zircon sand, silica sand, alumina sand, chromite sand, etc. can be used. The grain size of this foundry sand is preferably larger than 270 mesh. In particular, those having a mesh size of 6 to 270 meshes are preferred for handling.

鋳物砂に付着させる酸化鉄としては、主として酸化第1
鉄(FeO)、酸化第2鉄(Fe203 >が利用でき
る。さらに加熱雰囲気で鋳物砂に付着された状態で磁性
をもつ酸化鉄に変る鉄化合物でもよく、また四三酸化鉄
(Fe304 )を付着させて加熱してもよい。この酸
化鉄の形状としては、粉末、溶液、スラリー状に分散さ
れた状態のものが利用できる。
The iron oxide to be attached to foundry sand is mainly oxidized iron oxide.
Iron (FeO) and ferric oxide (Fe203) can be used.Furthermore, iron compounds that turn into magnetic iron oxide when attached to foundry sand in a heated atmosphere may also be used, and triiron tetraoxide (Fe304) can also be used. The iron oxide may be dispersed in the form of powder, solution, or slurry.

付着工程では、所定量の酸化鉄を鋳物砂に添加し鋳物砂
の表面に酸化鉄を付着させる。付着方法としては両者の
混合物を機械的に混合するか、また両者の混合物にさら
に有機結合剤を加えて混練するか、ざらに両者の混合物
に溶媒を加えて鋳物砂の表面に酸化鉄を付着させて溶媒
を除去するか、鋳物砂に酸化鉄の溶液またはスラリー液
を加えて付着させ溶媒を除去し乾燥させるなどの方法が
適用できる。
In the adhesion step, a predetermined amount of iron oxide is added to the foundry sand to adhere the iron oxide to the surface of the foundry sand. The adhesion method is to mechanically mix a mixture of both, add an organic binder to the mixture and knead it, or roughly add a solvent to the mixture of both to adhere iron oxide to the surface of the foundry sand. Alternatively, a solution or slurry of iron oxide may be added to the foundry sand, the solvent may be removed, and the solvent may be dried.

加熱工程では、付着工程で酸化鉄を表面に付着させた鋳
物砂を還元性雰囲気で400 ’C以上の温度に加熱す
る。この還元性雰囲気で鋳物砂が加熱されることにより
、付着している酸化鉄が還元されて磁性をもつ四三酸化
鉄を主成分とする酸化鉄となる。それと同時に酸化鉄が
鋳物砂の表面に焼付けられ鋳物砂に磁性が付与される。
In the heating step, the foundry sand to which iron oxide has been adhered to the surface in the adhesion step is heated to a temperature of 400'C or higher in a reducing atmosphere. By heating the foundry sand in this reducing atmosphere, the adhering iron oxide is reduced and becomes iron oxide whose main component is triiron tetroxide, which has magnetic properties. At the same time, iron oxide is baked onto the surface of the foundry sand, imparting magnetism to the foundry sand.

加熱雰囲気が還元性でないと鋳物砂に付着した酸化鉄が
四三酸化鉄に還元されないため磁性を付与できず好まし
くない。なお、付着工程で磁性をもつ四三酸化鉄を鋳物
砂に付着させ、加熱工程では鋳物砂の表面に付着された
四三酸化鉄を還元性雰囲気で焼付は固定して磁性をもつ
鋳物砂とすることもできる。
If the heating atmosphere is not reducing, the iron oxide adhering to the foundry sand will not be reduced to triiron tetroxide, making it impossible to impart magnetism, which is undesirable. In addition, in the adhesion process, magnetic triiron tetroxide is attached to the foundry sand, and in the heating process, the triiron tetroxide adhered to the surface of the foundry sand is baked and fixed in a reducing atmosphere to form the magnetic foundry sand. You can also.

この還元性雰囲気としては、水素ガス、−酸化炭素ガス
、アンモニヤガスなどの還元性のガスを存在させるか、
または炭化水素ガス(たとえばLPGガス)と空気との
混合ガス(酸素量の少ない状態で)を燃焼させて発生す
る水素ガスや一酸化炭素ガスで加熱炉内の雰囲気を還元
性にすることができる。
As this reducing atmosphere, a reducing gas such as hydrogen gas, carbon oxide gas, or ammonia gas may be present, or
Alternatively, the atmosphere in the heating furnace can be made reducing with hydrogen gas or carbon monoxide gas generated by burning a mixed gas (with a low oxygen content) of hydrocarbon gas (for example, LPG gas) and air. .

加熱は、雰囲気を還元性に保持してヒーターなどで加熱
するか、上記の燃焼時の熱を利用して4oo’c以上の
温度で加熱する。特に1000〜1500 ’Cの範囲
が酸化鉄に磁性を付与させるのに好ましい温度範囲であ
る。
Heating is carried out by heating with a heater or the like while keeping the atmosphere reducing, or by heating at a temperature of 4 oo'c or higher using the heat during combustion. In particular, a temperature range of 1000 to 1500'C is preferable for imparting magnetism to iron oxide.

加熱温度が400 ’Cより低いと、付着した酸化鉄を
磁性をもつ酸化鉄に変えることかできない。
If the heating temperature is lower than 400'C, the deposited iron oxide can only be changed into magnetic iron oxide.

さらに酸化鉄を鋳物砂の表面に焼付は固着させることが
できないため好ましくない。
Furthermore, it is not preferable to bake iron oxide onto the surface of the foundry sand because it cannot be fixed.

通常の磁選機では、磁化の大きさが10KOe(キロエ
ルステッド)の磁場中で単位重量(ダラム)当たりQ、
1emu、/g以上あれば、磁性を利用して鋳物砂を分
別することができる。
In a normal magnetic separator, Q per unit weight (Durham) in a magnetic field with a magnetization size of 10 KOe (Kiloersted),
If it is 1 emu/g or more, the foundry sand can be separated using magnetism.

この鋳物砂の磁化の大きさは、付着させる酸化鉄の吊を
多くするば大きくすることができる。そこで分別可能な
程度の磁性を付与するには、たとえば鋳物砂に付着させ
る酸化鉄の量を0.3重量%以上とすれば、鋳物砂の磁
化の大きさを0. 1emu/g以上とすることができ
る。なおこの酸化鉄の添加量は鋳造する金属の種類によ
り変えることが好ましい。たとえば、アルミニウム、銅
、マグネシウム合金を鋳造する場合の鋳物砂では、付着
された酸化鉄との間で相互作用がないため添加量を10
重量%まで付着させることかできるか、鋳鉄、鋳鋼のよ
うな銖を鋳造する場合には鉄に含まれている炭素が酸化
鉄により酸化されて炭酸ガスなどを発生させ易すく鋳物
中に気泡が形成されるため酸化鉄の添加量は2.0重量
%以下とするのが好ましい。
The magnitude of magnetization of this foundry sand can be increased by increasing the amount of iron oxide attached. Therefore, in order to impart magnetism to the extent that it can be separated, for example, if the amount of iron oxide attached to the foundry sand is set to 0.3% by weight or more, the magnitude of magnetization of the foundry sand is reduced to 0.3% by weight or more. It can be 1 emu/g or more. Note that the amount of iron oxide added is preferably changed depending on the type of metal to be cast. For example, in the case of casting sand for aluminum, copper, and magnesium alloys, the amount added is 10% because there is no interaction with the deposited iron oxide.
Is it possible to deposit up to % by weight? When casting iron or cast steel, the carbon contained in the iron is easily oxidized by iron oxide and generates carbon dioxide gas, causing air bubbles to form in the casting. Therefore, the amount of iron oxide added is preferably 2.0% by weight or less.

「作用」 本発明の磁性を有する鋳物砂の製造方法では、鋳物砂に
酸化鉄を付着させ、酸化鉄を付着された鋳物砂を還元性
雰囲気で400℃以上の温度で加熱処理する。この加熱
処理により鋳物砂に付着した酸化鉄が磁性を示す四三酸
化鉄を形成して鋳物砂の表面に焼付けられる。
"Operation" In the method for producing magnetic foundry sand of the present invention, iron oxide is attached to foundry sand, and the foundry sand to which iron oxide is attached is heat-treated at a temperature of 400° C. or higher in a reducing atmosphere. Through this heat treatment, the iron oxide adhering to the foundry sand forms triiron tetroxide, which exhibits magnetism, and is baked onto the surface of the foundry sand.

このためこの鋳物砂は、通常の磁選処理により磁性を待
たない鋳物砂から容易に分別することができる。
Therefore, this foundry sand can be easily separated from foundry sand that is not magnetic by ordinary magnetic separation treatment.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

第1表に示す組成と第2表に示す粒度分布もつ鋳物砂の
セラビーズ#750 (内外セラミックス株式会社製)
に、粒径が10〜100μmの酸化第二鉄粉末を鋳物砂
100重量部に対して0,0゜5.1.0.2.0重量
%の添加量で4種の配合物を作製した。この4種の配合
物にフェノール樹脂(セラビーズ100重量部に対し)
1.5重量部と、ステアリン酸カルシウム(セラビーズ
1001ffi部に対し>0.11を部を添加量して4
試斜を作製した。
Cerabeads #750 foundry sand with the composition shown in Table 1 and the particle size distribution shown in Table 2 (manufactured by Naigai Ceramics Co., Ltd.)
Four types of mixtures were prepared by adding ferric oxide powder with a particle size of 10 to 100 μm in an amount of 0.0°5.1.0.2.0% by weight to 100 parts by weight of foundry sand. . Phenolic resin (per 100 parts by weight of Cerabeads) is added to these four types of formulations.
1.5 parts by weight and calcium stearate (>0.11 parts per 1001ffi parts of Cerabeads)
A trial slope was constructed.

付着工程では、この4試料をスピードマラーで混練して
鋳物砂に酸化第二鉄を付着させた。
In the adhesion step, these four samples were kneaded using a speed miller to adhere ferric oxide to the foundry sand.

加熱工程では、第1図に示す加熱炉4に上記の4試料の
鋳物砂2をアルミナ製容器1に入れ、これを加熱炉4内
にセットする。この加熱炉4の側壁には、バーナー3が
設けられており、このバーナー3にLPGと空気の混合
ガスを供給して着火し燃焼させて加熱炉4内を還元雰囲
気とするとともに、加熱炉4内の温度を1300°Cに
保持する。
In the heating step, the four samples of foundry sand 2 described above are placed in an alumina container 1 and set in the heating furnace 4 shown in FIG. A burner 3 is provided on the side wall of the heating furnace 4, and a mixed gas of LPG and air is supplied to the burner 3 to ignite and burn it to create a reducing atmosphere inside the heating furnace 4. The temperature inside is maintained at 1300°C.

なお、燃焼は供給する空気の量により酸素量を少ナクシ
た条件でおこない、生成する排気ガスは加熱炉4の上方
に設けた排気口5から排出させ炉内を還元性雰囲気に保
持した。このhO熱炉4内で鋳物砂を1時間焼成した。
Incidentally, the combustion was carried out under the condition that the amount of oxygen was kept small depending on the amount of air supplied, and the generated exhaust gas was discharged from the exhaust port 5 provided above the heating furnace 4 to maintain the inside of the furnace in a reducing atmosphere. The foundry sand was fired in this hO furnace 4 for 1 hour.

得られた鋳物砂の磁性を、撮動試料型磁力計を用い10
KOeの磁場の中での全磁化の大きざ(単位emu/Q
)を測定した。
The magnetism of the obtained foundry sand was measured using a moving sample magnetometer.
The size of the total magnetization in the magnetic field of KOe (unit emu/Q
) was measured.

第2図には、酸化第二鉄の鋳物砂への添加量と磁化の大
きざとの関係を示した。第2図のグラフでは酸化第二鉄
の添カロ量が、Oの場合は磁化の大きざがOであり、添
加量が0.5重量%のとき磁化の大きさは0.12、添
加量が1.0重量%のとき磁化の大きさが0.22、振
力0@が2.0重量%のとき磁化の大きざが0.24で
ある。したがって酸化第2鉄の添加量が約0.3重量%
を超えると磁化の大きさがQ、1emu/c+以上の鋳
物砂が得られたことを示している。
FIG. 2 shows the relationship between the amount of ferric oxide added to foundry sand and the magnitude of magnetization. In the graph of Figure 2, when the amount of added ferric oxide is O, the magnitude of magnetization is O, and when the amount added is 0.5% by weight, the magnitude of magnetization is 0.12, and the amount added is O. When is 1.0% by weight, the magnitude of magnetization is 0.22, and when the vibration force is 0@2.0% by weight, the magnitude of magnetization is 0.24. Therefore, the amount of ferric oxide added is approximately 0.3% by weight.
When the value exceeds Q, it indicates that foundry sand with a magnetization level of Q, 1 emu/c+ or more has been obtained.

[効果コ 本発明の製造方法は、酸化鉄を鋳物砂に付着させて、還
元性雰囲気で400’C以上に加熱処理するという簡単
な工程で鋳物砂に磁性を付与することができる。得られ
る鋳物砂は1、磁性を利用して分別することかできる。
[Effects] The manufacturing method of the present invention can impart magnetism to foundry sand through a simple process of attaching iron oxide to foundry sand and heat-treating it at 400'C or higher in a reducing atmosphere. The foundry sand obtained can be separated using magnetism.

また四三酸化鉄が鋳物砂に焼付けられているので耐久性
のある磁性を鋳物砂に付与できる。
Furthermore, since triiron tetroxide is baked into the foundry sand, durable magnetism can be imparted to the foundry sand.

したがって、この磁性をもつ鋳物砂は、磁選機を利用し
て分別でき再利用が容易になる。
Therefore, this magnetic foundry sand can be separated using a magnetic separator and can be easily reused.

また鋳物砂自体が磁性を付与されているので、ベントナ
イトを加熱処理した結合剤を用いなくてもよいという利
点がある。
Furthermore, since the foundry sand itself is imparted with magnetism, there is an advantage that there is no need to use a binder made of heat-treated bentonite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の加熱炉の模式断面図であり、第2図は
酸化第2鉄の添加量と得られた鋳物砂の磁化の大きざと
の関係を示すグラフである。 1・・・アルミナ製容器   2・・・鋳物砂3・・・
バーナー      4・・・加熱炉5・・・排出口
FIG. 1 is a schematic cross-sectional view of the heating furnace of the example, and FIG. 2 is a graph showing the relationship between the amount of ferric oxide added and the magnitude of magnetization of the obtained foundry sand. 1... Alumina container 2... Foundry sand 3...
Burner 4... Heating furnace 5... Discharge port

Claims (1)

【特許請求の範囲】[Claims] (1)鋳物砂の表面に酸化鉄を付着させる付着工程と、
該酸化鉄が付着した該鋳物砂を還元性雰囲気中で400
℃以上の温度で加熱して該酸化鉄を四三酸化鉄として該
鋳物砂表面に焼付ける加熱工程と、からなることを特徴
とする磁性を有する鋳物砂の製造方法。
(1) An adhesion process of adhering iron oxide to the surface of foundry sand,
The foundry sand to which the iron oxide has adhered is heated to 400% in a reducing atmosphere.
1. A method for producing foundry sand having magnetism, comprising a heating step of heating the iron oxide at a temperature of 0.degree.
JP27067789A 1989-10-18 1989-10-18 Manufacture of molding sand having magnetism Pending JPH03133536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27067789A JPH03133536A (en) 1989-10-18 1989-10-18 Manufacture of molding sand having magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27067789A JPH03133536A (en) 1989-10-18 1989-10-18 Manufacture of molding sand having magnetism

Publications (1)

Publication Number Publication Date
JPH03133536A true JPH03133536A (en) 1991-06-06

Family

ID=17489410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27067789A Pending JPH03133536A (en) 1989-10-18 1989-10-18 Manufacture of molding sand having magnetism

Country Status (1)

Country Link
JP (1) JPH03133536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038248A (en) * 2005-08-02 2007-02-15 Furukawa Castec Co Ltd Casting method
US20150174645A1 (en) * 2013-02-19 2015-06-25 Itochu Ceratech Corporation Method for modifying refractory molding particles and refractory molding particles obtained thereby and process for producing mold
JP2019048329A (en) * 2017-09-12 2019-03-28 旭有機材株式会社 Method for recycling a recovered foundry sand
JP2022093531A (en) * 2017-08-03 2022-06-23 旭有機材株式会社 Mold material, method for producing the same, method for producing mold, and method for regenerating recovered refractory aggregate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038248A (en) * 2005-08-02 2007-02-15 Furukawa Castec Co Ltd Casting method
US20150174645A1 (en) * 2013-02-19 2015-06-25 Itochu Ceratech Corporation Method for modifying refractory molding particles and refractory molding particles obtained thereby and process for producing mold
US10456829B2 (en) * 2013-02-19 2019-10-29 Itochu Ceratech Corporation Method for modifying refractory molding particles and refractory molding particles obtained thereby and process for producing mold
JP2022093531A (en) * 2017-08-03 2022-06-23 旭有機材株式会社 Mold material, method for producing the same, method for producing mold, and method for regenerating recovered refractory aggregate
JP2019048329A (en) * 2017-09-12 2019-03-28 旭有機材株式会社 Method for recycling a recovered foundry sand

Similar Documents

Publication Publication Date Title
US3512571A (en) Cryogenic formation of refractory molds and other foundry articles
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
JP2019089124A (en) Sintered artificial sand
AU2009209473B2 (en) Compositions containing certain metallocenes and their uses
JPH03133536A (en) Manufacture of molding sand having magnetism
JP6367451B1 (en) Sintered artificial sand
JP5567353B2 (en) Spherical refractory particles, foundry sand comprising the same, and molds obtained using the same
US3802902A (en) Method of making molds
JP2016107320A (en) Casting mold sand and method for production thereof
JPS5844945A (en) Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold
US2862826A (en) Mold material for casting group ivb metals and method of making same
EP0785835B1 (en) Moulds and cores made of crushed and graded magnetite ore and process for casting metal using them
US4430441A (en) Cold setting sand for foundry moulds and cores
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
Beňo et al. Application of Non-Silica Sands for High Quality Castings
US3080628A (en) Method of and a mold and ingate system for casting metals
JPH0663683A (en) Production of casting mold
Gengel Foundry technologies and their influence on environment
JPH0733279B2 (en) Manufacturing method of molded products using slag
CN114570874B (en) Artificial sand manufacturing process, artificial sand recycling process and magnetic artificial sand
JPS597457A (en) Casting method
JP2007083284A (en) Core for die casting
SU1743671A1 (en) Composition of mix for making foundry moulds
JPS63252971A (en) Semizircon base flow-in monolithic refractories for ladle
JPH03170367A (en) Refractory for continuous casting and its production